Abstract

We have constructed a two-dimensional refracted-ray scanner that can resolve index-of-refraction increments of approximately 4 × 10-5. This resolution is an order of magnitude finer than the uncertainty of the measurement. The scanner can be adapted to evaluate either fibers or planar waveguides. The two-dimensional scan and the high precision allow visualization of features, such as deposition layers, that are difficult if not impossible to see in conventional one-dimensional scans.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Young, “Optical fiber index profiles by the refracted-ray method (refracted near-field scanning),” Appl. Opt. 20, 3415–3421 (1981).
    [CrossRef] [PubMed]
  2. K. L. White, “Practical application of the refracted near-field technique for the measurement of optical fiber refractive index profiles,” Opt. Quantum Electron. 11, 185–196 (1979).
    [CrossRef]
  3. Anonymous, “Refractive index profile, refracted-ray method,” (Telecommunications Industry Association, 2500 Wilson Blvd., Suite 300, Arlington, Va. 22201-3384, 1992). Here we adopt the TIA’s preferred term, refracted-ray method, instead of refracted near-field scanning, in part because currently near-field scanning can reasonably be assumed to mean optical probe microscopy.
  4. J. W. Fleming, “Material and mode dispersion in GeO2 · B2O3 · SiO2 glasses,” Amer. Ceram. Soc. Bull. 59, 503–507 (1976).
    [CrossRef]
  5. K. W. Raine, J. G. N. Baines, D. E. Putland, “Refractive index profiling—state of the art,” J. Lightwave Technol. 7, 1162–1169 (1989).
    [CrossRef]
  6. Specialty Optical Liquids (R. P. Cargille Laboratories, Cedar Grove, N.J., undated).
  7. J. Delly, Photography Through the Microscope, 9th ed. (Eastman Kodak Company, Rochester, N.Y., 1988).
  8. R. Göring, M. Rothbardt, “Application of the refracted near-field technique to multimode planar and channel waveguides in glass,” J. Opt. Commun. 7, 82–85 (1986); N. Gisin, J. P. Pellaux, P. Stamp, N. Hori, M. Masuyama, “Alternative configuration for refracted near-field measurements of index of refraction on glass-integrated-optics waveguides,” Appl. Opt. 31, 7108–7112 (1992).
    [CrossRef] [PubMed]
  9. D. S. Funk, D. L. Veasey, P. M. Peters, N. A. Sanford, N. H. Fontaine, M. Young, “Erbium/ytterbium-co-doped glass waveguide laser producing 170 mW of output power at 1540 nm,” Conf. Digest, Optical Fiber Conf., 1999); D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarsky, N. H. Fontaine, M. Young, A. P. Peskin, W.-C. Liu, S. N. Houde-Walter, J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids (to be published).

1989 (1)

K. W. Raine, J. G. N. Baines, D. E. Putland, “Refractive index profiling—state of the art,” J. Lightwave Technol. 7, 1162–1169 (1989).
[CrossRef]

1986 (1)

R. Göring, M. Rothbardt, “Application of the refracted near-field technique to multimode planar and channel waveguides in glass,” J. Opt. Commun. 7, 82–85 (1986); N. Gisin, J. P. Pellaux, P. Stamp, N. Hori, M. Masuyama, “Alternative configuration for refracted near-field measurements of index of refraction on glass-integrated-optics waveguides,” Appl. Opt. 31, 7108–7112 (1992).
[CrossRef] [PubMed]

1981 (1)

1979 (1)

K. L. White, “Practical application of the refracted near-field technique for the measurement of optical fiber refractive index profiles,” Opt. Quantum Electron. 11, 185–196 (1979).
[CrossRef]

1976 (1)

J. W. Fleming, “Material and mode dispersion in GeO2 · B2O3 · SiO2 glasses,” Amer. Ceram. Soc. Bull. 59, 503–507 (1976).
[CrossRef]

Baines, J. G. N.

K. W. Raine, J. G. N. Baines, D. E. Putland, “Refractive index profiling—state of the art,” J. Lightwave Technol. 7, 1162–1169 (1989).
[CrossRef]

Delly, J.

J. Delly, Photography Through the Microscope, 9th ed. (Eastman Kodak Company, Rochester, N.Y., 1988).

Fleming, J. W.

J. W. Fleming, “Material and mode dispersion in GeO2 · B2O3 · SiO2 glasses,” Amer. Ceram. Soc. Bull. 59, 503–507 (1976).
[CrossRef]

Fontaine, N. H.

D. S. Funk, D. L. Veasey, P. M. Peters, N. A. Sanford, N. H. Fontaine, M. Young, “Erbium/ytterbium-co-doped glass waveguide laser producing 170 mW of output power at 1540 nm,” Conf. Digest, Optical Fiber Conf., 1999); D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarsky, N. H. Fontaine, M. Young, A. P. Peskin, W.-C. Liu, S. N. Houde-Walter, J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids (to be published).

Funk, D. S.

