Abstract

A method is demonstrated that employs a Fabry–Perot etalon to modulate a broadband coherent anti-Stokes Raman spectroscopy signal beam spatially to obtain enhanced resolution and spectral information for single-shot measurements of pressure and temperature. Resulting images are analyzed by; first, fits to Fabry–Perot patterns for single rovibrational lines; second, a line-shape analysis for a single rovibrational line; and third, a mapping of the Fabry–Perot channel spectra to a linear spectrum. Measurements of the D2 Raman Q-branch lines were made for a D2 in Ar mixture to take advantage of the large pressure shift and rovibrational line spacing. Peaks are located to better than 0.5% of the free spectral range of the etalon (approximately 0.01 cm-1) and a quantitative analysis of the pressure shifting and broadening is determined for the 1–10-MPa range. Finally, temperature and pressure determination using a band-fitting analysis is demonstrated.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Y. Chang, B. E. Battles, R. K. Hanson, “Simultaneous measurements of velocity, temperature, and pressure using rapid CW wavelength-modulation laser-fluorescence of OH,” Opt. Lett. 15, 706–708 (1990).
    [CrossRef] [PubMed]
  2. L. C. Philippe, R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090–6103 (1993).
    [CrossRef] [PubMed]
  3. G. J. Rosasco, W. J. Bowers, W. S. Hurst, J. P. Looney, K. C. Smyth, A. D. May, “Simultaneous forward-backward Raman scattering studies of D2 broadened by D2, He, and Ar,” J. Chem. Phys. 94, 7625–7633 (1991).
    [CrossRef]
  4. K. C. Smyth, G. J. Rosasco, W. S. Hurst, “Measurement and rate law analysis of D2 Q-branch line broadening coefficients for collisions with D2, He, Ar, H2 and CH4,” J. Chem. Phys. 87, 1001–1011 (1987).
    [CrossRef]
  5. G. J. Rosasco, V. E. Bean, W. S. Hurst, “A proposed dynamic temperature and pressure primary standard,” J. Res. Natl. Inst. Stand. Technol. 95, 33–47 (1990).
    [CrossRef]
  6. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, Mass., 1988), pp. 220–300.
  7. R. R. Boyce, D. R. N. Pulford, A. F. P. Houwing, Ch. Mundt, “Rotational and vibrational temperature measurements using CARS in a hypervelocity shock layer flow and comparisons with CFD calculations,” Shock Waves 6, 41–51 (1996).
    [CrossRef]
  8. D. R. Snelling, R. A. Sawchuck, T. Parameswaran, “Noise in single-shot broadband coherent anti-Stokes Raman spectroscopy that employs a modeless dye laser,” Appl. Opt. 33, 8295–8301 (1994); J. W. Hahn, C. W. Park, S. N. Park, “Broadband coherent anti-Stokes Raman spectroscopy with a modeless dye laser,” Appl. Opt. 36, 6722–6728 (1997).
    [CrossRef] [PubMed]
  9. R. E. Palmer, “The CARSFIT computer code for calculating coherent anti-Stokes Raman spectra: user and programmer information,” (Sandia National Laboratories, Livermore, Calif., 1989).
  10. Certain commercial equipment and instruments are identified in this paper to adequately specify the experimental procedure. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the equipment identified is necessarily the best available for the purpose.
  11. P. Ewart, “A modeless, variable bandwidth, tunable dye laser,” Opt. Commun. 55, 124–126 (1985).
    [CrossRef]
  12. J. W. Hahn, S. N. Park, C. Rhee, “Fabry–Perot wave meter for shot-by-shot analysis of pulsed lasers,” Appl. Opt. 32, 1095–1099 (1993).
    [CrossRef] [PubMed]
  13. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes, The Art of Scientific Computing (Cambridge U. Press, Cambridge, UK, 1986), p. 523.
  14. J. M. Vaughan, The Fabry-Perot Interferometer (Hilger, Bristol, UK, 1989), pp. 520–522.
  15. L. A. Rahn, R. E. Palmer, “Studies of nitrogen self-broadening at high temperature with inverse Raman spectroscopy,” J. Opt. Soc. Am. B 3, 1164–1169 (1986); M. L. Koszykowski, L. A. Rahn, R. E. Palmer, M. E. Coltrin, “Theoretical and experimental studies of high-resolution inverse Raman spectra of N2 at 1–10 atm,” J. Phys. Chem. 91, 41–46 (1987).
    [CrossRef]
  16. R. P. Lucht, R. L. Farrow, “Saturation effects in coherent anti-Stokes Raman scattering spectroscopy of hydrogen,” (Sandia National Laboratories, Livermore, Calif., 1989).
  17. L. A. Rahn, R. L. Farrow, M. L. Koszykowski, P. L. Mattern, “Observation of an optical Stark effect on vibrational and rotational transitions,” Phys. Rev. Lett. 45, 620–623 (1980).
    [CrossRef]
  18. J. J. Ottusch, D. A. Rockwell, “Measurement of Raman gain coefficients of Hydrogen, Deuterium and Methane,” IEEE J. Quantum Electron. 24, 2076–2080 (1988).
    [CrossRef]
  19. G. J. Rosasco, W. S. Hurst, “Measurement of resonant and nonresonant third-order nonlinear susceptibilities by coherent Raman spectroscopy,” Phys. Rev. A 32, 281–299 (1985).
    [CrossRef] [PubMed]

