Abstract

Strong dark self-enhancement, the increase in diffraction efficiency after irradiation, has been reported previously for dichromated-gelatin gratings. Here a more-detailed study of this self-enhancement effect is presented. The self-enhancement in dichromated-gelatin gratings was of the order of 10–100, depending on the pH and on the dichromate concentration of the solution used for the preparation of dichromated-gelatin films. The highest self-enhancement gain occurred when pH was high and dichromate concentration was low. The increase in the diffraction efficiencies of the gratings continued over 3 months.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. A. Shankoff, “Phase holograms in dichromated gelatin,” Appl. Opt. 7, 2101–2105 (1968).
    [CrossRef] [PubMed]
  2. B. J. Chang, “Dichromated gelatin as a holographic storage medium,” in Optical Information Storage, K. G. Leib, ed., Proc. SPIE177, 71–81 (1979).
    [CrossRef]
  3. B. J. Chang, C. D. Leonard, “Dichromated gelatin for the fabrication of holographic optical elements,” Appl. Opt. 18, 2407–2417 (1979).
    [CrossRef] [PubMed]
  4. B. J. Chang, “Dichromated gelatin holograms and their applications,” Opt. Eng. 19, 642–648 (1980).
    [CrossRef]
  5. R. A. Cullen, “Some characteristics of and measurements on dichromated gelatin reflection holograms,” in Max Born Centenary Conference, M. J. Colles, D. Swift, eds., Proc. SPIE369, 647–654 (1983).
    [CrossRef]
  6. T. Keinonen, O. Salminen, “Influence of some development parameters on the reflection grating structure in dichromated gelatin,” Appl. Opt. 27, 2573–2579 (1988).
    [CrossRef] [PubMed]
  7. T. Keinonen, P. Riihola, “Influence of spurious gratings on reprocessibility of dichromated gelatin reflection gratings,” Opt. Mater. 3, 151–155 (1994).
    [CrossRef]
  8. S. Lelièvre, J. J. A. Couture, “Dichromated polyvinyl alcohol films used as a novel polarization real-time holographic recording material,” Appl. Opt. 29, 4384–4391 (1990).
    [CrossRef] [PubMed]
  9. G. Manivannan, R. Changkakoti, R. A. Lessard, G. Mailhot, M. Bolte, “Primary photoprocesses of Cr(vi) in real-time holographic recording material: dichromated poly(vinyl alcohol),” J. Phys. Chem. 97, 7228–7233 (1993).
    [CrossRef]
  10. M. Barikani, E. Simova, M. Kavehrad, “Dichromated polyvinyl alcohol as a real-time hologram recording material: some observations and discussions,” Appl. Opt. 34, 2172–2179 (1995).
    [CrossRef] [PubMed]
  11. J. C. Newell, L. Solymar, A. A. Ward, “Holograms in dichromated gelatin: real-time effects,” Appl. Opt. 24, 4460–4466 (1985).
    [CrossRef] [PubMed]
  12. K. Wang, L. Guo, J. Zhu, W. Zhang, B. Cheng, “Methylene blue dichromated-gelatin holograms: antihumidity method for taking off strongly adsorbing humidity groups,” Appl. Opt. 37, 326–328 (1998).
    [CrossRef]
  13. P. Markovski, M. Mazakova, M. Pantcheva, V. Taranenko, “Holographic investigations on photoinduced changes in dichromated gelatin,” Opt. Quantum Electron. 22, 17–21 (1990).
    [CrossRef]
  14. M. Bolte, C. Pizzocaro, “Photochemical behavior in dichromated gelatin,” in Optical Information and Technology (OIST 97) Optical Recording Mechanisms and Media, A. L. Mikaelian, ed., Proc. SPIE3347, 236–246 (1998).
    [CrossRef]
  15. G. Manivannan, G. Mailhot, M. Bolte, R. A. Lessard, “Xanthene dye sensitized dichromated poly(vinyl alcohol) recording materials: holographic characterization and ESR spectroscopic study,” Pure Appl. Opt. 3, 845–857 (1994).
    [CrossRef]
  16. M. Bolte, C. Pizzocaro, C. Lafond, “Photochemical forma-tion of chromium (v) in dichromated materials: a quantitative and comparative approach,” in Photopolymer Device Physics, Chemistry, and Applications IV, R. A. Lessard, ed., Proc. SPIE3417, 2–11 (1998).
  17. T. K. Gaylord, T. A. Rabson, F. K. Tittel, C. R. Quick, “Self-enhancement of LiNbO3 holograms,” J. Appl. Phys. 44, 896–897 (1973).
    [CrossRef]
  18. A. Ozols, O. Salminen, “Relaxational self-enhancement of holographic gratings in amorphous As2S3 films,” J. Appl. Phys. 75, 3326–3334 (1994).
    [CrossRef]
  19. D. J. Lougnot, C. Turck, “Photopolymers for holographic recording. III. Time modulated illumination and thermal post-effect,” Pure Appl. Opt. 1, 269–279 (1992).
    [CrossRef]
  20. R. Grzymala, T. Keinonen, “Self-enhancement of holographic gratings in dichromated gelatin and polyvinyl alcohol films,” Appl. Opt. 37, 6623–6625 (1998).
    [CrossRef]

