Abstract

A broadband (5–500 Hz) all-fiber-optic accelerometer was developed on the basis of Michelson interferometry, which is realized by a 3-dB single-mode fiber-optic beam splitter. On the distal endface of both interferometric arms of the splitter high-reflectance aluminum films were directly deposited to act as reflecting mirrors. The performance of a prototype of the accelerometer is examined. The results reveal that external stimuli can be truly sensed by the accelerometer, and the constraint level on lateral movement of the acceleration-sensitive mass is an important factor in determining the useful frequency bandwidth. The experimental results are compared with theoretical predictions.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Udd, “An overview of fiber-optic sensors,” Rev. Sci. Instrum. 66, 4015–4030 (1995).
    [CrossRef]
  2. A. B. Tveten, A. Dandridge, C. M. Davis, T. G. Giallorenzi, “Fibre optic accelerometer,” Electron. Lett. 16, 854–856 (1980).
    [CrossRef]
  3. A. D. Kersey, D. A. Jackson, M. Corke, “High-sensitivity fibre-optic accelerometer,” Electron. Lett. 18, 559–561 (1982).
    [CrossRef]
  4. F. Bucholtz, A. D. Kersey, A. Dandridge, “DC fibre-optic accelerometer with sub-µg sensitivity,” Electron. Lett. 22, 451–453 (1986).
    [CrossRef]
  5. A. S. Gerges, T. P. Newson, J. D. C. Jones, D. A. Jackson, “High-sensitivity fiber-optic accelerometer,” Opt. Lett. 14, 251–253 (1989).
    [CrossRef] [PubMed]
  6. R. D. Pechstedt, D. A. Jackson, “Performance analysis of a fiber optic accelerometer based on a compliant cylinder design,” Rev. Sci. Instrum. 66, 207–214 (1995).
    [CrossRef]
  7. C. Chen, G. Ding, D. Zhang, Y. Cui, S. Li, “Michelson fiberoptic accelerometer,” Rev. Sci. Instrum. 69, 3123–3126 (1998).
    [CrossRef]
  8. A. Dandridge, A. B. Tveten, T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. 18, 1647–1653 (1982).
    [CrossRef]

1998 (1)

C. Chen, G. Ding, D. Zhang, Y. Cui, S. Li, “Michelson fiberoptic accelerometer,” Rev. Sci. Instrum. 69, 3123–3126 (1998).
[CrossRef]

1995 (2)

R. D. Pechstedt, D. A. Jackson, “Performance analysis of a fiber optic accelerometer based on a compliant cylinder design,” Rev. Sci. Instrum. 66, 207–214 (1995).
[CrossRef]

E. Udd, “An overview of fiber-optic sensors,” Rev. Sci. Instrum. 66, 4015–4030 (1995).
[CrossRef]

1989 (1)

1986 (1)

F. Bucholtz, A. D. Kersey, A. Dandridge, “DC fibre-optic accelerometer with sub-µg sensitivity,” Electron. Lett. 22, 451–453 (1986).
[CrossRef]

1982 (2)

A. D. Kersey, D. A. Jackson, M. Corke, “High-sensitivity fibre-optic accelerometer,” Electron. Lett. 18, 559–561 (1982).
[CrossRef]

A. Dandridge, A. B. Tveten, T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. 18, 1647–1653 (1982).
[CrossRef]

1980 (1)

A. B. Tveten, A. Dandridge, C. M. Davis, T. G. Giallorenzi, “Fibre optic accelerometer,” Electron. Lett. 16, 854–856 (1980).
[CrossRef]

Bucholtz, F.

F. Bucholtz, A. D. Kersey, A. Dandridge, “DC fibre-optic accelerometer with sub-µg sensitivity,” Electron. Lett. 22, 451–453 (1986).
[CrossRef]

Chen, C.

C. Chen, G. Ding, D. Zhang, Y. Cui, S. Li, “Michelson fiberoptic accelerometer,” Rev. Sci. Instrum. 69, 3123–3126 (1998).
[CrossRef]

Corke, M.

A. D. Kersey, D. A. Jackson, M. Corke, “High-sensitivity fibre-optic accelerometer,” Electron. Lett. 18, 559–561 (1982).
[CrossRef]

Cui, Y.

C. Chen, G. Ding, D. Zhang, Y. Cui, S. Li, “Michelson fiberoptic accelerometer,” Rev. Sci. Instrum. 69, 3123–3126 (1998).
[CrossRef]

Dandridge, A.

F. Bucholtz, A. D. Kersey, A. Dandridge, “DC fibre-optic accelerometer with sub-µg sensitivity,” Electron. Lett. 22, 451–453 (1986).
[CrossRef]

A. Dandridge, A. B. Tveten, T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. 18, 1647–1653 (1982).
[CrossRef]

A. B. Tveten, A. Dandridge, C. M. Davis, T. G. Giallorenzi, “Fibre optic accelerometer,” Electron. Lett. 16, 854–856 (1980).
[CrossRef]

Davis, C. M.

A. B. Tveten, A. Dandridge, C. M. Davis, T. G. Giallorenzi, “Fibre optic accelerometer,” Electron. Lett. 16, 854–856 (1980).
[CrossRef]

Ding, G.

