Abstract

In the field of micro-optics there is a demand for objectives with large numerical aperture (NA). One example is optical storage in which a NA greater than 0.5 is required. For planar microlenses the NA is determined by means of the maximal index difference and the degree of exchange and reaches typical values of 0.13–0.2. Thus stacking is needed to build high NA objectives from planar microlenses. An additional benefit of stacking lenses is the possibility to correct for different types of aberrations. We realized two stacked systems: an array of micro-objectives with a NA of 0.45 from three microlens arrays and a confocal sensor head from four microlens arrays and one pinhole array mask.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Singer, M. Testorf, K.-H. Brenner, “Gradient-index microlenses: numerical investigation of different spherical index profiles with the wave propagation method,” Appl. Opt. 34, 2165–2171 (1995).
    [CrossRef] [PubMed]
  2. J. Bähr, K.-H. Brenner, “Realization and optimization of planar refractive microlenses by Ag–Na ion-exchange techniques,” Appl. Opt. 35, 5102–5107 (1996).
    [CrossRef] [PubMed]
  3. A. Tervonen, “A general model for the fabrication processes of channel waveguides by ion exchange,” J. Appl. Phys. 76, 2746–2752 (1990).
    [CrossRef]
  4. J. Bähr, K.-H. Brenner, “Iterative reconstruction of a gradient index distribution from one interferometric measurement,” Optik 102, 101–105 (1996).
  5. See, for example, M. V. Klein, T. E. Furtak, Optik, 2nd ed. (Springer-Verlag, Heidelberg, Germany, 1988), Chap. 4.3, p. 191.
  6. K.-H. Brenner, “Design tool for systems of stacked micro lenses,” , (University of Mannheim, Mannheim, Germany, 1997), p. 4.
  7. C. J. R. Sheppard, H. J. Matthews, “The extended-focus, auto-focus and surface-profiling techniques of confocal microscopy,” J. Mod. Opt. 35, 145–154 (1998).
    [CrossRef]
  8. D. L. Dickensheets, K. S. Kino, “Micromachined scanning confocal optical microscope,” Opt. Lett. 21, 764–766 (1996).
    [CrossRef] [PubMed]
  9. H. J. Tiziani, R. Achi, R. M. Krämer, “Chromatic confocal microscopy with microlenses,” J. Mod. Opt. 43, 155–163 (1996).
    [CrossRef]
  10. N. P. Rea, T. Wilson, R. Juskaitis, “Semiconductor laser confocal and interference microscopy,” Opt. Commun. 124, 158–167 (1996).
    [CrossRef]
  11. S. Sinzinger, J. Jahns, “Planar optical confocal microscope for imaging and sensing,” in Proceedings of Topical Meeting on Free-Space Micro-optical Systems (European Optical Society, Engelberg, Switzerland, 1996).

1998

C. J. R. Sheppard, H. J. Matthews, “The extended-focus, auto-focus and surface-profiling techniques of confocal microscopy,” J. Mod. Opt. 35, 145–154 (1998).
[CrossRef]

1996

H. J. Tiziani, R. Achi, R. M. Krämer, “Chromatic confocal microscopy with microlenses,” J. Mod. Opt. 43, 155–163 (1996).
[CrossRef]

N. P. Rea, T. Wilson, R. Juskaitis, “Semiconductor laser confocal and interference microscopy,” Opt. Commun. 124, 158–167 (1996).
[CrossRef]

D. L. Dickensheets, K. S. Kino, “Micromachined scanning confocal optical microscope,” Opt. Lett. 21, 764–766 (1996).
[CrossRef] [PubMed]

J. Bähr, K.-H. Brenner, “Iterative reconstruction of a gradient index distribution from one interferometric measurement,” Optik 102, 101–105 (1996).

