Abstract

Water-vapor absorption features near 7117, 7185, and 7462 cm-1 were probed at pressures to 65 atm (1 atm = 760 Torr) and temperatures to 1800 K in shock-heated mixtures of H2O in N2 and Ar with a diode-laser source. Calculated absorbances based on Voigt line shapes and measured line parameters were in good agreement, within 10%, with measured absorbances at 7185.4 and 7117.4 cm-1. We obtained temperature-dependent N2 and Ar shift parameters for H2O absorption features by shifting the calculated spectra to match the recorded absorption scan. Absorbance simulations based on line parameters from HITRAN and HITEMP were found to be similar over the range of temperatures 600–1800 K and were within 25% of the measurements. The combined use of Toth’s [Appl. Opt. 36, 4851 (1994)] line positions and strengths and HITRAN broadening parameters resulted in calculated absorption coefficients that were within 15% of the measurements at all three probed wavelengths.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. P. Arroyo, R. K. Hanson, “Absorption measurements of water-vapor concentration, temperature, and line-shape parameters using a tunable InGaAsP diode laser,” Appl. Opt. 32, 6104–6116 (1993).
    [CrossRef] [PubMed]
  2. M. P. Arroyo, S. Langlois, R. K. Hanson, “Diode-laser absorption technique for simultaneous measurements of multiple gasdynamic parameters in high-speed flows containing water vapor,” Appl. Opt. 33, 3296–3306 (1994).
    [CrossRef] [PubMed]
  3. M. P. Arroyo, T. P. Birbeck, D. S. Baer, R. K. Hanson, “Dual diode-laser fiber-optic diagnostic for water-vapor measurements,” Opt. Lett. 19, 1091–1093 (1994).
    [CrossRef] [PubMed]
  4. D. S. Baer, R. K. Hanson, M. E. Newfield, N. K. L. M. Gopaul, “Multiplexed diode-laser sensor system for simultaneous H2O, O2, and temperature measurements,” Opt. Lett. 19, 1900–1902 (1994).
    [CrossRef]
  5. D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using a multiplexed diode-laser sensor system,” AIAA J. 34, 489–493 (1996).
    [CrossRef]
  6. M. G. Allen, K. L. Carleton, S. J. Davis, W. J. Kessler, C. E. Otis, D. A. Palomobo, D. M. Sonnenfroh, “Ultrasensitive dual-beam absorption and gain spectroscopy: applications for near-infrared and visible diode laser sensors,” Appl. Opt. 34, 3240–3249 (1995).
    [CrossRef] [PubMed]
  7. V. Nagali, E. R. Furlong, S. I. Chou, R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode-laser sensor system for multispecies and multiparameter measurements in combustion flows,” paper AIAA 95-2684, presented at the Thirty-First Joint Propulsion Conference and Exhibit, San Diego, Calif., 10–12 July 1995 (American Institute of Aeronautics and Astronautics, Reston, Va., 1995).
  8. V. Nagali, R. K. Hanson, “Design of a diode-laser sensor to monitor water vapor in high-pressure combustion gases,” Appl. Opt. 36, 9518–9527 (1997).
    [CrossRef]
  9. L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
    [CrossRef]
  10. N. Husson, B. Bonnet, A. Chedin, N. A. Scott, A. A. Chursin, V. F. Golovko, Vl. G. Tyuterev, “The GEISA data bank in 1993: a PC/AT compatible computers’ new version,” J. Quant. Spectrosc. Radiat. Transfer 52, 425–438 (1994).
    [CrossRef]
  11. L. S. Rothman, R. B. Wattson, R. R. Gamache, D. Goorvetech, R. L. Hawkins, J. E. A. Selby, C. Camy-Peyret, J.-M. Flaud, J. Schroeder, A. McCann, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer (to be published).
  12. B. L. Upschulte, M. G. Allen, “Diode laser measurements of line strengths and self-broadening parameters of water vapor between 300 and 1000 K near 1.31 µm,” J. Quant. Spectrosc. Radiat. Transfer 59, 653–670 (1998).
    [CrossRef]
  13. R. A. Toth, “Extensive measurements of H216O frequencies and strengths: 5750 to 7965 cm-1,” Appl. Opt. 33, 4851–4867 (1994).
    [CrossRef] [PubMed]
  14. C. Delaye, J.-M. Hartmann, J. Taine, “Calculated tabulations of H2O line broadening by H2O, N2, O2 and CO2 at high temperature,” Appl. Opt. 28, 5080–5087 (1989).
    [CrossRef] [PubMed]
  15. B. Labani, J. Bonamy, D. Robert, J. M. Hartmann, J. Taine, “Collisional broadening of rotation–vibration lines for asymmetric top molecules. I. Theoretical model for both distant and close collisions,” J. Chem. Phys. 84, 4256–4267 (1986).
    [CrossRef]
  16. B. Labani, J. Bonamy, D. Robert, J. M. Hartmann, “Collisional broadening of rotation–vibration lines for asymmetric top molecules. III. Self-broadening case; application to H2O,” J. Chem. Phys. 87, 2781–2789 (1987).
    [CrossRef]
  17. S. Langlois, T. P. Birbeck, R. K. Hanson, “Diode laser measurements of H2O line intensities and self-broadening coefficients in the 1.4-µm region,” J. Mol. Spectrosc. 163, 27–42 (1994).
    [CrossRef]
  18. S. Langlois, T. P. Birbeck, R. K. Hanson, “Temperature-dependent collision-broadening parameters of H2O lines in the 1.4-µm region using diode laser absorption spectroscopy,” J. Mol. Spectrosc. 167, 272–281 (1994).
    [CrossRef]
  19. V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, “Diode-laser measurements of temperature-dependent half-widths of H2O transitions in the 1.4 µm region,” J. Quant. Spectrosc. Radiat. Transfer 57, 795–809 (1997).
    [CrossRef]
  20. E. L. Petersen, D. F. Davidson, M. Rohrig, R. K. Hanson, “High-pressure shock-tube measurements of ignition times in stoichiometric H2/O2/Ar mixtures, in Twentieth International Symposium on Shock Waves (World Scientific, Singapore, 1995), pp. 941–946.
  21. R. J. Kee, F. M. Rupley, J. A. Miller, The Chemkin Thermodynamic Database, (Sandia National Laboratory, Albuquerque, N. Mex., 1987).
  22. D. F. Davidson, R. K. Hanson, “Real gas correction in shock tube studies at high pressures,” Isr. J. Chem. 36, 321–326 (1996).
    [CrossRef]
  23. E. L. Petersen, “A shock tube and diagnostics for chemistry measurements at elevated pressures with application to methane ignition,” Ph.D. dissertation (Department of Mechanical Engineering, Stanford University, Stanford, Calif., 1998).
  24. V. Nagali, D. F. Davidson, R. K. Hanson, “Measurements of temperature-dependent argon-broadened half-widths of H2O transitions in the 7117 cm-1 region,” J. Quant. Spectrosc. Radiat. Transfer (to be published).
  25. B. E. Grossmann, E. V. Browell, “Spectroscopy of water vapor in the 720 nm wavelength region: line strengths, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts,” J. Mol. Spectrosc. 136, 264–294 (1989).
    [CrossRef]
  26. B. E. Grossmann, E. V. Browell, “Water-vapor line broadenings and shifting by air, nitrogen, oxygen, and argon in the 720 nm wavelength region,” J. Mol. Spectrosc. 138, 562–595 (1989).
    [CrossRef]
  27. L. S. Rothman, Phillips Laboratory, Geophysics Directorate, Hanscom Air Force Base, Mass. 01731 (personal communication, July1998).
  28. R. R. Gamache, J.-M. Hartmann, L. Rosenmann, “Collisional broadening of water vapor lines—1. A survey of experimental results,” J. Quant. Spectrosc. Radiat. Transfer 52, 481–499 (1994).
    [CrossRef]

1998

B. L. Upschulte, M. G. Allen, “Diode laser measurements of line strengths and self-broadening parameters of water vapor between 300 and 1000 K near 1.31 µm,” J. Quant. Spectrosc. Radiat. Transfer 59, 653–670 (1998).
[CrossRef]

1997

V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, “Diode-laser measurements of temperature-dependent half-widths of H2O transitions in the 1.4 µm region,” J. Quant. Spectrosc. Radiat. Transfer 57, 795–809 (1997).
[CrossRef]

V. Nagali, R. K. Hanson, “Design of a diode-laser sensor to monitor water vapor in high-pressure combustion gases,” Appl. Opt. 36, 9518–9527 (1997).
[CrossRef]

1996

D. F. Davidson, R. K. Hanson, “Real gas correction in shock tube studies at high pressures,” Isr. J. Chem. 36, 321–326 (1996).
[CrossRef]

D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using a multiplexed diode-laser sensor system,” AIAA J. 34, 489–493 (1996).
[CrossRef]

1995

1994

M. P. Arroyo, S. Langlois, R. K. Hanson, “Diode-laser absorption technique for simultaneous measurements of multiple gasdynamic parameters in high-speed flows containing water vapor,” Appl. Opt. 33, 3296–3306 (1994).
[CrossRef] [PubMed]

R. A. Toth, “Extensive measurements of H216O frequencies and strengths: 5750 to 7965 cm-1,” Appl. Opt. 33, 4851–4867 (1994).
[CrossRef] [PubMed]

M. P. Arroyo, T. P. Birbeck, D. S. Baer, R. K. Hanson, “Dual diode-laser fiber-optic diagnostic for water-vapor measurements,” Opt. Lett. 19, 1091–1093 (1994).
[CrossRef] [PubMed]

D. S. Baer, R. K. Hanson, M. E. Newfield, N. K. L. M. Gopaul, “Multiplexed diode-laser sensor system for simultaneous H2O, O2, and temperature measurements,” Opt. Lett. 19, 1900–1902 (1994).
[CrossRef]

S. Langlois, T. P. Birbeck, R. K. Hanson, “Diode laser measurements of H2O line intensities and self-broadening coefficients in the 1.4-µm region,” J. Mol. Spectrosc. 163, 27–42 (1994).
[CrossRef]

S. Langlois, T. P. Birbeck, R. K. Hanson, “Temperature-dependent collision-broadening parameters of H2O lines in the 1.4-µm region using diode laser absorption spectroscopy,” J. Mol. Spectrosc. 167, 272–281 (1994).
[CrossRef]

R. R. Gamache, J.-M. Hartmann, L. Rosenmann, “Collisional broadening of water vapor lines—1. A survey of experimental results,” J. Quant. Spectrosc. Radiat. Transfer 52, 481–499 (1994).
[CrossRef]

N. Husson, B. Bonnet, A. Chedin, N. A. Scott, A. A. Chursin, V. F. Golovko, Vl. G. Tyuterev, “The GEISA data bank in 1993: a PC/AT compatible computers’ new version,” J. Quant. Spectrosc. Radiat. Transfer 52, 425–438 (1994).
[CrossRef]

1993

1992

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

1989

B. E. Grossmann, E. V. Browell, “Spectroscopy of water vapor in the 720 nm wavelength region: line strengths, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts,” J. Mol. Spectrosc. 136, 264–294 (1989).
[CrossRef]

B. E. Grossmann, E. V. Browell, “Water-vapor line broadenings and shifting by air, nitrogen, oxygen, and argon in the 720 nm wavelength region,” J. Mol. Spectrosc. 138, 562–595 (1989).
[CrossRef]

C. Delaye, J.-M. Hartmann, J. Taine, “Calculated tabulations of H2O line broadening by H2O, N2, O2 and CO2 at high temperature,” Appl. Opt. 28, 5080–5087 (1989).
[CrossRef] [PubMed]

1987

B. Labani, J. Bonamy, D. Robert, J. M. Hartmann, “Collisional broadening of rotation–vibration lines for asymmetric top molecules. III. Self-broadening case; application to H2O,” J. Chem. Phys. 87, 2781–2789 (1987).
[CrossRef]

1986

B. Labani, J. Bonamy, D. Robert, J. M. Hartmann, J. Taine, “Collisional broadening of rotation–vibration lines for asymmetric top molecules. I. Theoretical model for both distant and close collisions,” J. Chem. Phys. 84, 4256–4267 (1986).
[CrossRef]

Allen, M. G.

B. L. Upschulte, M. G. Allen, “Diode laser measurements of line strengths and self-broadening parameters of water vapor between 300 and 1000 K near 1.31 µm,” J. Quant. Spectrosc. Radiat. Transfer 59, 653–670 (1998).
[CrossRef]

M. G. Allen, K. L. Carleton, S. J. Davis, W. J. Kessler, C. E. Otis, D. A. Palomobo, D. M. Sonnenfroh, “Ultrasensitive dual-beam absorption and gain spectroscopy: applications for near-infrared and visible diode laser sensors,” Appl. Opt. 34, 3240–3249 (1995).
[CrossRef] [PubMed]

Arroyo, M. P.

Baer, D. S.

V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, “Diode-laser measurements of temperature-dependent half-widths of H2O transitions in the 1.4 µm region,” J. Quant. Spectrosc. Radiat. Transfer 57, 795–809 (1997).
[CrossRef]

D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using a multiplexed diode-laser sensor system,” AIAA J. 34, 489–493 (1996).
[CrossRef]

D. S. Baer, R. K. Hanson, M. E. Newfield, N. K. L. M. Gopaul, “Multiplexed diode-laser sensor system for simultaneous H2O, O2, and temperature measurements,” Opt. Lett. 19, 1900–1902 (1994).
[CrossRef]

M. P. Arroyo, T. P. Birbeck, D. S. Baer, R. K. Hanson, “Dual diode-laser fiber-optic diagnostic for water-vapor measurements,” Opt. Lett. 19, 1091–1093 (1994).
[CrossRef] [PubMed]

V. Nagali, E. R. Furlong, S. I. Chou, R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode-laser sensor system for multispecies and multiparameter measurements in combustion flows,” paper AIAA 95-2684, presented at the Thirty-First Joint Propulsion Conference and Exhibit, San Diego, Calif., 10–12 July 1995 (American Institute of Aeronautics and Astronautics, Reston, Va., 1995).

Benner, D. C.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Birbeck, T. P.

M. P. Arroyo, T. P. Birbeck, D. S. Baer, R. K. Hanson, “Dual diode-laser fiber-optic diagnostic for water-vapor measurements,” Opt. Lett. 19, 1091–1093 (1994).
[CrossRef] [PubMed]

S. Langlois, T. P. Birbeck, R. K. Hanson, “Diode laser measurements of H2O line intensities and self-broadening coefficients in the 1.4-µm region,” J. Mol. Spectrosc. 163, 27–42 (1994).
[CrossRef]

S. Langlois, T. P. Birbeck, R. K. Hanson, “Temperature-dependent collision-broadening parameters of H2O lines in the 1.4-µm region using diode laser absorption spectroscopy,” J. Mol. Spectrosc. 167, 272–281 (1994).
[CrossRef]

Bonamy, J.

B. Labani, J. Bonamy, D. Robert, J. M. Hartmann, “Collisional broadening of rotation–vibration lines for asymmetric top molecules. III. Self-broadening case; application to H2O,” J. Chem. Phys. 87, 2781–2789 (1987).
[CrossRef]

B. Labani, J. Bonamy, D. Robert, J. M. Hartmann, J. Taine, “Collisional broadening of rotation–vibration lines for asymmetric top molecules. I. Theoretical model for both distant and close collisions,” J. Chem. Phys. 84, 4256–4267 (1986).
[CrossRef]

Bonnet, B.

N. Husson, B. Bonnet, A. Chedin, N. A. Scott, A. A. Chursin, V. F. Golovko, Vl. G. Tyuterev, “The GEISA data bank in 1993: a PC/AT compatible computers’ new version,” J. Quant. Spectrosc. Radiat. Transfer 52, 425–438 (1994).
[CrossRef]

Browell, E. V.

B. E. Grossmann, E. V. Browell, “Spectroscopy of water vapor in the 720 nm wavelength region: line strengths, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts,” J. Mol. Spectrosc. 136, 264–294 (1989).
[CrossRef]

B. E. Grossmann, E. V. Browell, “Water-vapor line broadenings and shifting by air, nitrogen, oxygen, and argon in the 720 nm wavelength region,” J. Mol. Spectrosc. 138, 562–595 (1989).
[CrossRef]

Brown, L. R.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Camy-Peyret, C.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

L. S. Rothman, R. B. Wattson, R. R. Gamache, D. Goorvetech, R. L. Hawkins, J. E. A. Selby, C. Camy-Peyret, J.-M. Flaud, J. Schroeder, A. McCann, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer (to be published).

