Abstract

Efficient surface gratings are UV imprinted in an acrylate-rich hybrid solgel glass. Structural changes occurring in the material upon exposure to light are investigated. Large amplitude modulation (700 nm) and low surface roughness (0.2 nm) were measured by atomic force microscopy. Diffraction efficiencies were found to be close to theoretical predictions. The method of fabrication does not involve any etching step, and an all-UV process is proposed. The gratings are resistant to temperature and to solvent effects. These devices could have useful applications in sensor and spectroscopic devices.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Suzuki, Y. Todokoro, K. Komenou, “Process for the production of optical elements,” U.S. Patent4,877,717 (31October1989).
  2. L. Lavielle, C. Croutxe-Barghorn, E. Schuller, D. J. Lougnot, “Self-organization in dry photopolymerized acrylate films. 2: General experimental description,” J. Photochem. Photobiol. A 104, 213–216 (1997).
    [CrossRef]
  3. P. Karrer, S. Corbel, J. C. Andre, D. J. Lougnot, “Shrinkage effects in photopolymerizable resins containing filling agents: application to stereophotolithography,” J. Polym. Sci. Part A Polym. Chem. 30, 2715–2723 (1992).
    [CrossRef]
  4. P. Rochon, E. Batalla, A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66, 136–138 (1995).
    [CrossRef]
  5. D. Y. Kim, S. K. Tripathy, L. Li, J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
    [CrossRef]
  6. I. Naydenova, L. Nikolova, T. Todorov, N. C. R. Holme, P. S. Ramanujam, S. Hvilsted, “Diffraction from polarization holographic gratings with surface relief in side-chain azobenzene polyesters,” J. Opt. Soc. Am. B 15, 1257–1265 (1998).
    [CrossRef]
  7. B. Darracq, F. Chaput, K. Lahlil, Y. Levy, J. P. Boilot, “Photoinscription of surface relief gratings on azo-hybrid gels,” Adv. Mater. 10, 1133–1136 (1998).
    [CrossRef]
  8. H. Krug, H. Schmidt, “Organic–inorganic nanocomposites for micro optical applications,” New J. Chem. 18, 1125–1134 (1994).
  9. S. I. Najafi, T. Touam, R. Sara, M. P. Andrews, M. A. Fardad, “Sol-gel glass waveguide and grating on silicon,” J. Light. Technol. 16, 1640–1646 (1998).
    [CrossRef]
  10. J. T. Rantala, P. Ayras, R. Levys, S. Honkanen, M. R. Descour, N. Peyghambarian, “Binary-phase zone-plate arrays based on hybrid solgel glass,” Opt. Lett. 23, 1939–1941 (1998).
    [CrossRef]
  11. K. Saravanamuttu, X. M. Du, S. I. Najafi, M. P. Andrews, “Photoinduced structural relaxation and densification in sol-gel-derived nanocomposite thin film: implications for integrated optics device fabrication,” Can. J. Chem. 76, 1717–1729 (1998).
    [CrossRef]
  12. A. V. Tishchenko, “A generalized source method for wave propagation,” J. Opt. A Pure Appl. Opt. 7, 1425–1450 (1998).
    [CrossRef]
  13. V. V. Krongauz, C. C. Legere-Krongauz, “Morphological changes during anisotropic photopolymerization,” Polymer 34, 3614–3619 (1993).
    [CrossRef]

1998 (6)

S. I. Najafi, T. Touam, R. Sara, M. P. Andrews, M. A. Fardad, “Sol-gel glass waveguide and grating on silicon,” J. Light. Technol. 16, 1640–1646 (1998).
[CrossRef]

J. T. Rantala, P. Ayras, R. Levys, S. Honkanen, M. R. Descour, N. Peyghambarian, “Binary-phase zone-plate arrays based on hybrid solgel glass,” Opt. Lett. 23, 1939–1941 (1998).
[CrossRef]

K. Saravanamuttu, X. M. Du, S. I. Najafi, M. P. Andrews, “Photoinduced structural relaxation and densification in sol-gel-derived nanocomposite thin film: implications for integrated optics device fabrication,” Can. J. Chem. 76, 1717–1729 (1998).
[CrossRef]

A. V. Tishchenko, “A generalized source method for wave propagation,” J. Opt. A Pure Appl. Opt. 7, 1425–1450 (1998).
[CrossRef]

I. Naydenova, L. Nikolova, T. Todorov, N. C. R. Holme, P. S. Ramanujam, S. Hvilsted, “Diffraction from polarization holographic gratings with surface relief in side-chain azobenzene polyesters,” J. Opt. Soc. Am. B 15, 1257–1265 (1998).
[CrossRef]