C. Chen, G. Ding, D. Zhang, Y. Cui, S. Li, “Michelson fiberoptic accelerometer,” Rev. Sci. Instrum. 69, 3123–3126 (1998).
[CrossRef]

Gerges, A. S.

Giallorenzi, T. G.

A. Dandridge, A. B. Tveten, T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. 18, 1647–1653 (1982).
[CrossRef]

A. B. Tveten, A. Dandridge, C. M. Davis, T. G. Giallorenzi, “Fibre optic accelerometer,” Electron. Lett. 16, 854–856 (1980).
[CrossRef]

Jackson, D. A.

R. D. Pechstedt, D. A. Jackson, “Performance analysis of a fiber optic accelerometer based on a compliant cylinder design,” Rev. Sci. Instrum. 66, 207–214 (1995).
[CrossRef]

A. S. Gerges, T. P. Newson, J. D. C. Jones, D. A. Jackson, “High-sensitivity fiber-optic accelerometer,” Opt. Lett. 14, 251–253 (1989).
[CrossRef] [PubMed]

A. D. Kersey, D. A. Jackson, M. Corke, “High-sensitivity fibre-optic accelerometer,” Electron. Lett. 18, 559–561 (1982).
[CrossRef]

Jones, J. D. C.

Kersey, A. D.

F. Bucholtz, A. D. Kersey, A. Dandridge, “DC fibre-optic accelerometer with sub-µg sensitivity,” Electron. Lett. 22, 451–453 (1986).
[CrossRef]

A. D. Kersey, D. A. Jackson, M. Corke, “High-sensitivity fibre-optic accelerometer,” Electron. Lett. 18, 559–561 (1982).
[CrossRef]

Li, S.

C. Chen, G. Ding, D. Zhang, Y. Cui, S. Li, “Michelson fiberoptic accelerometer,” Rev. Sci. Instrum. 69, 3123–3126 (1998).
[CrossRef]

Newson, T. P.

Pechstedt, R. D.

R. D. Pechstedt, D. A. Jackson, “Performance analysis of a fiber optic accelerometer based on a compliant cylinder design,” Rev. Sci. Instrum. 66, 207–214 (1995).
[CrossRef]

Tveten, A. B.

A. Dandridge, A. B. Tveten, T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. 18, 1647–1653 (1982).
[CrossRef]

A. B. Tveten, A. Dandridge, C. M. Davis, T. G. Giallorenzi, “Fibre optic accelerometer,” Electron. Lett. 16, 854–856 (1980).
[CrossRef]

Udd, E.

E. Udd, “An overview of fiber-optic sensors,” Rev. Sci. Instrum. 66, 4015–4030 (1995).
[CrossRef]

Zhang, D.

C. Chen, G. Ding, D. Zhang, Y. Cui, S. Li, “Michelson fiberoptic accelerometer,” Rev. Sci. Instrum. 69, 3123–3126 (1998).
[CrossRef]

Electron. Lett. (3)

A. B. Tveten, A. Dandridge, C. M. Davis, T. G. Giallorenzi, “Fibre optic accelerometer,” Electron. Lett. 16, 854–856 (1980).
[CrossRef]

A. D. Kersey, D. A. Jackson, M. Corke, “High-sensitivity fibre-optic accelerometer,” Electron. Lett. 18, 559–561 (1982).
[CrossRef]

F. Bucholtz, A. D. Kersey, A. Dandridge, “DC fibre-optic accelerometer with sub-µg sensitivity,” Electron. Lett. 22, 451–453 (1986).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Dandridge, A. B. Tveten, T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. 18, 1647–1653 (1982).
[CrossRef]

Opt. Lett. (1)

Rev. Sci. Instrum. (3)

E. Udd, “An overview of fiber-optic sensors,” Rev. Sci. Instrum. 66, 4015–4030 (1995).
[CrossRef]

R. D. Pechstedt, D. A. Jackson, “Performance analysis of a fiber optic accelerometer based on a compliant cylinder design,” Rev. Sci. Instrum. 66, 207–214 (1995).
[CrossRef]

C. Chen, G. Ding, D. Zhang, Y. Cui, S. Li, “Michelson fiberoptic accelerometer,” Rev. Sci. Instrum. 69, 3123–3126 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic drawing of the Michelson accelerometer. LD, laser diode; A/D, analog-to-digital; FFT, fast Fourier transform.

Fig. 2
Fig. 2

Mechanical schematic of the sensing element.

Fig. 3
Fig. 3

Waveforms of (a) output and (b) vibrator for a = 0.6g and f = 80 Hz.

Fig. 4
Fig. 4

Measured frequency spectra: (a) m = 0.4 g, L = 16 mm, and without constraining the lateral movement; (b) m = 0.4 g, L = 16 mm, and constraining with two plate springs; (c) m = 0.3 g, L = 6 mm, and constraining with two plate springs; (d) m = 0.3 g, L = 6 mm, and constraining with one plate spring.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Voutt=2KAmGJ1ϕsJ1ϕmsinωst+δ,
fn=4.76mL,

Metrics