Carleton, K. L.

Chedin, A.

N. Husson, B. Bonnet, A. Chedin, N. A. Scott, A. A. Chursin, V. F. Golovko, Vl. G. Tyuterev, “The GEISA data bank in 1993: a PC/AT compatible computers’ new version,” J. Quant. Spectrosc. Radiat. Transfer 52, 425–438 (1994).
[CrossRef]

Chou, S. I.

V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, “Diode-laser measurements of temperature-dependent half-widths of H2O transitions in the 1.4 µm region,” J. Quant. Spectrosc. Radiat. Transfer 57, 795–809 (1997).
[CrossRef]

V. Nagali, E. R. Furlong, S. I. Chou, R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode-laser sensor system for multispecies and multiparameter measurements in combustion flows,” paper AIAA 95-2684, presented at the Thirty-First Joint Propulsion Conference and Exhibit, San Diego, Calif., 10–12 July 1995 (American Institute of Aeronautics and Astronautics, Reston, Va., 1995).

Chursin, A. A.

N. Husson, B. Bonnet, A. Chedin, N. A. Scott, A. A. Chursin, V. F. Golovko, Vl. G. Tyuterev, “The GEISA data bank in 1993: a PC/AT compatible computers’ new version,” J. Quant. Spectrosc. Radiat. Transfer 52, 425–438 (1994).
[CrossRef]

Davidson, D. F.

D. F. Davidson, R. K. Hanson, “Real gas correction in shock tube studies at high pressures,” Isr. J. Chem. 36, 321–326 (1996).
[CrossRef]

V. Nagali, D. F. Davidson, R. K. Hanson, “Measurements of temperature-dependent argon-broadened half-widths of H2O transitions in the 7117 cm-1 region,” J. Quant. Spectrosc. Radiat. Transfer (to be published).

E. L. Petersen, D. F. Davidson, M. Rohrig, R. K. Hanson, “High-pressure shock-tube measurements of ignition times in stoichiometric H2/O2/Ar mixtures, in Twentieth International Symposium on Shock Waves (World Scientific, Singapore, 1995), pp. 941–946.

Davis, S. J.

Delaye, C.

Devi, V. M.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Flaud, J.-M.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

L. S. Rothman, R. B. Wattson, R. R. Gamache, D. Goorvetech, R. L. Hawkins, J. E. A. Selby, C. Camy-Peyret, J.-M. Flaud, J. Schroeder, A. McCann, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer (to be published).

Furlong, E. R.

D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using a multiplexed diode-laser sensor system,” AIAA J. 34, 489–493 (1996).
[CrossRef]

V. Nagali, E. R. Furlong, S. I. Chou, R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode-laser sensor system for multispecies and multiparameter measurements in combustion flows,” paper AIAA 95-2684, presented at the Thirty-First Joint Propulsion Conference and Exhibit, San Diego, Calif., 10–12 July 1995 (American Institute of Aeronautics and Astronautics, Reston, Va., 1995).

Gamache, R. R.

R. R. Gamache, J.-M. Hartmann, L. Rosenmann, “Collisional broadening of water vapor lines—1. A survey of experimental results,” J. Quant. Spectrosc. Radiat. Transfer 52, 481–499 (1994).
[CrossRef]

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

L. S. Rothman, R. B. Wattson, R. R. Gamache, D. Goorvetech, R. L. Hawkins, J. E. A. Selby, C. Camy-Peyret, J.-M. Flaud, J. Schroeder, A. McCann, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer (to be published).

Goldman, A.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Golovko, V. F.

N. Husson, B. Bonnet, A. Chedin, N. A. Scott, A. A. Chursin, V. F. Golovko, Vl. G. Tyuterev, “The GEISA data bank in 1993: a PC/AT compatible computers’ new version,” J. Quant. Spectrosc. Radiat. Transfer 52, 425–438 (1994).
[CrossRef]

Goorvetech, D.

L. S. Rothman, R. B. Wattson, R. R. Gamache, D. Goorvetech, R. L. Hawkins, J. E. A. Selby, C. Camy-Peyret, J.-M. Flaud, J. Schroeder, A. McCann, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer (to be published).

Gopaul, N. K. L. M.

Grossmann, B. E.

B. E. Grossmann, E. V. Browell, “Water-vapor line broadenings and shifting by air, nitrogen, oxygen, and argon in the 720 nm wavelength region,” J. Mol. Spectrosc. 138, 562–595 (1989).
[CrossRef]

B. E. Grossmann, E. V. Browell, “Spectroscopy of water vapor in the 720 nm wavelength region: line strengths, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts,” J. Mol. Spectrosc. 136, 264–294 (1989).
[CrossRef]

Hanson, R. K.