1998 (2)

1995 (1)

1994 (3)

T. Keinonen, P. Riihola, “Influence of spurious gratings on reprocessibility of dichromated gelatin reflection gratings,” Opt. Mater. 3, 151–155 (1994).
[CrossRef]

A. Ozols, O. Salminen, “Relaxational self-enhancement of holographic gratings in amorphous As2S3 films,” J. Appl. Phys. 75, 3326–3334 (1994).
[CrossRef]

G. Manivannan, G. Mailhot, M. Bolte, R. A. Lessard, “Xanthene dye sensitized dichromated poly(vinyl alcohol) recording materials: holographic characterization and ESR spectroscopic study,” Pure Appl. Opt. 3, 845–857 (1994).
[CrossRef]

1993 (1)

G. Manivannan, R. Changkakoti, R. A. Lessard, G. Mailhot, M. Bolte, “Primary photoprocesses of Cr(vi) in real-time holographic recording material: dichromated poly(vinyl alcohol),” J. Phys. Chem. 97, 7228–7233 (1993).
[CrossRef]

1992 (1)

D. J. Lougnot, C. Turck, “Photopolymers for holographic recording. III. Time modulated illumination and thermal post-effect,” Pure Appl. Opt. 1, 269–279 (1992).
[CrossRef]

1990 (2)

P. Markovski, M. Mazakova, M. Pantcheva, V. Taranenko, “Holographic investigations on photoinduced changes in dichromated gelatin,” Opt. Quantum Electron. 22, 17–21 (1990).
[CrossRef]

S. Lelièvre, J. J. A. Couture, “Dichromated polyvinyl alcohol films used as a novel polarization real-time holographic recording material,” Appl. Opt. 29, 4384–4391 (1990).
[CrossRef] [PubMed]

1988 (1)

1985 (1)

1980 (1)

B. J. Chang, “Dichromated gelatin holograms and their applications,” Opt. Eng. 19, 642–648 (1980).
[CrossRef]

1979 (1)

1973 (1)

T. K. Gaylord, T. A. Rabson, F. K. Tittel, C. R. Quick, “Self-enhancement of LiNbO3 holograms,” J. Appl. Phys. 44, 896–897 (1973).
[CrossRef]

1968 (1)

Barikani, M.

Bolte, M.

G. Manivannan, G. Mailhot, M. Bolte, R. A. Lessard, “Xanthene dye sensitized dichromated poly(vinyl alcohol) recording materials: holographic characterization and ESR spectroscopic study,” Pure Appl. Opt. 3, 845–857 (1994).
[CrossRef]

G. Manivannan, R. Changkakoti, R. A. Lessard, G. Mailhot, M. Bolte, “Primary photoprocesses of Cr(vi) in real-time holographic recording material: dichromated poly(vinyl alcohol),” J. Phys. Chem. 97, 7228–7233 (1993).
[CrossRef]

M. Bolte, C. Pizzocaro, “Photochemical behavior in dichromated gelatin,” in Optical Information and Technology (OIST 97) Optical Recording Mechanisms and Media, A. L. Mikaelian, ed., Proc. SPIE3347, 236–246 (1998).
[CrossRef]

M. Bolte, C. Pizzocaro, C. Lafond, “Photochemical forma-tion of chromium (v) in dichromated materials: a quantitative and comparative approach,” in Photopolymer Device Physics, Chemistry, and Applications IV, R. A. Lessard, ed., Proc. SPIE3417, 2–11 (1998).