J. Bähr, K.-H. Brenner, “Realization and optimization of planar refractive microlenses by Ag–Na ion-exchange techniques,” Appl. Opt. 35, 5102–5107 (1996).
[CrossRef] [PubMed]

1995

1990

A. Tervonen, “A general model for the fabrication processes of channel waveguides by ion exchange,” J. Appl. Phys. 76, 2746–2752 (1990).
[CrossRef]

Achi, R.

H. J. Tiziani, R. Achi, R. M. Krämer, “Chromatic confocal microscopy with microlenses,” J. Mod. Opt. 43, 155–163 (1996).
[CrossRef]

Bähr, J.

J. Bähr, K.-H. Brenner, “Realization and optimization of planar refractive microlenses by Ag–Na ion-exchange techniques,” Appl. Opt. 35, 5102–5107 (1996).
[CrossRef] [PubMed]

J. Bähr, K.-H. Brenner, “Iterative reconstruction of a gradient index distribution from one interferometric measurement,” Optik 102, 101–105 (1996).

Brenner, K.-H.

J. Bähr, K.-H. Brenner, “Iterative reconstruction of a gradient index distribution from one interferometric measurement,” Optik 102, 101–105 (1996).

J. Bähr, K.-H. Brenner, “Realization and optimization of planar refractive microlenses by Ag–Na ion-exchange techniques,” Appl. Opt. 35, 5102–5107 (1996).
[CrossRef] [PubMed]

W. Singer, M. Testorf, K.-H. Brenner, “Gradient-index microlenses: numerical investigation of different spherical index profiles with the wave propagation method,” Appl. Opt. 34, 2165–2171 (1995).
[CrossRef] [PubMed]

K.-H. Brenner, “Design tool for systems of stacked micro lenses,” , (University of Mannheim, Mannheim, Germany, 1997), p. 4.

Dickensheets, D. L.

Furtak, T. E.

See, for example, M. V. Klein, T. E. Furtak, Optik, 2nd ed. (Springer-Verlag, Heidelberg, Germany, 1988), Chap. 4.3, p. 191.

Jahns, J.

S. Sinzinger, J. Jahns, “Planar optical confocal microscope for imaging and sensing,” in Proceedings of Topical Meeting on Free-Space Micro-optical Systems (European Optical Society, Engelberg, Switzerland, 1996).

Juskaitis, R.

N. P. Rea, T. Wilson, R. Juskaitis, “Semiconductor laser confocal and interference microscopy,” Opt. Commun. 124, 158–167 (1996).
[CrossRef]

Kino, K. S.

Klein, M. V.

See, for example, M. V. Klein, T. E. Furtak, Optik, 2nd ed. (Springer-Verlag, Heidelberg, Germany, 1988), Chap. 4.3, p. 191.

Krämer, R. M.

H. J. Tiziani, R. Achi, R. M. Krämer, “Chromatic confocal microscopy with microlenses,” J. Mod. Opt. 43, 155–163 (1996).
[CrossRef]

Matthews, H. J.

C. J. R. Sheppard, H. J. Matthews, “The extended-focus, auto-focus and surface-profiling techniques of confocal microscopy,” J. Mod. Opt. 35, 145–154 (1998).
[CrossRef]

Rea, N. P.

N. P. Rea, T. Wilson, R. Juskaitis, “Semiconductor laser confocal and interference microscopy,” Opt. Commun. 124, 158–167 (1996).
[CrossRef]

Sheppard, C. J. R.

C. J. R. Sheppard, H. J. Matthews, “The extended-focus, auto-focus and surface-profiling techniques of confocal microscopy,” J. Mod. Opt. 35, 145–154 (1998).
[CrossRef]

Singer, W.

Sinzinger, S.

S. Sinzinger, J. Jahns, “Planar optical confocal microscope for imaging and sensing,” in Proceedings of Topical Meeting on Free-Space Micro-optical Systems (European Optical Society, Engelberg, Switzerland, 1996).

Tervonen, A.