V. Nagali, R. K. Hanson, “Design of a diode-laser sensor to monitor water vapor in high-pressure combustion gases,” Appl. Opt. 36, 9518–9527 (1997).
[CrossRef]

V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, “Diode-laser measurements of temperature-dependent half-widths of H2O transitions in the 1.4 µm region,” J. Quant. Spectrosc. Radiat. Transfer 57, 795–809 (1997).
[CrossRef]

D. F. Davidson, R. K. Hanson, “Real gas correction in shock tube studies at high pressures,” Isr. J. Chem. 36, 321–326 (1996).
[CrossRef]

D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using a multiplexed diode-laser sensor system,” AIAA J. 34, 489–493 (1996).
[CrossRef]

D. S. Baer, R. K. Hanson, M. E. Newfield, N. K. L. M. Gopaul, “Multiplexed diode-laser sensor system for simultaneous H2O, O2, and temperature measurements,” Opt. Lett. 19, 1900–1902 (1994).
[CrossRef]

S. Langlois, T. P. Birbeck, R. K. Hanson, “Temperature-dependent collision-broadening parameters of H2O lines in the 1.4-µm region using diode laser absorption spectroscopy,” J. Mol. Spectrosc. 167, 272–281 (1994).
[CrossRef]

S. Langlois, T. P. Birbeck, R. K. Hanson, “Diode laser measurements of H2O line intensities and self-broadening coefficients in the 1.4-µm region,” J. Mol. Spectrosc. 163, 27–42 (1994).
[CrossRef]

M. P. Arroyo, T. P. Birbeck, D. S. Baer, R. K. Hanson, “Dual diode-laser fiber-optic diagnostic for water-vapor measurements,” Opt. Lett. 19, 1091–1093 (1994).
[CrossRef] [PubMed]

M. P. Arroyo, S. Langlois, R. K. Hanson, “Diode-laser absorption technique for simultaneous measurements of multiple gasdynamic parameters in high-speed flows containing water vapor,” Appl. Opt. 33, 3296–3306 (1994).
[CrossRef] [PubMed]

M. P. Arroyo, R. K. Hanson, “Absorption measurements of water-vapor concentration, temperature, and line-shape parameters using a tunable InGaAsP diode laser,” Appl. Opt. 32, 6104–6116 (1993).
[CrossRef] [PubMed]

E. L. Petersen, D. F. Davidson, M. Rohrig, R. K. Hanson, “High-pressure shock-tube measurements of ignition times in stoichiometric H2/O2/Ar mixtures, in Twentieth International Symposium on Shock Waves (World Scientific, Singapore, 1995), pp. 941–946.

V. Nagali, D. F. Davidson, R. K. Hanson, “Measurements of temperature-dependent argon-broadened half-widths of H2O transitions in the 7117 cm-1 region,” J. Quant. Spectrosc. Radiat. Transfer (to be published).

V. Nagali, E. R. Furlong, S. I. Chou, R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode-laser sensor system for multispecies and multiparameter measurements in combustion flows,” paper AIAA 95-2684, presented at the Thirty-First Joint Propulsion Conference and Exhibit, San Diego, Calif., 10–12 July 1995 (American Institute of Aeronautics and Astronautics, Reston, Va., 1995).

Hartmann, J. M.

B. Labani, J. Bonamy, D. Robert, J. M. Hartmann, “Collisional broadening of rotation–vibration lines for asymmetric top molecules. III. Self-broadening case; application to H2O,” J. Chem. Phys. 87, 2781–2789 (1987).
[CrossRef]

B. Labani, J. Bonamy, D. Robert, J. M. Hartmann, J. Taine, “Collisional broadening of rotation–vibration lines for asymmetric top molecules. I. Theoretical model for both distant and close collisions,” J. Chem. Phys. 84, 4256–4267 (1986).
[CrossRef]

Hartmann, J.-M.

R. R. Gamache, J.-M. Hartmann, L. Rosenmann, “Collisional broadening of water vapor lines—1. A survey of experimental results,” J. Quant. Spectrosc. Radiat. Transfer 52, 481–499 (1994).
[CrossRef]

C. Delaye, J.-M. Hartmann, J. Taine, “Calculated tabulations of H2O line broadening by H2O, N2, O2 and CO2 at high temperature,” Appl. Opt. 28, 5080–5087 (1989).
[CrossRef] [PubMed]

Hawkins, R. L.

L. S. Rothman, R. B. Wattson, R. R. Gamache, D. Goorvetech, R. L. Hawkins, J. E. A. Selby, C. Camy-Peyret, J.-M. Flaud, J. Schroeder, A. McCann, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer (to be published).

Husson, N.

N. Husson, B. Bonnet, A. Chedin, N. A. Scott, A. A. Chursin, V. F. Golovko, Vl. G. Tyuterev, “The GEISA data bank in 1993: a PC/AT compatible computers’ new version,” J. Quant. Spectrosc. Radiat. Transfer 52, 425–438 (1994).
[CrossRef]

Kee, R. J.

R. J. Kee, F. M. Rupley, J. A. Miller, The Chemkin Thermodynamic Database, (Sandia National Laboratory, Albuquerque, N. Mex., 1987).

Kessler, W. J.

Labani, B.

B. Labani, J. Bonamy, D. Robert, J. M. Hartmann, “Collisional broadening of rotation–vibration lines for asymmetric top molecules. III. Self-broadening case; application to H2O,” J. Chem. Phys. 87, 2781–2789 (1987).
[CrossRef]

B. Labani, J. Bonamy, D. Robert, J. M. Hartmann, J. Taine, “Collisional broadening of rotation–vibration lines for asymmetric top molecules. I. Theoretical model for both distant and close collisions,” J. Chem. Phys. 84, 4256–4267 (1986).
[CrossRef]

Langlois, S.

S. Langlois, T. P. Birbeck, R. K. Hanson, “Temperature-dependent collision-broadening parameters of H2O lines in the 1.4-µm region using diode laser absorption spectroscopy,” J. Mol. Spectrosc. 167, 272–281 (1994).
[CrossRef]

S. Langlois, T. P. Birbeck, R. K. Hanson, “Diode laser measurements of H2O line intensities and self-broadening coefficients in the 1.4-µm region,” J. Mol. Spectrosc. 163, 27–42 (1994).
[CrossRef]

M. P. Arroyo, S. Langlois, R. K. Hanson, “Diode-laser absorption technique for simultaneous measurements of multiple gasdynamic parameters in high-speed flows containing water vapor,” Appl. Opt. 33, 3296–3306 (1994).
[CrossRef] [PubMed]

Massie, S. T.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

McCann, A.