D. S. Funk, D. L. Veasey, P. M. Peters, N. A. Sanford, N. H. Fontaine, M. Young, “Erbium/ytterbium-co-doped glass waveguide laser producing 170 mW of output power at 1540 nm,” Conf. Digest, Optical Fiber Conf., 1999); D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarsky, N. H. Fontaine, M. Young, A. P. Peskin, W.-C. Liu, S. N. Houde-Walter, J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids (to be published).

Göring, R.

R. Göring, M. Rothbardt, “Application of the refracted near-field technique to multimode planar and channel waveguides in glass,” J. Opt. Commun. 7, 82–85 (1986); N. Gisin, J. P. Pellaux, P. Stamp, N. Hori, M. Masuyama, “Alternative configuration for refracted near-field measurements of index of refraction on glass-integrated-optics waveguides,” Appl. Opt. 31, 7108–7112 (1992).
[CrossRef] [PubMed]

Peters, P. M.

D. S. Funk, D. L. Veasey, P. M. Peters, N. A. Sanford, N. H. Fontaine, M. Young, “Erbium/ytterbium-co-doped glass waveguide laser producing 170 mW of output power at 1540 nm,” Conf. Digest, Optical Fiber Conf., 1999); D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarsky, N. H. Fontaine, M. Young, A. P. Peskin, W.-C. Liu, S. N. Houde-Walter, J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids (to be published).

Putland, D. E.

K. W. Raine, J. G. N. Baines, D. E. Putland, “Refractive index profiling—state of the art,” J. Lightwave Technol. 7, 1162–1169 (1989).
[CrossRef]

Raine, K. W.

K. W. Raine, J. G. N. Baines, D. E. Putland, “Refractive index profiling—state of the art,” J. Lightwave Technol. 7, 1162–1169 (1989).
[CrossRef]

Rothbardt, M.

R. Göring, M. Rothbardt, “Application of the refracted near-field technique to multimode planar and channel waveguides in glass,” J. Opt. Commun. 7, 82–85 (1986); N. Gisin, J. P. Pellaux, P. Stamp, N. Hori, M. Masuyama, “Alternative configuration for refracted near-field measurements of index of refraction on glass-integrated-optics waveguides,” Appl. Opt. 31, 7108–7112 (1992).
[CrossRef] [PubMed]

Sanford, N. A.

D. S. Funk, D. L. Veasey, P. M. Peters, N. A. Sanford, N. H. Fontaine, M. Young, “Erbium/ytterbium-co-doped glass waveguide laser producing 170 mW of output power at 1540 nm,” Conf. Digest, Optical Fiber Conf., 1999); D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarsky, N. H. Fontaine, M. Young, A. P. Peskin, W.-C. Liu, S. N. Houde-Walter, J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids (to be published).

Veasey, D. L.

D. S. Funk, D. L. Veasey, P. M. Peters, N. A. Sanford, N. H. Fontaine, M. Young, “Erbium/ytterbium-co-doped glass waveguide laser producing 170 mW of output power at 1540 nm,” Conf. Digest, Optical Fiber Conf., 1999); D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarsky, N. H. Fontaine, M. Young, A. P. Peskin, W.-C. Liu, S. N. Houde-Walter, J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids (to be published).

White, K. L.

K. L. White, “Practical application of the refracted near-field technique for the measurement of optical fiber refractive index profiles,” Opt. Quantum Electron. 11, 185–196 (1979).
[CrossRef]

Young, M.

M. Young, “Optical fiber index profiles by the refracted-ray method (refracted near-field scanning),” Appl. Opt. 20, 3415–3421 (1981).
[CrossRef] [PubMed]

D. S. Funk, D. L. Veasey, P. M. Peters, N. A. Sanford, N. H. Fontaine, M. Young, “Erbium/ytterbium-co-doped glass waveguide laser producing 170 mW of output power at 1540 nm,” Conf. Digest, Optical Fiber Conf., 1999); D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarsky, N. H. Fontaine, M. Young, A. P. Peskin, W.-C. Liu, S. N. Houde-Walter, J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids (to be published).

Amer. Ceram. Soc. Bull. (1)

J. W. Fleming, “Material and mode dispersion in GeO2 · B2O3 · SiO2 glasses,” Amer. Ceram. Soc. Bull. 59, 503–507 (1976).
[CrossRef]

Appl. Opt. (1)

J. Lightwave Technol. (1)

K. W. Raine, J. G. N. Baines, D. E. Putland, “Refractive index profiling—state of the art,” J. Lightwave Technol. 7, 1162–1169 (1989).
[CrossRef]

J. Opt. Commun. (1)

R. Göring, M. Rothbardt, “Application of the refracted near-field technique to multimode planar and channel waveguides in glass,” J. Opt. Commun. 7, 82–85 (1986); N. Gisin, J. P. Pellaux, P. Stamp, N. Hori, M. Masuyama, “Alternative configuration for refracted near-field measurements of index of refraction on glass-integrated-optics waveguides,” Appl. Opt. 31, 7108–7112 (1992).
[CrossRef] [PubMed]

Opt. Quantum Electron. (1)

K. L. White, “Practical application of the refracted near-field technique for the measurement of optical fiber refractive index profiles,” Opt. Quantum Electron. 11, 185–196 (1979).
[CrossRef]

Other (4)

Anonymous, “Refractive index profile, refracted-ray method,” (Telecommunications Industry Association, 2500 Wilson Blvd., Suite 300, Arlington, Va. 22201-3384, 1992). Here we adopt the TIA’s preferred term, refracted-ray method, instead of refracted near-field scanning, in part because currently near-field scanning can reasonably be assumed to mean optical probe microscopy.

