Abstract

In-line optical modulators with low insertion losses and high maximum optical powers are required for Q switching and cavity dumping of fiber lasers as well as for nonlinear optical-fiber experiments. We report the design of polarimetric all-fiber modulators based on optical-fiber birefringence modulation combined with an all-fiber polarizer. Birefringence modulation involves a piezoelectric ceramic tube. This simple technique permits efficient low-frequency and high-frequency harmonic modulation, up to the megahertz range, as well as modulation of pulses shorter than 1 µs.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. R. Boyain, L. A. Zenteno, A. Starodumov, A. Elyamani, M. V. Andres, “Q-switching and cavity-dumping of a Nd-doped fiber laser based on a novel Sagnac loop configuration,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 476–477.
  2. H. J. Jeong, J. H. Kim, H.-W. Lee, B. Y. Kim, “Birefringence modulation in fiber-optic phase modulators,” Opt. Lett. 19, 1421–1423 (1994).
    [CrossRef] [PubMed]
  3. G. Martini, “Analysis of a single-mode optical fiber piezoceramic phase modulator,” Opt. Quantum Electron. 19, 179–190 (1987).
    [CrossRef]
  4. R. Ulrich, S. C. Rashleigh, W. Eickhoff, “Bending induced birefringence in single-mode fibers,” Opt. Lett. 5, 273–275 (1980).
    [CrossRef] [PubMed]
  5. S. C. Rashleigh, R. Ulrich, “High birefringence in tension-coiled single-mode fibers,” Opt. Lett. 5, 354–356 (1980).
    [CrossRef] [PubMed]
  6. W. Johnstone, G. Stewart, T. Hart, B. Culshaw, “Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol. 8, 538–543 (1990).
    [CrossRef]

1994

1990

W. Johnstone, G. Stewart, T. Hart, B. Culshaw, “Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol. 8, 538–543 (1990).
[CrossRef]

1987

G. Martini, “Analysis of a single-mode optical fiber piezoceramic phase modulator,” Opt. Quantum Electron. 19, 179–190 (1987).
[CrossRef]

1980

Andres, M. V.

A. R. Boyain, L. A. Zenteno, A. Starodumov, A. Elyamani, M. V. Andres, “Q-switching and cavity-dumping of a Nd-doped fiber laser based on a novel Sagnac loop configuration,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 476–477.

Boyain, A. R.

A. R. Boyain, L. A. Zenteno, A. Starodumov, A. Elyamani, M. V. Andres, “Q-switching and cavity-dumping of a Nd-doped fiber laser based on a novel Sagnac loop configuration,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 476–477.

Culshaw, B.

W. Johnstone, G. Stewart, T. Hart, B. Culshaw, “Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol. 8, 538–543 (1990).
[CrossRef]

Eickhoff, W.

Elyamani, A.

A. R. Boyain, L. A. Zenteno, A. Starodumov, A. Elyamani, M. V. Andres, “Q-switching and cavity-dumping of a Nd-doped fiber laser based on a novel Sagnac loop configuration,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 476–477.

Hart, T.

W. Johnstone, G. Stewart, T. Hart, B. Culshaw, “Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol. 8, 538–543 (1990).
[CrossRef]

Jeong, H. J.

Johnstone, W.

W. Johnstone, G. Stewart, T. Hart, B. Culshaw, “Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol. 8, 538–543 (1990).
[CrossRef]

Kim, B. Y.

Kim, J. H.

Lee, H.-W.

Martini, G.

G. Martini, “Analysis of a single-mode optical fiber piezoceramic phase modulator,” Opt. Quantum Electron. 19, 179–190 (1987).
[CrossRef]

Rashleigh, S. C.

Starodumov, A.

A. R. Boyain, L. A. Zenteno, A. Starodumov, A. Elyamani, M. V. Andres, “Q-switching and cavity-dumping of a Nd-doped fiber laser based on a novel Sagnac loop configuration,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 476–477.

Stewart, G.