L. S. Rothman, R. B. Wattson, R. R. Gamache, D. Goorvetech, R. L. Hawkins, J. E. A. Selby, C. Camy-Peyret, J.-M. Flaud, J. Schroeder, A. McCann, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer (to be published).

Mihalcea, R. M.

V. Nagali, E. R. Furlong, S. I. Chou, R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode-laser sensor system for multispecies and multiparameter measurements in combustion flows,” paper AIAA 95-2684, presented at the Thirty-First Joint Propulsion Conference and Exhibit, San Diego, Calif., 10–12 July 1995 (American Institute of Aeronautics and Astronautics, Reston, Va., 1995).

Miller, J. A.

R. J. Kee, F. M. Rupley, J. A. Miller, The Chemkin Thermodynamic Database, (Sandia National Laboratory, Albuquerque, N. Mex., 1987).

Nagali, V.

V. Nagali, R. K. Hanson, “Design of a diode-laser sensor to monitor water vapor in high-pressure combustion gases,” Appl. Opt. 36, 9518–9527 (1997).
[CrossRef]

V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, “Diode-laser measurements of temperature-dependent half-widths of H2O transitions in the 1.4 µm region,” J. Quant. Spectrosc. Radiat. Transfer 57, 795–809 (1997).
[CrossRef]

D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using a multiplexed diode-laser sensor system,” AIAA J. 34, 489–493 (1996).
[CrossRef]

V. Nagali, D. F. Davidson, R. K. Hanson, “Measurements of temperature-dependent argon-broadened half-widths of H2O transitions in the 7117 cm-1 region,” J. Quant. Spectrosc. Radiat. Transfer (to be published).

V. Nagali, E. R. Furlong, S. I. Chou, R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode-laser sensor system for multispecies and multiparameter measurements in combustion flows,” paper AIAA 95-2684, presented at the Thirty-First Joint Propulsion Conference and Exhibit, San Diego, Calif., 10–12 July 1995 (American Institute of Aeronautics and Astronautics, Reston, Va., 1995).

Newfield, M. E.

D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using a multiplexed diode-laser sensor system,” AIAA J. 34, 489–493 (1996).
[CrossRef]

D. S. Baer, R. K. Hanson, M. E. Newfield, N. K. L. M. Gopaul, “Multiplexed diode-laser sensor system for simultaneous H2O, O2, and temperature measurements,” Opt. Lett. 19, 1900–1902 (1994).
[CrossRef]

Otis, C. E.

Palomobo, D. A.

Perrin, A.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Petersen, E. L.

E. L. Petersen, D. F. Davidson, M. Rohrig, R. K. Hanson, “High-pressure shock-tube measurements of ignition times in stoichiometric H2/O2/Ar mixtures, in Twentieth International Symposium on Shock Waves (World Scientific, Singapore, 1995), pp. 941–946.

E. L. Petersen, “A shock tube and diagnostics for chemistry measurements at elevated pressures with application to methane ignition,” Ph.D. dissertation (Department of Mechanical Engineering, Stanford University, Stanford, Calif., 1998).

Rinsland, C. P.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Robert, D.

B. Labani, J. Bonamy, D. Robert, J. M. Hartmann, “Collisional broadening of rotation–vibration lines for asymmetric top molecules. III. Self-broadening case; application to H2O,” J. Chem. Phys. 87, 2781–2789 (1987).
[CrossRef]

B. Labani, J. Bonamy, D. Robert, J. M. Hartmann, J. Taine, “Collisional broadening of rotation–vibration lines for asymmetric top molecules. I. Theoretical model for both distant and close collisions,” J. Chem. Phys. 84, 4256–4267 (1986).
[CrossRef]

Rohrig, M.

E. L. Petersen, D. F. Davidson, M. Rohrig, R. K. Hanson, “High-pressure shock-tube measurements of ignition times in stoichiometric H2/O2/Ar mixtures, in Twentieth International Symposium on Shock Waves (World Scientific, Singapore, 1995), pp. 941–946.

Rosenmann, L.

R. R. Gamache, J.-M. Hartmann, L. Rosenmann, “Collisional broadening of water vapor lines—1. A survey of experimental results,” J. Quant. Spectrosc. Radiat. Transfer 52, 481–499 (1994).
[CrossRef]

Rothman, L. S.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

L. S. Rothman, R. B. Wattson, R. R. Gamache, D. Goorvetech, R. L. Hawkins, J. E. A. Selby, C. Camy-Peyret, J.-M. Flaud, J. Schroeder, A. McCann, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer (to be published).

L. S. Rothman, Phillips Laboratory, Geophysics Directorate, Hanscom Air Force Base, Mass. 01731 (personal communication, July1998).

Rupley, F. M.

R. J. Kee, F. M. Rupley, J. A. Miller, The Chemkin Thermodynamic Database, (Sandia National Laboratory, Albuquerque, N. Mex., 1987).

Schroeder, J.

L. S. Rothman, R. B. Wattson, R. R. Gamache, D. Goorvetech, R. L. Hawkins, J. E. A. Selby, C. Camy-Peyret, J.-M. Flaud, J. Schroeder, A. McCann, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer (to be published).

Scott, N. A.