A. Tervonen, “A general model for the fabrication processes of channel waveguides by ion exchange,” J. Appl. Phys. 76, 2746–2752 (1990).
[CrossRef]

Testorf, M.

Tiziani, H. J.

H. J. Tiziani, R. Achi, R. M. Krämer, “Chromatic confocal microscopy with microlenses,” J. Mod. Opt. 43, 155–163 (1996).
[CrossRef]

Wilson, T.

N. P. Rea, T. Wilson, R. Juskaitis, “Semiconductor laser confocal and interference microscopy,” Opt. Commun. 124, 158–167 (1996).
[CrossRef]

Appl. Opt.

J. Appl. Phys.

A. Tervonen, “A general model for the fabrication processes of channel waveguides by ion exchange,” J. Appl. Phys. 76, 2746–2752 (1990).
[CrossRef]

J. Mod. Opt.

C. J. R. Sheppard, H. J. Matthews, “The extended-focus, auto-focus and surface-profiling techniques of confocal microscopy,” J. Mod. Opt. 35, 145–154 (1998).
[CrossRef]

H. J. Tiziani, R. Achi, R. M. Krämer, “Chromatic confocal microscopy with microlenses,” J. Mod. Opt. 43, 155–163 (1996).
[CrossRef]

Opt. Commun.

N. P. Rea, T. Wilson, R. Juskaitis, “Semiconductor laser confocal and interference microscopy,” Opt. Commun. 124, 158–167 (1996).
[CrossRef]

Opt. Lett.

Optik

J. Bähr, K.-H. Brenner, “Iterative reconstruction of a gradient index distribution from one interferometric measurement,” Optik 102, 101–105 (1996).

Other

See, for example, M. V. Klein, T. E. Furtak, Optik, 2nd ed. (Springer-Verlag, Heidelberg, Germany, 1988), Chap. 4.3, p. 191.

K.-H. Brenner, “Design tool for systems of stacked micro lenses,” , (University of Mannheim, Mannheim, Germany, 1997), p. 4.

S. Sinzinger, J. Jahns, “Planar optical confocal microscope for imaging and sensing,” in Proceedings of Topical Meeting on Free-Space Micro-optical Systems (European Optical Society, Engelberg, Switzerland, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Radial index distribution in spherical coordinates for different postheating times.

Fig. 2
Fig. 2

Cut through the center of the lens showing the spherical index distribution.

Fig. 3
Fig. 3

Ray trace of a micro-objective with three GRIN lenses.

Fig. 4
Fig. 4

Spot diagram of the three-lens system.

Fig. 5
Fig. 5

Scheme for testing of the imaging properties of microlenses.

Fig. 6
Fig. 6

One to two imaging of a test pattern with a linewidth of 2 µm. (a) One GRIN lens, (b) two GRIN lenses, (c) three GRIN lenses.

Fig. 7
Fig. 7

One to two imaging of Ronchi gratings with different periods. The linewidths from left to right are 2, 1.8, 1.6, 1.4, 1.2, and 1 µm.

Fig. 8
Fig. 8

Modulation transfer function of the lens systems with one, two, and three GRIN lenses.

Fig. 9
Fig. 9

Design of confocal sensor with GRIN microlenses. The rays shown were taken from the output of a commercial ray-trace software.

Fig. 10
Fig. 10

Negative image of light intensities at a distance (a) of 0 µm, (b) of 100 µm, (c) of 200 µm, (d) of 300 µm, and (e) of 400 µm from the end surface of one sensor, when the input and the output fiber are illuminated simultaneously.

Fig. 11
Fig. 11

Ray trace of light propagation in the illuminating side of the confocal sensor.

Fig. 12
Fig. 12

Axial response of the confocal sensor array integrated over all lenses in the array during movement of a mirror in the image plane.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

nr=n0+Δna0+a1|r|+a2|r|2++aN|r|N,
r=xyz=1R0xyz,  x, y-11;z01,
FWHM=0.443λ1-cos α,

Metrics