D. S. Funk, D. L. Veasey, P. M. Peters, N. A. Sanford, N. H. Fontaine, M. Young, “Erbium/ytterbium-co-doped glass waveguide laser producing 170 mW of output power at 1540 nm,” Conf. Digest, Optical Fiber Conf., 1999); D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarsky, N. H. Fontaine, M. Young, A. P. Peskin, W.-C. Liu, S. N. Houde-Walter, J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids (to be published).

Specialty Optical Liquids (R. P. Cargille Laboratories, Cedar Grove, N.J., undated).

J. Delly, Photography Through the Microscope, 9th ed. (Eastman Kodak Company, Rochester, N.Y., 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Ray trace of the light propagating in a refracted-ray scanner configured for profiling a planar waveguide. The basic components are the photodetector (PD), condensing lens (Cond), opaque stop (OS), index-matching block (IB) with index n 6, specimen with index n 4(x, y), index-matching fluid (IF) with index n 3, and coverslip (CS) with index n 2. The light refracts through two corners in medium 4 and medium 6.

Fig. 2
Fig. 2

Schematic of the apparatus used in this research. The components are the laser diode (LD), polarization-maintaining fiber (PMF), neutral density filter (ND), collimating lens (Coll), chopper wheel (Chop), microscope objective (MO) controlled by a z-axis stepping motor (z), scanning platform controlled by x, y-axis stepping motors (x, y), condensing lens (Cond), photodiode (PD), and lock-in amplifier (LIA). The fiber mount (FM) and the waveguide mount (WM) are interchangeable, as indicated by the dotted line.

Fig. 3
Fig. 3

Measurement of the laser and detector stability. The mean intensity was normalized to 1. The standard deviation of the measured intensity is shown by the dashed lines.

Fig. 4
Fig. 4

(a) Schematic of the fiber mount. The components are the microscope objective (MO); coverslip (CS); index-matching fluid (IF); aspheric lens (As); capillary tube (Cap); opaque stop (OS); fiber, condensing lens (Cond); and photodiode (PD). (b) Schematic of the waveguide mount. The components are the sectorial stop (Sect), microscope objective (MO), coverslip (CS), index-matching fluid (IF), back support (BS), waveguide (WG), index-matching block (IB), combined sectorial-circular stop (CSC), condensing lens (Cond), and photodetector (PD).

Fig. 5
Fig. 5

Refracted-ray scan across the interface between a silica fiber and the index-matching fluid. The 20–80% rise is approximately 35 µm.

Fig. 6
Fig. 6

(a) 2-D index profile of a single-mode fiber. A small, annular index depression between the inner and the outer cladding regions is visible. The annulus is 0.7 µm wide and has a radius of 10.6 µm. The diagonal lines are due to aliasing of the scan period with periodic fluctuations in the laser. (b) 1-D index profile obtained from a cross section of the 2-D index profile shown in (a).

Fig. 7
Fig. 7

(a) 2-D index profile of a multimode fiber. (b) 1-D index profile obtained from a cross section of the 2-D index profile shown in (a).

Fig. 8
Fig. 8

(a) 2-D index profile of the same single-mode fiber as in Fig. 3, but made using waveguide mount and the sector. (b) 1-D index profile obtained from a cross section of the 2-D index profile shown in (a).

Fig. 9
Fig. 9

(a) 2-D index profile of a buried waveguide. (b) 1-D index profiles, transverse and parallel to the surface of the substrate, obtained from a cross section of the 2-D index profile shown in (a). (c) 2-D index profile of another waveguide from the same substrate as Fig. 9(a), courtesy of Eric Jacobsen, Professional Research Experience Program Fellow at the National Institute of Standards and Technology (NIST). Waveguides courtesy of Richard Maschmeyer, Corning, Inc.

Fig. 10
Fig. 10

Topographic map of a thermally diffused surface waveguide.

Fig. 11
Fig. 11

1-D index profile, transverse to the top surface of the guiding channel, of the index profile shown in Fig. 10. Waveguide courtesy of David Funk, NIST Postdoctoral Fellow.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ni sinθi=ni-1 sinθi-1.
ni cosθi=ni-1 cosθi-1.
n42x, y=n62+n32 sin2θ3-n72 sin2θ7.
n42x, y=n6+δn4x, y2n62+2n6δn4x, y.
NAobjn1 sinθ1,max=n3 sinθ3,max,
Pθ7=Bn72 sin2θ7-NAstop2,
δn4x, yNAobj2-NAstop22n6-Pθ72n6B.
d=λ1-NAobj2/2 NAobj2

Metrics