Abstract

An optical contour mapping with a laser-interference method was carried out to evaluate the topographical deformation of optical memory disks. The dynamics of the deformation in a manufacturing process was studied. Reflective films and a protective resin coating increased the dishing, irrespective of the original shape of a substrate. A bonding process decreased the dishing and contributed to mechanical stability that lasted for a long period in daily use. In the case of a 0.6-mm-thick substrate, as with a DVD disk, the large dishing of the single substrate was suppressed by the bonding to less than 100 µm. In addition, it was shown that distortions arising from the molding process remained in the final product and that the initial process should be carefully controlled.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Matsui, “The dependence of bit error rate on lens tilt and disk tilt for magneto-optical heads,” IEICE Trans. Electron. E78-C, 1591–1595 (1995).
  2. R. E. Gerber, M. Mansuripur, “Effects of substrate birefringence and tilt on the irradiance and phase patterns of the return beam in magneto-optical disk data storage,” Appl. Opt. 34, 4780–4787 (1995).
    [CrossRef] [PubMed]
  3. R. E. Gerber, M. Mansuripur, “Tilt correction in an optical disk system,” Appl. Opt. 35, 7000–7007 (1996).
    [CrossRef] [PubMed]
  4. C. L. Bartlett, D. Kay, M. Mansuripur, “Computer simulations of effects of disk tilt and lens tilt on push–pull tracking error signal in an optical disk drive,” Appl. Opt. 36, 8467–8473 (1997).
    [CrossRef]
  5. L. Pan, D. Xu, M. Gong, H. Yuan, J. Pei, “Testing of optical disk axial runout and tilt,” in Optical Storage: Third International Symposium, F. Gan, ed., Proc. SPIE2053, 160–163 (1993).
  6. T. Sugaya, T. Taguchi, K. Shimamure, K. Taira, Y. Honguh, H. Satoh, T. Kobayashi, N. Nakamura, “Performance of a 600 Mbyte 90 mm phase-change optical disk against disk tilt,” Jpn. J. Appl. Phys. 32, 5402–5405 (1993).
    [CrossRef]
  7. K. Kato, N. Nakamura, N. Ootake, “Processing characteristics and distortion classification in injection moulding,” J. Jpn. Soc. Technol. Plasticity 30, 254–261 (1989).
  8. G. Makosch, W. Jaerisch, “Mapping of optical surfaces with quarter wavelength fringes,” Appl. Opt. 17, 744–747 (1978).
    [CrossRef] [PubMed]
  9. W. Jaerisch, G. Makosch, “Optical contour mapping of surfaces,” Appl. Opt. 12, 1552–1557 (1973).
    [CrossRef] [PubMed]
  10. T. Wada, H. Hattori, M. Umeno, “Measurement of surface patterns by using interference of diffracted laser beam,” Jpn. J. Appl. Phys. 21, 874–878 (1982).
    [CrossRef]

1997 (1)

1996 (1)

1995 (2)

R. E. Gerber, M. Mansuripur, “Effects of substrate birefringence and tilt on the irradiance and phase patterns of the return beam in magneto-optical disk data storage,” Appl. Opt. 34, 4780–4787 (1995).
[CrossRef] [PubMed]

T. Matsui, “The dependence of bit error rate on lens tilt and disk tilt for magneto-optical heads,” IEICE Trans. Electron. E78-C, 1591–1595 (1995).

1993 (1)

T. Sugaya, T. Taguchi, K. Shimamure, K. Taira, Y. Honguh, H. Satoh, T. Kobayashi, N. Nakamura, “Performance of a 600 Mbyte 90 mm phase-change optical disk against disk tilt,” Jpn. J. Appl. Phys. 32, 5402–5405 (1993).
[CrossRef]

1989 (1)

K. Kato, N. Nakamura, N. Ootake, “Processing characteristics and distortion classification in injection moulding,” J. Jpn. Soc. Technol. Plasticity 30, 254–261 (1989).

1982 (1)

T. Wada, H. Hattori, M. Umeno, “Measurement of surface patterns by using interference of diffracted laser beam,” Jpn. J. Appl. Phys. 21, 874–878 (1982).
[CrossRef]

1978 (1)

1973 (1)

Bartlett, C. L.

Gerber, R. E.

Gong, M.

