Abstract

We present a theoretical analysis on use of polarized light in the detection of a model target in a scattering and absorbing medium similar to seawater. Monte Carlo numerical simulations are used in the calculation of the effective Mueller matrix which describes the scattering process. A target in the shape of a disk is divided into three regions, each of which has the same albedo but different reduced Mueller matrices. Contrast between various parts of the target and background is analyzed in the images created by ordinary radiance, by various elements of the Mueller matrix, and by certain suitable combinations of these elements. It is shown that the application of polarized light has distinct advantages in target detection and characterization when compared with use of unpolarized light.

© 1999 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mueller matrix imaging of targets in turbid media: effect of the volume scattering function

George W. Kattawar and Deric J. Gray
Appl. Opt. 42(36) 7225-7230 (2003)

Mueller matrix imaging of targets under an air-sea interface

Peng-Wang Zhai, George W. Kattawar, and Ping Yang
Appl. Opt. 48(2) 250-260 (2009)

Optimal configuration of static Mueller imagers for target detection

François Goudail, Matthieu Boffety, and Stéphane Roussel
J. Opt. Soc. Am. A 34(6) 1054-1062 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription