Abstract

A dual in-plane electronic speckle pattern interferometry (ESPI) system has been developed for in situ measurements. The optical setup is described here. The system uses an electro-optical switch to change between the illumination directions for x and y sensitivity. The ability of the electro-optic device to change the polarization of the laser light forms the basis of this switch. The electro-optic device is a liquid-crystal layer cemented between two optically flat glass plates. An electric field can be set up across the layer by application of a voltage to electrodes. The speckle interferometry system incorporates two additional liquid-crystal devices to facilitate phase shifting, and the overall system is controlled by advanced software, which allows switching between the two perpendicular planes in quasi real time. The fact that there are no moving parts is an advantage in any ESPI system for which mechanical stability is vital.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. C. Williams, Optical Methods in Engineering Metrology (Chapman & Hall, London, 1993).
    [CrossRef]
  2. C. M. Vest, Holographic Interferometry (Wiley, New York, 1979).
  3. B. Bowe, V. Toal, “White light interferometric surface profiler,” Opt. Eng. 37, 1798–1799 (1998).
    [CrossRef]
  4. R. Jones, C. Wykes, Holographic and Speckle Interferometry (Cambridge University Press, Cambridge, UK, 1989).
    [CrossRef]
  5. A. P. Booresi, R. J. Schmidt, O. M. Sidebottom, Advanced Mechanics of Materials (Wiley, New York, 1993).
  6. P. P. Benham, R. J. Crawford, Mechanics of Engineering Materials (Longman Scientific and Technical, Essex, UK, 1987).
  7. E. Cadoni, B. Bowe, D. Albrecht, “Application of ESPI technique to evaluate the crack propagation zone of pre-notched clay elements,” presented at the International Conference on Applied Optical Metrology, Balatonfured, Hungary, 8–11 June 1998.
  8. J. N. Butters, R. C. Jones, C. Wykes, “Electronic Speckle Pattern Interferometry,” in Speckle Metrology, R. K. Erf, ed. (Academic, New York, 1978), pp. 111–157.
    [CrossRef]
  9. R. S. Sirohi, Speckle Metrology (Marcel Dekker, New York, 1993).
  10. C. Joenathon, M. Khorana, “Phase-measuring fiber optic electronic speckle pattern interferometer: phase step calibration and phase drift minimization,” Opt. Eng. 31, 315–320 (1992).
    [CrossRef]
  11. R. S. Sirohi, J. Burke, H. Helmers, K. D. Hinsch, “Spatial phase shifting for pure in-plane displacement and displacement-derivative measurements in electronic speckle pattern interferometry (ESPI),” Appl. Opt. 36, 5787–5792 (1997).
    [CrossRef] [PubMed]
  12. A. J. Moore, J. R. Tyrer, “An electronic speckle pattern interferometer for complete in-plane displacement measurement,” Meas. Sci. Technol. 1, 1024–1030 (1990).
    [CrossRef]
  13. K. Creath, “Phase-shifting speckle interferometry,” Appl. Opt. 24, 3053–3058 (1985).
    [CrossRef] [PubMed]
  14. B. Bahadur, Liquid Crystals Applications and Uses (World Scientific, London, 1990).
  15. L. M. Blinov, Electro-optical and Magneto-optical Properties of Liquid Crystals (Wiley, Belfast, 1993).
  16. S. Chandrasekhar, Liquid Crystals (Cambridge University Press, Cambridge, UK, 1992).

1998

B. Bowe, V. Toal, “White light interferometric surface profiler,” Opt. Eng. 37, 1798–1799 (1998).
[CrossRef]

1997

1992

C. Joenathon, M. Khorana, “Phase-measuring fiber optic electronic speckle pattern interferometer: phase step calibration and phase drift minimization,” Opt. Eng. 31, 315–320 (1992).
[CrossRef]

1990

A. J. Moore, J. R. Tyrer, “An electronic speckle pattern interferometer for complete in-plane displacement measurement,” Meas. Sci. Technol. 1, 1024–1030 (1990).
[CrossRef]

1985

Albrecht, D.