Chang, B. J.

B. J. Chang, “Dichromated gelatin holograms and their applications,” Opt. Eng. 19, 642–648 (1980).
[CrossRef]

B. J. Chang, C. D. Leonard, “Dichromated gelatin for the fabrication of holographic optical elements,” Appl. Opt. 18, 2407–2417 (1979).
[CrossRef] [PubMed]

B. J. Chang, “Dichromated gelatin as a holographic storage medium,” in Optical Information Storage, K. G. Leib, ed., Proc. SPIE177, 71–81 (1979).
[CrossRef]

Changkakoti, R.

G. Manivannan, R. Changkakoti, R. A. Lessard, G. Mailhot, M. Bolte, “Primary photoprocesses of Cr(vi) in real-time holographic recording material: dichromated poly(vinyl alcohol),” J. Phys. Chem. 97, 7228–7233 (1993).
[CrossRef]

Cheng, B.

Couture, J. J. A.

Cullen, R. A.

R. A. Cullen, “Some characteristics of and measurements on dichromated gelatin reflection holograms,” in Max Born Centenary Conference, M. J. Colles, D. Swift, eds., Proc. SPIE369, 647–654 (1983).
[CrossRef]

Gaylord, T. K.

T. K. Gaylord, T. A. Rabson, F. K. Tittel, C. R. Quick, “Self-enhancement of LiNbO3 holograms,” J. Appl. Phys. 44, 896–897 (1973).
[CrossRef]

Grzymala, R.

Guo, L.

Kavehrad, M.

Keinonen, T.

Lafond, C.

M. Bolte, C. Pizzocaro, C. Lafond, “Photochemical forma-tion of chromium (v) in dichromated materials: a quantitative and comparative approach,” in Photopolymer Device Physics, Chemistry, and Applications IV, R. A. Lessard, ed., Proc. SPIE3417, 2–11 (1998).

Lelièvre, S.

Leonard, C. D.

Lessard, R. A.

G. Manivannan, G. Mailhot, M. Bolte, R. A. Lessard, “Xanthene dye sensitized dichromated poly(vinyl alcohol) recording materials: holographic characterization and ESR spectroscopic study,” Pure Appl. Opt. 3, 845–857 (1994).
[CrossRef]

G. Manivannan, R. Changkakoti, R. A. Lessard, G. Mailhot, M. Bolte, “Primary photoprocesses of Cr(vi) in real-time holographic recording material: dichromated poly(vinyl alcohol),” J. Phys. Chem. 97, 7228–7233 (1993).
[CrossRef]

Lougnot, D. J.

D. J. Lougnot, C. Turck, “Photopolymers for holographic recording. III. Time modulated illumination and thermal post-effect,” Pure Appl. Opt. 1, 269–279 (1992).
[CrossRef]

Mailhot, G.

G. Manivannan, G. Mailhot, M. Bolte, R. A. Lessard, “Xanthene dye sensitized dichromated poly(vinyl alcohol) recording materials: holographic characterization and ESR spectroscopic study,” Pure Appl. Opt. 3, 845–857 (1994).
[CrossRef]

G. Manivannan, R. Changkakoti, R. A. Lessard, G. Mailhot, M. Bolte, “Primary photoprocesses of Cr(vi) in real-time holographic recording material: dichromated poly(vinyl alcohol),” J. Phys. Chem. 97, 7228–7233 (1993).
[CrossRef]

Manivannan, G.

G. Manivannan, G. Mailhot, M. Bolte, R. A. Lessard, “Xanthene dye sensitized dichromated poly(vinyl alcohol) recording materials: holographic characterization and ESR spectroscopic study,” Pure Appl. Opt. 3, 845–857 (1994).
[CrossRef]

G. Manivannan, R. Changkakoti, R. A. Lessard, G. Mailhot, M. Bolte, “Primary photoprocesses of Cr(vi) in real-time holographic recording material: dichromated poly(vinyl alcohol),” J. Phys. Chem. 97, 7228–7233 (1993).
[CrossRef]

Markovski, P.

P. Markovski, M. Mazakova, M. Pantcheva, V. Taranenko, “Holographic investigations on photoinduced changes in dichromated gelatin,” Opt. Quantum Electron. 22, 17–21 (1990).
[CrossRef]

Mazakova, M.

P. Markovski, M. Mazakova, M. Pantcheva, V. Taranenko, “Holographic investigations on photoinduced changes in dichromated gelatin,” Opt. Quantum Electron. 22, 17–21 (1990).
[CrossRef]

Newell, J. C.

Ozols, A.

A. Ozols, O. Salminen, “Relaxational self-enhancement of holographic gratings in amorphous As2S3 films,” J. Appl. Phys. 75, 3326–3334 (1994).
[CrossRef]

Pantcheva, M.

P. Markovski, M. Mazakova, M. Pantcheva, V. Taranenko, “Holographic investigations on photoinduced changes in dichromated gelatin,” Opt. Quantum Electron. 22, 17–21 (1990).
[CrossRef]

Pizzocaro, C.

M. Bolte, C. Pizzocaro, “Photochemical behavior in dichromated gelatin,” in Optical Information and Technology (OIST 97) Optical Recording Mechanisms and Media, A. L. Mikaelian, ed., Proc. SPIE3347, 236–246 (1998).
[CrossRef]

M. Bolte, C. Pizzocaro, C. Lafond, “Photochemical forma-tion of chromium (v) in dichromated materials: a quantitative and comparative approach,” in Photopolymer Device Physics, Chemistry, and Applications IV, R. A. Lessard, ed., Proc. SPIE3417, 2–11 (1998).

Quick, C. R.

T. K. Gaylord, T. A. Rabson, F. K. Tittel, C. R. Quick, “Self-enhancement of LiNbO3 holograms,” J. Appl. Phys. 44, 896–897 (1973).
[CrossRef]

Rabson, T. A.

T. K. Gaylord, T. A. Rabson, F. K. Tittel, C. R. Quick, “Self-enhancement of LiNbO3 holograms,” J. Appl. Phys. 44, 896–897 (1973).
[CrossRef]

Riihola, P.

T. Keinonen, P. Riihola, “Influence of spurious gratings on reprocessibility of dichromated gelatin reflection gratings,” Opt. Mater. 3, 151–155 (1994).
[CrossRef]

Salminen, O.

A. Ozols, O. Salminen, “Relaxational self-enhancement of holographic gratings in amorphous As2S3 films,” J. Appl. Phys. 75, 3326–3334 (1994).
[CrossRef]

T. Keinonen, O. Salminen, “Influence of some development parameters on the reflection grating structure in dichromated gelatin,” Appl. Opt. 27, 2573–2579 (1988).
[CrossRef] [PubMed]

Shankoff, T. A.

Simova, E.

Solymar, L.

Taranenko, V.

P. Markovski, M. Mazakova, M. Pantcheva, V. Taranenko, “Holographic investigations on photoinduced changes in dichromated gelatin,” Opt. Quantum Electron. 22, 17–21 (1990).
[CrossRef]

Tittel, F. K.

T. K. Gaylord, T. A. Rabson, F. K. Tittel, C. R. Quick, “Self-enhancement of LiNbO3 holograms,” J. Appl. Phys. 44, 896–897 (1973).
[CrossRef]

Turck, C.

D. J. Lougnot, C. Turck, “Photopolymers for holographic recording. III. Time modulated illumination and thermal post-effect,” Pure Appl. Opt. 1, 269–279 (1992).
[CrossRef]

Wang, K.

Ward, A. A.

Zhang, W.

Zhu, J.