N. Husson, B. Bonnet, A. Chedin, N. A. Scott, A. A. Chursin, V. F. Golovko, Vl. G. Tyuterev, “The GEISA data bank in 1993: a PC/AT compatible computers’ new version,” J. Quant. Spectrosc. Radiat. Transfer 52, 425–438 (1994).
[CrossRef]

Selby, J. E. A.

L. S. Rothman, R. B. Wattson, R. R. Gamache, D. Goorvetech, R. L. Hawkins, J. E. A. Selby, C. Camy-Peyret, J.-M. Flaud, J. Schroeder, A. McCann, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer (to be published).

Smith, M. A. H.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Sonnenfroh, D. M.

Taine, J.

C. Delaye, J.-M. Hartmann, J. Taine, “Calculated tabulations of H2O line broadening by H2O, N2, O2 and CO2 at high temperature,” Appl. Opt. 28, 5080–5087 (1989).
[CrossRef] [PubMed]

B. Labani, J. Bonamy, D. Robert, J. M. Hartmann, J. Taine, “Collisional broadening of rotation–vibration lines for asymmetric top molecules. I. Theoretical model for both distant and close collisions,” J. Chem. Phys. 84, 4256–4267 (1986).
[CrossRef]

Tipping, R. H.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Toth, R. A.

R. A. Toth, “Extensive measurements of H216O frequencies and strengths: 5750 to 7965 cm-1,” Appl. Opt. 33, 4851–4867 (1994).
[CrossRef] [PubMed]

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Tyuterev, Vl. G.

N. Husson, B. Bonnet, A. Chedin, N. A. Scott, A. A. Chursin, V. F. Golovko, Vl. G. Tyuterev, “The GEISA data bank in 1993: a PC/AT compatible computers’ new version,” J. Quant. Spectrosc. Radiat. Transfer 52, 425–438 (1994).
[CrossRef]

Upschulte, B. L.

B. L. Upschulte, M. G. Allen, “Diode laser measurements of line strengths and self-broadening parameters of water vapor between 300 and 1000 K near 1.31 µm,” J. Quant. Spectrosc. Radiat. Transfer 59, 653–670 (1998).
[CrossRef]

Wattson, R. B.

L. S. Rothman, R. B. Wattson, R. R. Gamache, D. Goorvetech, R. L. Hawkins, J. E. A. Selby, C. Camy-Peyret, J.-M. Flaud, J. Schroeder, A. McCann, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer (to be published).

AIAA J.

D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using a multiplexed diode-laser sensor system,” AIAA J. 34, 489–493 (1996).
[CrossRef]

Appl. Opt.

Isr. J. Chem.

D. F. Davidson, R. K. Hanson, “Real gas correction in shock tube studies at high pressures,” Isr. J. Chem. 36, 321–326 (1996).
[CrossRef]

J. Chem. Phys.

B. Labani, J. Bonamy, D. Robert, J. M. Hartmann, J. Taine, “Collisional broadening of rotation–vibration lines for asymmetric top molecules. I. Theoretical model for both distant and close collisions,” J. Chem. Phys. 84, 4256–4267 (1986).
[CrossRef]

B. Labani, J. Bonamy, D. Robert, J. M. Hartmann, “Collisional broadening of rotation–vibration lines for asymmetric top molecules. III. Self-broadening case; application to H2O,” J. Chem. Phys. 87, 2781–2789 (1987).
[CrossRef]

J. Mol. Spectrosc.

S. Langlois, T. P. Birbeck, R. K. Hanson, “Diode laser measurements of H2O line intensities and self-broadening coefficients in the 1.4-µm region,” J. Mol. Spectrosc. 163, 27–42 (1994).
[CrossRef]

S. Langlois, T. P. Birbeck, R. K. Hanson, “Temperature-dependent collision-broadening parameters of H2O lines in the 1.4-µm region using diode laser absorption spectroscopy,” J. Mol. Spectrosc. 167, 272–281 (1994).
[CrossRef]

B. E. Grossmann, E. V. Browell, “Spectroscopy of water vapor in the 720 nm wavelength region: line strengths, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts,” J. Mol. Spectrosc. 136, 264–294 (1989).
[CrossRef]

B. E. Grossmann, E. V. Browell, “Water-vapor line broadenings and shifting by air, nitrogen, oxygen, and argon in the 720 nm wavelength region,” J. Mol. Spectrosc. 138, 562–595 (1989).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

B. L. Upschulte, M. G. Allen, “Diode laser measurements of line strengths and self-broadening parameters of water vapor between 300 and 1000 K near 1.31 µm,” J. Quant. Spectrosc. Radiat. Transfer 59, 653–670 (1998).
[CrossRef]

R. R. Gamache, J.-M. Hartmann, L. Rosenmann, “Collisional broadening of water vapor lines—1. A survey of experimental results,” J. Quant. Spectrosc. Radiat. Transfer 52, 481–499 (1994).
[CrossRef]

V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, “Diode-laser measurements of temperature-dependent half-widths of H2O transitions in the 1.4 µm region,” J. Quant. Spectrosc. Radiat. Transfer 57, 795–809 (1997).
[CrossRef]

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

N. Husson, B. Bonnet, A. Chedin, N. A. Scott, A. A. Chursin, V. F. Golovko, Vl. G. Tyuterev, “The GEISA data bank in 1993: a PC/AT compatible computers’ new version,” J. Quant. Spectrosc. Radiat. Transfer 52, 425–438 (1994).
[CrossRef]

Opt. Lett.

Other

L. S. Rothman, R. B. Wattson, R. R. Gamache, D. Goorvetech, R. L. Hawkins, J. E. A. Selby, C. Camy-Peyret, J.-M. Flaud, J. Schroeder, A. McCann, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer (to be published).