E. Cadoni, B. Bowe, D. Albrecht, “Application of ESPI technique to evaluate the crack propagation zone of pre-notched clay elements,” presented at the International Conference on Applied Optical Metrology, Balatonfured, Hungary, 8–11 June 1998.

Bahadur, B.

B. Bahadur, Liquid Crystals Applications and Uses (World Scientific, London, 1990).

Benham, P. P.

P. P. Benham, R. J. Crawford, Mechanics of Engineering Materials (Longman Scientific and Technical, Essex, UK, 1987).

Blinov, L. M.

L. M. Blinov, Electro-optical and Magneto-optical Properties of Liquid Crystals (Wiley, Belfast, 1993).

Booresi, A. P.

A. P. Booresi, R. J. Schmidt, O. M. Sidebottom, Advanced Mechanics of Materials (Wiley, New York, 1993).

Bowe, B.

B. Bowe, V. Toal, “White light interferometric surface profiler,” Opt. Eng. 37, 1798–1799 (1998).
[CrossRef]

E. Cadoni, B. Bowe, D. Albrecht, “Application of ESPI technique to evaluate the crack propagation zone of pre-notched clay elements,” presented at the International Conference on Applied Optical Metrology, Balatonfured, Hungary, 8–11 June 1998.

Burke, J.

Butters, J. N.

J. N. Butters, R. C. Jones, C. Wykes, “Electronic Speckle Pattern Interferometry,” in Speckle Metrology, R. K. Erf, ed. (Academic, New York, 1978), pp. 111–157.
[CrossRef]

Cadoni, E.

E. Cadoni, B. Bowe, D. Albrecht, “Application of ESPI technique to evaluate the crack propagation zone of pre-notched clay elements,” presented at the International Conference on Applied Optical Metrology, Balatonfured, Hungary, 8–11 June 1998.

Chandrasekhar, S.

S. Chandrasekhar, Liquid Crystals (Cambridge University Press, Cambridge, UK, 1992).

Crawford, R. J.

P. P. Benham, R. J. Crawford, Mechanics of Engineering Materials (Longman Scientific and Technical, Essex, UK, 1987).

Creath, K.

Helmers, H.

Hinsch, K. D.

Joenathon, C.

C. Joenathon, M. Khorana, “Phase-measuring fiber optic electronic speckle pattern interferometer: phase step calibration and phase drift minimization,” Opt. Eng. 31, 315–320 (1992).
[CrossRef]

Jones, R.

R. Jones, C. Wykes, Holographic and Speckle Interferometry (Cambridge University Press, Cambridge, UK, 1989).
[CrossRef]

Jones, R. C.

J. N. Butters, R. C. Jones, C. Wykes, “Electronic Speckle Pattern Interferometry,” in Speckle Metrology, R. K. Erf, ed. (Academic, New York, 1978), pp. 111–157.
[CrossRef]

Khorana, M.

C. Joenathon, M. Khorana, “Phase-measuring fiber optic electronic speckle pattern interferometer: phase step calibration and phase drift minimization,” Opt. Eng. 31, 315–320 (1992).
[CrossRef]

Moore, A. J.

A. J. Moore, J. R. Tyrer, “An electronic speckle pattern interferometer for complete in-plane displacement measurement,” Meas. Sci. Technol. 1, 1024–1030 (1990).
[CrossRef]

Schmidt, R. J.

A. P. Booresi, R. J. Schmidt, O. M. Sidebottom, Advanced Mechanics of Materials (Wiley, New York, 1993).

Sidebottom, O. M.

A. P. Booresi, R. J. Schmidt, O. M. Sidebottom, Advanced Mechanics of Materials (Wiley, New York, 1993).

Sirohi, R. S.

Toal, V.

B. Bowe, V. Toal, “White light interferometric surface profiler,” Opt. Eng. 37, 1798–1799 (1998).
[CrossRef]

Tyrer, J. R.

A. J. Moore, J. R. Tyrer, “An electronic speckle pattern interferometer for complete in-plane displacement measurement,” Meas. Sci. Technol. 1, 1024–1030 (1990).
[CrossRef]

Vest, C. M.

C. M. Vest, Holographic Interferometry (Wiley, New York, 1979).

Williams, D. C.

D. C. Williams, Optical Methods in Engineering Metrology (Chapman & Hall, London, 1993).
[CrossRef]

Wykes, C.

R. Jones, C. Wykes, Holographic and Speckle Interferometry (Cambridge University Press, Cambridge, UK, 1989).
[CrossRef]

J. N. Butters, R. C. Jones, C. Wykes, “Electronic Speckle Pattern Interferometry,” in Speckle Metrology, R. K. Erf, ed. (Academic, New York, 1978), pp. 111–157.
[CrossRef]

Appl. Opt.

Meas. Sci. Technol.

A. J. Moore, J. R. Tyrer, “An electronic speckle pattern interferometer for complete in-plane displacement measurement,” Meas. Sci. Technol. 1, 1024–1030 (1990).
[CrossRef]

Opt. Eng.

B. Bowe, V. Toal, “White light interferometric surface profiler,” Opt. Eng. 37, 1798–1799 (1998).
[CrossRef]

C. Joenathon, M. Khorana, “Phase-measuring fiber optic electronic speckle pattern interferometer: phase step calibration and phase drift minimization,” Opt. Eng. 31, 315–320 (1992).
[CrossRef]

Other

D. C. Williams, Optical Methods in Engineering Metrology (Chapman & Hall, London, 1993).
[CrossRef]

C. M. Vest, Holographic Interferometry (Wiley, New York, 1979).

R. Jones, C. Wykes, Holographic and Speckle Interferometry (Cambridge University Press, Cambridge, UK, 1989).
[CrossRef]

A. P. Booresi, R. J. Schmidt, O. M. Sidebottom, Advanced Mechanics of Materials (Wiley, New York, 1993).

P. P. Benham, R. J. Crawford, Mechanics of Engineering Materials (Longman Scientific and Technical, Essex, UK, 1987).

E. Cadoni, B. Bowe, D. Albrecht, “Application of ESPI technique to evaluate the crack propagation zone of pre-notched clay elements,” presented at the International Conference on Applied Optical Metrology, Balatonfured, Hungary, 8–11 June 1998.

J. N. Butters, R. C. Jones, C. Wykes, “Electronic Speckle Pattern Interferometry,” in Speckle Metrology, R. K. Erf, ed. (Academic, New York, 1978), pp. 111–157.
[CrossRef]

R. S. Sirohi, Speckle Metrology (Marcel Dekker, New York, 1993).

B. Bahadur, Liquid Crystals Applications and Uses (World Scientific, London, 1990).

L. M. Blinov, Electro-optical and Magneto-optical Properties of Liquid Crystals (Wiley, Belfast, 1993).

S. Chandrasekhar, Liquid Crystals (Cambridge University Press, Cambridge, UK, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Basic setup of an in-plane ESPI system.

Fig. 2
Fig. 2

Liquid-crystal optical switch.

Fig. 3
Fig. 3

Beam-directing optics.

Fig. 4
Fig. 4

Beam expansion and object illumination.

Fig. 5
Fig. 5

Three-dimensional diagram of the beam-directing optics.

Fig. 6
Fig. 6

Complete optical configuration of the ESPI system.

Fig. 7
Fig. 7

Fringe patterns taken while the voltage across the liquid-crystal phase shifter was increased: (a) 0.0 V, (b) 1.2 V, (c) 1.8 V, (d) 2.0 V, (e) 3.4 V, (f) 4.2 V.

Fig. 8
Fig. 8

Fringe pattern representing the displacement of a surface along the x axis.

Fig. 9
Fig. 9

Wrapped phase fringes.

Fig. 10
Fig. 10

Phase images: (a) wrapped and (b) unwrapped.

Fig. 11
Fig. 11

Displacement fringes shown in both (a) the x and (b) the y planes.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δϕ=4πd sin θ/λ,

Metrics