Appl. Opt. (8)

J. Appl. Phys. (2)

T. K. Gaylord, T. A. Rabson, F. K. Tittel, C. R. Quick, “Self-enhancement of LiNbO3 holograms,” J. Appl. Phys. 44, 896–897 (1973).
[CrossRef]

A. Ozols, O. Salminen, “Relaxational self-enhancement of holographic gratings in amorphous As2S3 films,” J. Appl. Phys. 75, 3326–3334 (1994).
[CrossRef]

J. Phys. Chem. (1)

G. Manivannan, R. Changkakoti, R. A. Lessard, G. Mailhot, M. Bolte, “Primary photoprocesses of Cr(vi) in real-time holographic recording material: dichromated poly(vinyl alcohol),” J. Phys. Chem. 97, 7228–7233 (1993).
[CrossRef]

Opt. Eng. (1)

B. J. Chang, “Dichromated gelatin holograms and their applications,” Opt. Eng. 19, 642–648 (1980).
[CrossRef]

Opt. Mater. (1)

T. Keinonen, P. Riihola, “Influence of spurious gratings on reprocessibility of dichromated gelatin reflection gratings,” Opt. Mater. 3, 151–155 (1994).
[CrossRef]

Opt. Quantum Electron. (1)

P. Markovski, M. Mazakova, M. Pantcheva, V. Taranenko, “Holographic investigations on photoinduced changes in dichromated gelatin,” Opt. Quantum Electron. 22, 17–21 (1990).
[CrossRef]

Pure Appl. Opt. (2)

D. J. Lougnot, C. Turck, “Photopolymers for holographic recording. III. Time modulated illumination and thermal post-effect,” Pure Appl. Opt. 1, 269–279 (1992).
[CrossRef]

G. Manivannan, G. Mailhot, M. Bolte, R. A. Lessard, “Xanthene dye sensitized dichromated poly(vinyl alcohol) recording materials: holographic characterization and ESR spectroscopic study,” Pure Appl. Opt. 3, 845–857 (1994).
[CrossRef]

Other (4)

M. Bolte, C. Pizzocaro, C. Lafond, “Photochemical forma-tion of chromium (v) in dichromated materials: a quantitative and comparative approach,” in Photopolymer Device Physics, Chemistry, and Applications IV, R. A. Lessard, ed., Proc. SPIE3417, 2–11 (1998).

M. Bolte, C. Pizzocaro, “Photochemical behavior in dichromated gelatin,” in Optical Information and Technology (OIST 97) Optical Recording Mechanisms and Media, A. L. Mikaelian, ed., Proc. SPIE3347, 236–246 (1998).
[CrossRef]

R. A. Cullen, “Some characteristics of and measurements on dichromated gelatin reflection holograms,” in Max Born Centenary Conference, M. J. Colles, D. Swift, eds., Proc. SPIE369, 647–654 (1983).
[CrossRef]

B. J. Chang, “Dichromated gelatin as a holographic storage medium,” in Optical Information Storage, K. G. Leib, ed., Proc. SPIE177, 71–81 (1979).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Change in diffraction efficiency during the exposure.

Fig. 2
Fig. 2

Change in diffraction efficiency after the exposure.

Fig. 3
Fig. 3

Diffraction efficiency after 1, 5, and 180 days storage in the dark.

Fig. 4
Fig. 4

(a) Influence of the storage time before the exposure on the diffraction efficiency. (b) Influence of the storage time before exposure on the diffraction efficiency over several days.

Fig. 5
Fig. 5

Influence of dichromate concentration on the change in diffraction efficiency.

Fig. 6
Fig. 6

Self-enhancement as a function of pH.

Fig. 7
Fig. 7

Self-enhancement rate as a function of pH.

Fig. 8
Fig. 8

Self-enhancement rate over time for different pH values.

Fig. 9
Fig. 9

Influence of dichromate concentration on self-enhancement.

Fig. 10
Fig. 10

Evaluation of self-enhancement over time for different dichromate concentrations.

Fig. 11
Fig. 11

Self-enhancement rate versus dichromate concentration.

Fig. 12
Fig. 12

Self-enhancement rate over time for different dichromate concentrations.

Fig. 13
Fig. 13

Model for the reductions of dichromate ions during and after the exposure.

Metrics