B. Darracq, F. Chaput, K. Lahlil, Y. Levy, J. P. Boilot, “Photoinscription of surface relief gratings on azo-hybrid gels,” Adv. Mater. 10, 1133–1136 (1998).
[CrossRef]

1997 (1)

L. Lavielle, C. Croutxe-Barghorn, E. Schuller, D. J. Lougnot, “Self-organization in dry photopolymerized acrylate films. 2: General experimental description,” J. Photochem. Photobiol. A 104, 213–216 (1997).
[CrossRef]

1995 (2)

P. Rochon, E. Batalla, A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66, 136–138 (1995).
[CrossRef]

D. Y. Kim, S. K. Tripathy, L. Li, J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[CrossRef]

1994 (1)

H. Krug, H. Schmidt, “Organic–inorganic nanocomposites for micro optical applications,” New J. Chem. 18, 1125–1134 (1994).

1993 (1)

V. V. Krongauz, C. C. Legere-Krongauz, “Morphological changes during anisotropic photopolymerization,” Polymer 34, 3614–3619 (1993).
[CrossRef]

1992 (1)

P. Karrer, S. Corbel, J. C. Andre, D. J. Lougnot, “Shrinkage effects in photopolymerizable resins containing filling agents: application to stereophotolithography,” J. Polym. Sci. Part A Polym. Chem. 30, 2715–2723 (1992).
[CrossRef]

Andre, J. C.

P. Karrer, S. Corbel, J. C. Andre, D. J. Lougnot, “Shrinkage effects in photopolymerizable resins containing filling agents: application to stereophotolithography,” J. Polym. Sci. Part A Polym. Chem. 30, 2715–2723 (1992).
[CrossRef]

Andrews, M. P.

S. I. Najafi, T. Touam, R. Sara, M. P. Andrews, M. A. Fardad, “Sol-gel glass waveguide and grating on silicon,” J. Light. Technol. 16, 1640–1646 (1998).
[CrossRef]

K. Saravanamuttu, X. M. Du, S. I. Najafi, M. P. Andrews, “Photoinduced structural relaxation and densification in sol-gel-derived nanocomposite thin film: implications for integrated optics device fabrication,” Can. J. Chem. 76, 1717–1729 (1998).
[CrossRef]

Ayras, P.

Batalla, E.

P. Rochon, E. Batalla, A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66, 136–138 (1995).
[CrossRef]

Boilot, J. P.

B. Darracq, F. Chaput, K. Lahlil, Y. Levy, J. P. Boilot, “Photoinscription of surface relief gratings on azo-hybrid gels,” Adv. Mater. 10, 1133–1136 (1998).
[CrossRef]

Chaput, F.

B. Darracq, F. Chaput, K. Lahlil, Y. Levy, J. P. Boilot, “Photoinscription of surface relief gratings on azo-hybrid gels,” Adv. Mater. 10, 1133–1136 (1998).
[CrossRef]

Corbel, S.

P. Karrer, S. Corbel, J. C. Andre, D. J. Lougnot, “Shrinkage effects in photopolymerizable resins containing filling agents: application to stereophotolithography,” J. Polym. Sci. Part A Polym. Chem. 30, 2715–2723 (1992).
[CrossRef]

Croutxe-Barghorn, C.

L. Lavielle, C. Croutxe-Barghorn, E. Schuller, D. J. Lougnot, “Self-organization in dry photopolymerized acrylate films. 2: General experimental description,” J. Photochem. Photobiol. A 104, 213–216 (1997).
[CrossRef]

Darracq, B.

B. Darracq, F. Chaput, K. Lahlil, Y. Levy, J. P. Boilot, “Photoinscription of surface relief gratings on azo-hybrid gels,” Adv. Mater. 10, 1133–1136 (1998).
[CrossRef]

Descour, M. R.

Du, X. M.

K. Saravanamuttu, X. M. Du, S. I. Najafi, M. P. Andrews, “Photoinduced structural relaxation and densification in sol-gel-derived nanocomposite thin film: implications for integrated optics device fabrication,” Can. J. Chem. 76, 1717–1729 (1998).
[CrossRef]

Fardad, M. A.

S. I. Najafi, T. Touam, R. Sara, M. P. Andrews, M. A. Fardad, “Sol-gel glass waveguide and grating on silicon,” J. Light. Technol. 16, 1640–1646 (1998).
[CrossRef]

Holme, N. C. R.

Honkanen, S.