W. Johnstone, G. Stewart, T. Hart, B. Culshaw, “Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol. 8, 538–543 (1990).
[CrossRef]

Ulrich, R.

Zenteno, L. A.

A. R. Boyain, L. A. Zenteno, A. Starodumov, A. Elyamani, M. V. Andres, “Q-switching and cavity-dumping of a Nd-doped fiber laser based on a novel Sagnac loop configuration,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 476–477.

J. Lightwave Technol.

W. Johnstone, G. Stewart, T. Hart, B. Culshaw, “Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol. 8, 538–543 (1990).
[CrossRef]

Opt. Lett.

Opt. Quantum Electron.

G. Martini, “Analysis of a single-mode optical fiber piezoceramic phase modulator,” Opt. Quantum Electron. 19, 179–190 (1987).
[CrossRef]

Other

A. R. Boyain, L. A. Zenteno, A. Starodumov, A. Elyamani, M. V. Andres, “Q-switching and cavity-dumping of a Nd-doped fiber laser based on a novel Sagnac loop configuration,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 476–477.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Experimental setup: LD, distributed-feedback 1550-nm laser diode; PC1 and PC2, polarization controllers; PT, piezoelectric tube; P, all-fiber polarizer; PD, photodiode.

Fig. 2
Fig. 2

Low-frequency (50 Hz) phase modulation per unit fiber length and per unit voltage, δΦ/L/V, versus the inverse of the thickness of the piezoelectric tube, 1/g.

Fig. 3
Fig. 3

Low-frequency (50 Hz) birefringence modulation per unit voltage, δβ/V, versus the inverse of the thickness of the piezoelectric tube, 1/g.

Fig. 4
Fig. 4

Low-frequency (50-Hz) transmission modulation through an all-fiber polarizer: (a) tube 6 in Table 1 with V ef = 417 V and (b) tube 3 with V ef = 325 V.

Fig. 5
Fig. 5

Frequency response of tube 6 as birefringence modulator.

Fig. 6
Fig. 6

Frequency response of tube 5 as birefringence modulator for two preset tension values when the fiber is being coiled: dashed curve, negligible preset tension; solid curve, with applied tension of 1.8 N.

Fig. 7
Fig. 7

Frequency response of tube 1 as birefringence modulator.

Fig. 8
Fig. 8

Normalized birefringence modulation, δβ/δΦ¯, versus the frequency. The dashed curve represents the quadratic fit.

Fig. 9
Fig. 9

High-frequency (1-MHz) transmission modulation through an all-fiber polarizer by use of tube 5, obtained when less than 10-V peak-to-peak was applied.

Fig. 10
Fig. 10

Transmission modulation through an all-fiber polarizer by use of piezoelectric tube 5, obtained when an 800-ns pulse of 40-V amplitude was applied.

Fig. 11
Fig. 11

Transmission modulation through an all-fiber polarizer by use of piezoelectric tube 5, obtained when a 1.12-µs pulse of 80-V amplitude was applied. Here we show two specific arrangements of the polarization controllers that (a) give a transmission pulse of less than 0.5 µs and (b) block the transmission pulse.

Tables (1)

Tables Icon

Table 1 Geometric Data for Six Piezoelectric Tubesa

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

βb=¼kn3 p11-p121+vκ2r2,
βtc=Kβκ,
Kβ=kn3p11-p121+vr.
Kβ=kn3/2p11-p121+v2-3v1-v-1r.
δΦ¯δΦL=Kϕε,
Kϕ=kn-1+vp12n3/2.
Kϕ=kn-p12-vp11-vp12n3/2.
δRo=CV
Cd31Rog+d33-d312,
δβ=KβCκ2V,
δΦ¯=KϕCκV.
Eo=expjη00exp-jηEi,
Ei=P expjφ1-P.
Eγ=P expjφ+ηcos γ+1-P exp-jηsin γ,
m=-4P1-P cos γ sin γ sinφ+2η.
Iγ=½1-sin2δη.
FL=N1H, Ft=N33g, Fc=NcRo+Ri,

Metrics