L. Pan, D. Xu, M. Gong, H. Yuan, J. Pei, “Testing of optical disk axial runout and tilt,” in Optical Storage: Third International Symposium, F. Gan, ed., Proc. SPIE2053, 160–163 (1993).

Hattori, H.

T. Wada, H. Hattori, M. Umeno, “Measurement of surface patterns by using interference of diffracted laser beam,” Jpn. J. Appl. Phys. 21, 874–878 (1982).
[CrossRef]

Honguh, Y.

T. Sugaya, T. Taguchi, K. Shimamure, K. Taira, Y. Honguh, H. Satoh, T. Kobayashi, N. Nakamura, “Performance of a 600 Mbyte 90 mm phase-change optical disk against disk tilt,” Jpn. J. Appl. Phys. 32, 5402–5405 (1993).
[CrossRef]

Jaerisch, W.

Kato, K.

K. Kato, N. Nakamura, N. Ootake, “Processing characteristics and distortion classification in injection moulding,” J. Jpn. Soc. Technol. Plasticity 30, 254–261 (1989).

Kay, D.

Kobayashi, T.

T. Sugaya, T. Taguchi, K. Shimamure, K. Taira, Y. Honguh, H. Satoh, T. Kobayashi, N. Nakamura, “Performance of a 600 Mbyte 90 mm phase-change optical disk against disk tilt,” Jpn. J. Appl. Phys. 32, 5402–5405 (1993).
[CrossRef]

Makosch, G.

Mansuripur, M.

Matsui, T.

T. Matsui, “The dependence of bit error rate on lens tilt and disk tilt for magneto-optical heads,” IEICE Trans. Electron. E78-C, 1591–1595 (1995).

Nakamura, N.

T. Sugaya, T. Taguchi, K. Shimamure, K. Taira, Y. Honguh, H. Satoh, T. Kobayashi, N. Nakamura, “Performance of a 600 Mbyte 90 mm phase-change optical disk against disk tilt,” Jpn. J. Appl. Phys. 32, 5402–5405 (1993).
[CrossRef]

K. Kato, N. Nakamura, N. Ootake, “Processing characteristics and distortion classification in injection moulding,” J. Jpn. Soc. Technol. Plasticity 30, 254–261 (1989).

Ootake, N.

K. Kato, N. Nakamura, N. Ootake, “Processing characteristics and distortion classification in injection moulding,” J. Jpn. Soc. Technol. Plasticity 30, 254–261 (1989).

Pan, L.

L. Pan, D. Xu, M. Gong, H. Yuan, J. Pei, “Testing of optical disk axial runout and tilt,” in Optical Storage: Third International Symposium, F. Gan, ed., Proc. SPIE2053, 160–163 (1993).

Pei, J.

L. Pan, D. Xu, M. Gong, H. Yuan, J. Pei, “Testing of optical disk axial runout and tilt,” in Optical Storage: Third International Symposium, F. Gan, ed., Proc. SPIE2053, 160–163 (1993).

Satoh, H.

T. Sugaya, T. Taguchi, K. Shimamure, K. Taira, Y. Honguh, H. Satoh, T. Kobayashi, N. Nakamura, “Performance of a 600 Mbyte 90 mm phase-change optical disk against disk tilt,” Jpn. J. Appl. Phys. 32, 5402–5405 (1993).
[CrossRef]

Shimamure, K.

T. Sugaya, T. Taguchi, K. Shimamure, K. Taira, Y. Honguh, H. Satoh, T. Kobayashi, N. Nakamura, “Performance of a 600 Mbyte 90 mm phase-change optical disk against disk tilt,” Jpn. J. Appl. Phys. 32, 5402–5405 (1993).
[CrossRef]

Sugaya, T.

T. Sugaya, T. Taguchi, K. Shimamure, K. Taira, Y. Honguh, H. Satoh, T. Kobayashi, N. Nakamura, “Performance of a 600 Mbyte 90 mm phase-change optical disk against disk tilt,” Jpn. J. Appl. Phys. 32, 5402–5405 (1993).
[CrossRef]

Taguchi, T.

T. Sugaya, T. Taguchi, K. Shimamure, K. Taira, Y. Honguh, H. Satoh, T. Kobayashi, N. Nakamura, “Performance of a 600 Mbyte 90 mm phase-change optical disk against disk tilt,” Jpn. J. Appl. Phys. 32, 5402–5405 (1993).
[CrossRef]

Taira, K.

T. Sugaya, T. Taguchi, K. Shimamure, K. Taira, Y. Honguh, H. Satoh, T. Kobayashi, N. Nakamura, “Performance of a 600 Mbyte 90 mm phase-change optical disk against disk tilt,” Jpn. J. Appl. Phys. 32, 5402–5405 (1993).
[CrossRef]

Umeno, M.

T. Wada, H. Hattori, M. Umeno, “Measurement of surface patterns by using interference of diffracted laser beam,” Jpn. J. Appl. Phys. 21, 874–878 (1982).
[CrossRef]

Wada, T.

T. Wada, H. Hattori, M. Umeno, “Measurement of surface patterns by using interference of diffracted laser beam,” Jpn. J. Appl. Phys. 21, 874–878 (1982).
[CrossRef]

Xu, D.

L. Pan, D. Xu, M. Gong, H. Yuan, J. Pei, “Testing of optical disk axial runout and tilt,” in Optical Storage: Third International Symposium, F. Gan, ed., Proc. SPIE2053, 160–163 (1993).

Yuan, H.

L. Pan, D. Xu, M. Gong, H. Yuan, J. Pei, “Testing of optical disk axial runout and tilt,” in Optical Storage: Third International Symposium, F. Gan, ed., Proc. SPIE2053, 160–163 (1993).

Appl. Opt. (5)

IEICE Trans. Electron. (1)

T. Matsui, “The dependence of bit error rate on lens tilt and disk tilt for magneto-optical heads,” IEICE Trans. Electron. E78-C, 1591–1595 (1995).

J. Jpn. Soc. Technol. Plasticity (1)

K. Kato, N. Nakamura, N. Ootake, “Processing characteristics and distortion classification in injection moulding,” J. Jpn. Soc. Technol. Plasticity 30, 254–261 (1989).

Jpn. J. Appl. Phys. (2)

T. Wada, H. Hattori, M. Umeno, “Measurement of surface patterns by using interference of diffracted laser beam,” Jpn. J. Appl. Phys. 21, 874–878 (1982).
[CrossRef]

T. Sugaya, T. Taguchi, K. Shimamure, K. Taira, Y. Honguh, H. Satoh, T. Kobayashi, N. Nakamura, “Performance of a 600 Mbyte 90 mm phase-change optical disk against disk tilt,” Jpn. J. Appl. Phys. 32, 5402–5405 (1993).
[CrossRef]

Other (1)

L. Pan, D. Xu, M. Gong, H. Yuan, J. Pei, “Testing of optical disk axial runout and tilt,” in Optical Storage: Third International Symposium, F. Gan, ed., Proc. SPIE2053, 160–163 (1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Optical experimental setup for contour mapping.

Fig. 2
Fig. 2

Topographical change of an optical plastic disk occurring after as-prepared state. (a) Just after preparing metal films on the disk, δ = +50 µm; (b) just after coating, δ = ±50 µm (nonuniformly); (c) after 8 days, δ = +175 µm; (d) after 16 days, δ = +200 µm; (e) after 230 h of an environmental acceleration test at 80 °C and 85% relative humidity, δ > +300 µm. Δ = 25 µm.

Fig. 3
Fig. 3

Topographical change for a disk formed by bonding of two single disks with an adhesive resin. (a) Before bonding, δ = +50 µm; (b) just after bonding, δ = +25 µm; (c) after 15 days, δ = +25 µm. Δ = 25 µm.

Fig. 4
Fig. 4

Observed images for substrates formed with various temperatures of die, T die, in an injection molding. (a) T die =105 °C, δ = -700 µm; (b)115 °C, δ = -300 µm; (c)119 °C, δ = -400 µm. Δ = 100 µm.

Fig. 5
Fig. 5

Contour images for optical disks with metallic reflective films on the substrates shown in Fig. 4. (a) δ = -900 µm; (b) δ = -400 µm; (c) δ = -500 µm. Δ = 100 µm.

Fig. 6
Fig. 6

Dishing change of optical disks after preparation of metal films on the disk.

Fig. 7
Fig. 7

Topographical change for a disk formed by bonding of two single disks, which are 0.6 mm thick, with an adhesive resin. (a) Uniform type, δ = +75 µm; (b) nonuniform type, δ = +125 µm. Δ = 25 µm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

sin θm=sin θ0+mλ/g,  m=0, ±1, ±2,  ,
Δ=λ2|cos θm-cos θ0|.

Metrics