Hvilsted, S.

Karrer, P.

P. Karrer, S. Corbel, J. C. Andre, D. J. Lougnot, “Shrinkage effects in photopolymerizable resins containing filling agents: application to stereophotolithography,” J. Polym. Sci. Part A Polym. Chem. 30, 2715–2723 (1992).
[CrossRef]

Kim, D. Y.

D. Y. Kim, S. K. Tripathy, L. Li, J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[CrossRef]

Komenou, K.

T. Suzuki, Y. Todokoro, K. Komenou, “Process for the production of optical elements,” U.S. Patent4,877,717 (31October1989).

Krongauz, V. V.

V. V. Krongauz, C. C. Legere-Krongauz, “Morphological changes during anisotropic photopolymerization,” Polymer 34, 3614–3619 (1993).
[CrossRef]

Krug, H.

H. Krug, H. Schmidt, “Organic–inorganic nanocomposites for micro optical applications,” New J. Chem. 18, 1125–1134 (1994).

Kumar, J.

D. Y. Kim, S. K. Tripathy, L. Li, J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[CrossRef]

Lahlil, K.

B. Darracq, F. Chaput, K. Lahlil, Y. Levy, J. P. Boilot, “Photoinscription of surface relief gratings on azo-hybrid gels,” Adv. Mater. 10, 1133–1136 (1998).
[CrossRef]

Lavielle, L.

L. Lavielle, C. Croutxe-Barghorn, E. Schuller, D. J. Lougnot, “Self-organization in dry photopolymerized acrylate films. 2: General experimental description,” J. Photochem. Photobiol. A 104, 213–216 (1997).
[CrossRef]

Legere-Krongauz, C. C.

V. V. Krongauz, C. C. Legere-Krongauz, “Morphological changes during anisotropic photopolymerization,” Polymer 34, 3614–3619 (1993).
[CrossRef]

Levy, Y.

B. Darracq, F. Chaput, K. Lahlil, Y. Levy, J. P. Boilot, “Photoinscription of surface relief gratings on azo-hybrid gels,” Adv. Mater. 10, 1133–1136 (1998).
[CrossRef]

Levys, R.

Li, L.

D. Y. Kim, S. K. Tripathy, L. Li, J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[CrossRef]

Lougnot, D. J.

L. Lavielle, C. Croutxe-Barghorn, E. Schuller, D. J. Lougnot, “Self-organization in dry photopolymerized acrylate films. 2: General experimental description,” J. Photochem. Photobiol. A 104, 213–216 (1997).
[CrossRef]

P. Karrer, S. Corbel, J. C. Andre, D. J. Lougnot, “Shrinkage effects in photopolymerizable resins containing filling agents: application to stereophotolithography,” J. Polym. Sci. Part A Polym. Chem. 30, 2715–2723 (1992).
[CrossRef]

Najafi, S. I.

S. I. Najafi, T. Touam, R. Sara, M. P. Andrews, M. A. Fardad, “Sol-gel glass waveguide and grating on silicon,” J. Light. Technol. 16, 1640–1646 (1998).
[CrossRef]

K. Saravanamuttu, X. M. Du, S. I. Najafi, M. P. Andrews, “Photoinduced structural relaxation and densification in sol-gel-derived nanocomposite thin film: implications for integrated optics device fabrication,” Can. J. Chem. 76, 1717–1729 (1998).
[CrossRef]

Natansohn, A.

P. Rochon, E. Batalla, A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66, 136–138 (1995).
[CrossRef]

Naydenova, I.

Nikolova, L.

Peyghambarian, N.

Ramanujam, P. S.

Rantala, J. T.

Rochon, P.

P. Rochon, E. Batalla, A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66, 136–138 (1995).
[CrossRef]

Sara, R.

S. I. Najafi, T. Touam, R. Sara, M. P. Andrews, M. A. Fardad, “Sol-gel glass waveguide and grating on silicon,” J. Light. Technol. 16, 1640–1646 (1998).
[CrossRef]

Saravanamuttu, K.

K. Saravanamuttu, X. M. Du, S. I. Najafi, M. P. Andrews, “Photoinduced structural relaxation and densification in sol-gel-derived nanocomposite thin film: implications for integrated optics device fabrication,” Can. J. Chem. 76, 1717–1729 (1998).
[CrossRef]

Schmidt, H.

H. Krug, H. Schmidt, “Organic–inorganic nanocomposites for micro optical applications,” New J. Chem. 18, 1125–1134 (1994).

Schuller, E.