1996

R. R. Boyce, D. R. N. Pulford, A. F. P. Houwing, Ch. Mundt, “Rotational and vibrational temperature measurements using CARS in a hypervelocity shock layer flow and comparisons with CFD calculations,” Shock Waves 6, 41–51 (1996).
[CrossRef]

1994

1993

1991

G. J. Rosasco, W. J. Bowers, W. S. Hurst, J. P. Looney, K. C. Smyth, A. D. May, “Simultaneous forward-backward Raman scattering studies of D2 broadened by D2, He, and Ar,” J. Chem. Phys. 94, 7625–7633 (1991).
[CrossRef]

1990

G. J. Rosasco, V. E. Bean, W. S. Hurst, “A proposed dynamic temperature and pressure primary standard,” J. Res. Natl. Inst. Stand. Technol. 95, 33–47 (1990).
[CrossRef]

A. Y. Chang, B. E. Battles, R. K. Hanson, “Simultaneous measurements of velocity, temperature, and pressure using rapid CW wavelength-modulation laser-fluorescence of OH,” Opt. Lett. 15, 706–708 (1990).
[CrossRef] [PubMed]

1988

J. J. Ottusch, D. A. Rockwell, “Measurement of Raman gain coefficients of Hydrogen, Deuterium and Methane,” IEEE J. Quantum Electron. 24, 2076–2080 (1988).
[CrossRef]

1987

K. C. Smyth, G. J. Rosasco, W. S. Hurst, “Measurement and rate law analysis of D2 Q-branch line broadening coefficients for collisions with D2, He, Ar, H2 and CH4,” J. Chem. Phys. 87, 1001–1011 (1987).
[CrossRef]

1986

1985

G. J. Rosasco, W. S. Hurst, “Measurement of resonant and nonresonant third-order nonlinear susceptibilities by coherent Raman spectroscopy,” Phys. Rev. A 32, 281–299 (1985).
[CrossRef] [PubMed]

P. Ewart, “A modeless, variable bandwidth, tunable dye laser,” Opt. Commun. 55, 124–126 (1985).
[CrossRef]

1980

L. A. Rahn, R. L. Farrow, M. L. Koszykowski, P. L. Mattern, “Observation of an optical Stark effect on vibrational and rotational transitions,” Phys. Rev. Lett. 45, 620–623 (1980).
[CrossRef]

Battles, B. E.

Bean, V. E.

G. J. Rosasco, V. E. Bean, W. S. Hurst, “A proposed dynamic temperature and pressure primary standard,” J. Res. Natl. Inst. Stand. Technol. 95, 33–47 (1990).
[CrossRef]

Bowers, W. J.

G. J. Rosasco, W. J. Bowers, W. S. Hurst, J. P. Looney, K. C. Smyth, A. D. May, “Simultaneous forward-backward Raman scattering studies of D2 broadened by D2, He, and Ar,” J. Chem. Phys. 94, 7625–7633 (1991).
[CrossRef]

Boyce, R. R.

R. R. Boyce, D. R. N. Pulford, A. F. P. Houwing, Ch. Mundt, “Rotational and vibrational temperature measurements using CARS in a hypervelocity shock layer flow and comparisons with CFD calculations,” Shock Waves 6, 41–51 (1996).
[CrossRef]

Chang, A. Y.

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, Mass., 1988), pp. 220–300.

Ewart, P.

P. Ewart, “A modeless, variable bandwidth, tunable dye laser,” Opt. Commun. 55, 124–126 (1985).
[CrossRef]

Farrow, R. L.

L. A. Rahn, R. L. Farrow, M. L. Koszykowski, P. L. Mattern, “Observation of an optical Stark effect on vibrational and rotational transitions,” Phys. Rev. Lett. 45, 620–623 (1980).
[CrossRef]

R. P. Lucht, R. L. Farrow, “Saturation effects in coherent anti-Stokes Raman scattering spectroscopy of hydrogen,” (Sandia National Laboratories, Livermore, Calif., 1989).

Flannery, B. P.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes, The Art of Scientific Computing (Cambridge U. Press, Cambridge, UK, 1986), p. 523.