E. L. Petersen, D. F. Davidson, M. Rohrig, R. K. Hanson, “High-pressure shock-tube measurements of ignition times in stoichiometric H2/O2/Ar mixtures, in Twentieth International Symposium on Shock Waves (World Scientific, Singapore, 1995), pp. 941–946.

R. J. Kee, F. M. Rupley, J. A. Miller, The Chemkin Thermodynamic Database, (Sandia National Laboratory, Albuquerque, N. Mex., 1987).

L. S. Rothman, Phillips Laboratory, Geophysics Directorate, Hanscom Air Force Base, Mass. 01731 (personal communication, July1998).

E. L. Petersen, “A shock tube and diagnostics for chemistry measurements at elevated pressures with application to methane ignition,” Ph.D. dissertation (Department of Mechanical Engineering, Stanford University, Stanford, Calif., 1998).

V. Nagali, D. F. Davidson, R. K. Hanson, “Measurements of temperature-dependent argon-broadened half-widths of H2O transitions in the 7117 cm-1 region,” J. Quant. Spectrosc. Radiat. Transfer (to be published).

V. Nagali, E. R. Furlong, S. I. Chou, R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode-laser sensor system for multispecies and multiparameter measurements in combustion flows,” paper AIAA 95-2684, presented at the Thirty-First Joint Propulsion Conference and Exhibit, San Diego, Calif., 10–12 July 1995 (American Institute of Aeronautics and Astronautics, Reston, Va., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Experimental schematic for shock-tube studies.

Fig. 2
Fig. 2

Raw data trace for preshock H2O mole fraction determination. Shown in the second and fourth panels (from the top) are the transmission traces through the shock tube before and after addition of the test mixture with H2O. Shown in the first and the third panel are the reference trace with room-air absorption and the etalon trace, respectively.

Fig. 3
Fig. 3

Reduced data corresponding to the raw data trace shown in Fig. 2. The symbols correspond to the equally spaced data points; the solid curve is a simulation with the best-fit H2O mole fraction; the dashed curves correspond to simulations with the error bounds of the best-fit H2O mole fraction; L is the path length and P1 and T1 are the preshock pressure and temperature, respectively.

Fig. 4
Fig. 4

Raw data trace for postshock experiments. Shown in the second and fourth panels (from the top) are the transmission trace through the shock tube before addition of the H2O, and the postshock transmission trace. Shown in the top panel is the reference trace with room-air absorption; in the third panel is the etalon trace; in the bottom panel is the pressure trace.

Fig. 5
Fig. 5

Expanded view of the postshock transmission through the shock tube. The laser intensity is zero for a small duration of a scan, and any residual intensity at these times is due to emission.

Fig. 6
Fig. 6

Reduced postshock data. Illustrated in the bottom panel is the procedure of using the peak of the room-air absorption to obtain an absolute wavelength reference. Shown in the top panel is a comparison between the reduced postshock absorption trace (solid curve) and the simulation (dashed curve) performed with measured line parameters. The good agreement between the data and simulation validates the experimental method and data-reduction procedure.

Fig. 7
Fig. 7

Comparison between the recorded and the calculated absorbances at 7185.4 and 7117.4 cm-1 at a nominal pressure of 25 atm in a mixture of H2O in N2. Simulations to determine calculated absorbances employed line strengths and positions from Toth and measured line parameters. Again, good agreement between the recorded and the calculated absorbances validates the experimental method and data-reduction procedure.

Fig. 8
Fig. 8

Comparison between the recorded and the calculated absorbances at 7117.4 cm-1 in a H2O–Ar mixture. Simulations to determine calculated absorbances employed measured line parameters. Good agreement between the recorded and the calculated absorbances validates the experimental method and data-reduction procedure.

Fig. 9
Fig. 9

N2-pressure-shift coefficient for H2O transitions in 7117 cm-1.

Fig. 10
Fig. 10

Ar-pressure-shift coefficient for H2O transitions in 7117 cm-1.

Fig. 11
Fig. 11

Comparisons between simulations performed with HITRAN and HITEMP line parameters at typical combustor conditions. HITRAN and HITEMP simulations are nearly identical at 1000 K, and the difference between them is small at 2000 K.

Fig. 12
Fig. 12

Comparisons between recorded absorbances and calculations based on line parameters from HITRAN (⊠) and HITEMP (■) at a nominal pressure of 25 atm in a mixture of H2O in N2. The difference between HITRAN and HITEMP simulations is small over the range of temperatures shown. On average, calculations based on these databases are with in 25% of the measurements.

Fig. 13
Fig. 13

Comparisons between recorded absorbances and calculations based on line positions and strengths from either Toth (♦) or HITRAN (⊠) and based on line-broadening parameters from HITRAN at a nominal pressure of 25 atm in a mixture of H2O in N2. Calculations based on Toth’s line positions and strengths lead to better agreement with the measurements.

Fig. 14
Fig. 14

Comparisons between recorded absorbances and calculations based on line positions and strengths from Toth and line-broadening parameters from Delaye (ao-38-33-6942-i001) and HITRAN (♦) at a nominal pressure of 25 atm in a mixture of H2O in N2. Calculations based on line-broadening parameters from HITRAN lead to better agreement in two of three cases.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

γv,N-v1,N1γ0,N-0,N1γ0,N-0,Nc-1+γ0,N1-0,N1c-121/c-1,
absorbance=kvL=-lnItrans,1Itrans,0.
absorbance=-lnItrans,2Itrans,0,
δN2-H2OT=-0.017300/T1.0,δAr-H2OT=-0.023300/T0.85.

Metrics