L. Lavielle, C. Croutxe-Barghorn, E. Schuller, D. J. Lougnot, “Self-organization in dry photopolymerized acrylate films. 2: General experimental description,” J. Photochem. Photobiol. A 104, 213–216 (1997).
[CrossRef]

Suzuki, T.

T. Suzuki, Y. Todokoro, K. Komenou, “Process for the production of optical elements,” U.S. Patent4,877,717 (31October1989).

Tishchenko, A. V.

A. V. Tishchenko, “A generalized source method for wave propagation,” J. Opt. A Pure Appl. Opt. 7, 1425–1450 (1998).
[CrossRef]

Todokoro, Y.

T. Suzuki, Y. Todokoro, K. Komenou, “Process for the production of optical elements,” U.S. Patent4,877,717 (31October1989).

Todorov, T.

Touam, T.

S. I. Najafi, T. Touam, R. Sara, M. P. Andrews, M. A. Fardad, “Sol-gel glass waveguide and grating on silicon,” J. Light. Technol. 16, 1640–1646 (1998).
[CrossRef]

Tripathy, S. K.

D. Y. Kim, S. K. Tripathy, L. Li, J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[CrossRef]

Adv. Mater. (1)

B. Darracq, F. Chaput, K. Lahlil, Y. Levy, J. P. Boilot, “Photoinscription of surface relief gratings on azo-hybrid gels,” Adv. Mater. 10, 1133–1136 (1998).
[CrossRef]

Appl. Phys. Lett. (2)

P. Rochon, E. Batalla, A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66, 136–138 (1995).
[CrossRef]

D. Y. Kim, S. K. Tripathy, L. Li, J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[CrossRef]

Can. J. Chem. (1)

K. Saravanamuttu, X. M. Du, S. I. Najafi, M. P. Andrews, “Photoinduced structural relaxation and densification in sol-gel-derived nanocomposite thin film: implications for integrated optics device fabrication,” Can. J. Chem. 76, 1717–1729 (1998).
[CrossRef]

J. Light. Technol. (1)

S. I. Najafi, T. Touam, R. Sara, M. P. Andrews, M. A. Fardad, “Sol-gel glass waveguide and grating on silicon,” J. Light. Technol. 16, 1640–1646 (1998).
[CrossRef]

J. Opt. A Pure Appl. Opt. (1)

A. V. Tishchenko, “A generalized source method for wave propagation,” J. Opt. A Pure Appl. Opt. 7, 1425–1450 (1998).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Photochem. Photobiol. A (1)

L. Lavielle, C. Croutxe-Barghorn, E. Schuller, D. J. Lougnot, “Self-organization in dry photopolymerized acrylate films. 2: General experimental description,” J. Photochem. Photobiol. A 104, 213–216 (1997).
[CrossRef]

J. Polym. Sci. Part A Polym. Chem. (1)

P. Karrer, S. Corbel, J. C. Andre, D. J. Lougnot, “Shrinkage effects in photopolymerizable resins containing filling agents: application to stereophotolithography,” J. Polym. Sci. Part A Polym. Chem. 30, 2715–2723 (1992).
[CrossRef]

New J. Chem. (1)

H. Krug, H. Schmidt, “Organic–inorganic nanocomposites for micro optical applications,” New J. Chem. 18, 1125–1134 (1994).

Opt. Lett. (1)

Polymer (1)

V. V. Krongauz, C. C. Legere-Krongauz, “Morphological changes during anisotropic photopolymerization,” Polymer 34, 3614–3619 (1993).
[CrossRef]

Other (1)

T. Suzuki, Y. Todokoro, K. Komenou, “Process for the production of optical elements,” U.S. Patent4,877,717 (31October1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

AFM three-dimensional view of a 4-µm-period grating UV imprinted on the solgel layer.

Fig. 2
Fig. 2

Theoretical diffraction efficiency of a 4-µm-period surface grating as a function of groove depth.

Fig. 3
Fig. 3

AFM three-dimensional view of swelling at the edge of the grating (sample was prebaked before imprinting).

Fig. 4
Fig. 4

AFM three-dimensional view showing no swelling at the edge of the grating (sample was UV cured before imprinting).

Fig. 5
Fig. 5

AFM surface profile of a 2-µm-period grating UV imprinted on the solgel layer. z, 300 nm/div.

Fig. 6
Fig. 6

AFM three-dimensional view of two gratings recorded orthogonally to each other. z, 800 nm/div.

Tables (1)

Tables Icon

Table 1 Comparison between Computed and Experimental Values of Diffracted Efficienciesa

Metrics