Hahn, J. W.

Hanson, R. K.

Houwing, A. F. P.

R. R. Boyce, D. R. N. Pulford, A. F. P. Houwing, Ch. Mundt, “Rotational and vibrational temperature measurements using CARS in a hypervelocity shock layer flow and comparisons with CFD calculations,” Shock Waves 6, 41–51 (1996).
[CrossRef]

Hurst, W. S.

G. J. Rosasco, W. J. Bowers, W. S. Hurst, J. P. Looney, K. C. Smyth, A. D. May, “Simultaneous forward-backward Raman scattering studies of D2 broadened by D2, He, and Ar,” J. Chem. Phys. 94, 7625–7633 (1991).
[CrossRef]

G. J. Rosasco, V. E. Bean, W. S. Hurst, “A proposed dynamic temperature and pressure primary standard,” J. Res. Natl. Inst. Stand. Technol. 95, 33–47 (1990).
[CrossRef]

K. C. Smyth, G. J. Rosasco, W. S. Hurst, “Measurement and rate law analysis of D2 Q-branch line broadening coefficients for collisions with D2, He, Ar, H2 and CH4,” J. Chem. Phys. 87, 1001–1011 (1987).
[CrossRef]

G. J. Rosasco, W. S. Hurst, “Measurement of resonant and nonresonant third-order nonlinear susceptibilities by coherent Raman spectroscopy,” Phys. Rev. A 32, 281–299 (1985).
[CrossRef] [PubMed]

Koszykowski, M. L.

L. A. Rahn, R. L. Farrow, M. L. Koszykowski, P. L. Mattern, “Observation of an optical Stark effect on vibrational and rotational transitions,” Phys. Rev. Lett. 45, 620–623 (1980).
[CrossRef]

Looney, J. P.

G. J. Rosasco, W. J. Bowers, W. S. Hurst, J. P. Looney, K. C. Smyth, A. D. May, “Simultaneous forward-backward Raman scattering studies of D2 broadened by D2, He, and Ar,” J. Chem. Phys. 94, 7625–7633 (1991).
[CrossRef]

Lucht, R. P.

R. P. Lucht, R. L. Farrow, “Saturation effects in coherent anti-Stokes Raman scattering spectroscopy of hydrogen,” (Sandia National Laboratories, Livermore, Calif., 1989).

Mattern, P. L.

L. A. Rahn, R. L. Farrow, M. L. Koszykowski, P. L. Mattern, “Observation of an optical Stark effect on vibrational and rotational transitions,” Phys. Rev. Lett. 45, 620–623 (1980).
[CrossRef]

May, A. D.

G. J. Rosasco, W. J. Bowers, W. S. Hurst, J. P. Looney, K. C. Smyth, A. D. May, “Simultaneous forward-backward Raman scattering studies of D2 broadened by D2, He, and Ar,” J. Chem. Phys. 94, 7625–7633 (1991).
[CrossRef]

Mundt, Ch.

R. R. Boyce, D. R. N. Pulford, A. F. P. Houwing, Ch. Mundt, “Rotational and vibrational temperature measurements using CARS in a hypervelocity shock layer flow and comparisons with CFD calculations,” Shock Waves 6, 41–51 (1996).
[CrossRef]

Ottusch, J. J.

J. J. Ottusch, D. A. Rockwell, “Measurement of Raman gain coefficients of Hydrogen, Deuterium and Methane,” IEEE J. Quantum Electron. 24, 2076–2080 (1988).
[CrossRef]

Palmer, R. E.

Parameswaran, T.

Park, S. N.

Philippe, L. C.

Press, W. H.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes, The Art of Scientific Computing (Cambridge U. Press, Cambridge, UK, 1986), p. 523.

Pulford, D. R. N.

R. R. Boyce, D. R. N. Pulford, A. F. P. Houwing, Ch. Mundt, “Rotational and vibrational temperature measurements using CARS in a hypervelocity shock layer flow and comparisons with CFD calculations,” Shock Waves 6, 41–51 (1996).
[CrossRef]

Rahn, L. A.

Rhee, C.

Rockwell, D. A.

J. J. Ottusch, D. A. Rockwell, “Measurement of Raman gain coefficients of Hydrogen, Deuterium and Methane,” IEEE J. Quantum Electron. 24, 2076–2080 (1988).
[CrossRef]

Rosasco, G. J.

G. J. Rosasco, W. J. Bowers, W. S. Hurst, J. P. Looney, K. C. Smyth, A. D. May, “Simultaneous forward-backward Raman scattering studies of D2 broadened by D2, He, and Ar,” J. Chem. Phys. 94, 7625–7633 (1991).
[CrossRef]

G. J. Rosasco, V. E. Bean, W. S. Hurst, “A proposed dynamic temperature and pressure primary standard,” J. Res. Natl. Inst. Stand. Technol. 95, 33–47 (1990).
[CrossRef]

K. C. Smyth, G. J. Rosasco, W. S. Hurst, “Measurement and rate law analysis of D2 Q-branch line broadening coefficients for collisions with D2, He, Ar, H2 and CH4,” J. Chem. Phys. 87, 1001–1011 (1987).
[CrossRef]

G. J. Rosasco, W. S. Hurst, “Measurement of resonant and nonresonant third-order nonlinear susceptibilities by coherent Raman spectroscopy,” Phys. Rev. A 32, 281–299 (1985).
[CrossRef] [PubMed]

Sawchuck, R. A.

Smyth, K. C.

G. J. Rosasco, W. J. Bowers, W. S. Hurst, J. P. Looney, K. C. Smyth, A. D. May, “Simultaneous forward-backward Raman scattering studies of D2 broadened by D2, He, and Ar,” J. Chem. Phys. 94, 7625–7633 (1991).
[CrossRef]

K. C. Smyth, G. J. Rosasco, W. S. Hurst, “Measurement and rate law analysis of D2 Q-branch line broadening coefficients for collisions with D2, He, Ar, H2 and CH4,” J. Chem. Phys. 87, 1001–1011 (1987).
[CrossRef]

Snelling, D. R.

Teukolsky, S. A.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes, The Art of Scientific Computing (Cambridge U. Press, Cambridge, UK, 1986), p. 523.

Vaughan, J. M.

J. M. Vaughan, The Fabry-Perot Interferometer (Hilger, Bristol, UK, 1989), pp. 520–522.

Vetterling, W. T.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes, The Art of Scientific Computing (Cambridge U. Press, Cambridge, UK, 1986), p. 523.

Appl. Opt.

IEEE J. Quantum Electron.

J. J. Ottusch, D. A. Rockwell, “Measurement of Raman gain coefficients of Hydrogen, Deuterium and Methane,” IEEE J. Quantum Electron. 24, 2076–2080 (1988).
[CrossRef]

J. Chem. Phys.

G. J. Rosasco, W. J. Bowers, W. S. Hurst, J. P. Looney, K. C. Smyth, A. D. May, “Simultaneous forward-backward Raman scattering studies of D2 broadened by D2, He, and Ar,” J. Chem. Phys. 94, 7625–7633 (1991).
[CrossRef]

K. C. Smyth, G. J. Rosasco, W. S. Hurst, “Measurement and rate law analysis of D2 Q-branch line broadening coefficients for collisions with D2, He, Ar, H2 and CH4,” J. Chem. Phys. 87, 1001–1011 (1987).
[CrossRef]

J. Opt. Soc. Am. B

J. Res. Natl. Inst. Stand. Technol.

G. J. Rosasco, V. E. Bean, W. S. Hurst, “A proposed dynamic temperature and pressure primary standard,” J. Res. Natl. Inst. Stand. Technol. 95, 33–47 (1990).
[CrossRef]

Opt. Commun.

P. Ewart, “A modeless, variable bandwidth, tunable dye laser,” Opt. Commun. 55, 124–126 (1985).
[CrossRef]

Opt. Lett.

Phys. Rev. A

G. J. Rosasco, W. S. Hurst, “Measurement of resonant and nonresonant third-order nonlinear susceptibilities by coherent Raman spectroscopy,” Phys. Rev. A 32, 281–299 (1985).
[CrossRef] [PubMed]

Phys. Rev. Lett.

L. A. Rahn, R. L. Farrow, M. L. Koszykowski, P. L. Mattern, “Observation of an optical Stark effect on vibrational and rotational transitions,” Phys. Rev. Lett. 45, 620–623 (1980).
[CrossRef]

Shock Waves

R. R. Boyce, D. R. N. Pulford, A. F. P. Houwing, Ch. Mundt, “Rotational and vibrational temperature measurements using CARS in a hypervelocity shock layer flow and comparisons with CFD calculations,” Shock Waves 6, 41–51 (1996).
[CrossRef]

Other

R. E. Palmer, “The CARSFIT computer code for calculating coherent anti-Stokes Raman spectra: user and programmer information,” (Sandia National Laboratories, Livermore, Calif., 1989).

Certain commercial equipment and instruments are identified in this paper to adequately specify the experimental procedure. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the equipment identified is necessarily the best available for the purpose.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes, The Art of Scientific Computing (Cambridge U. Press, Cambridge, UK, 1986), p. 523.

J. M. Vaughan, The Fabry-Perot Interferometer (Hilger, Bristol, UK, 1989), pp. 520–522.

R. P. Lucht, R. L. Farrow, “Saturation effects in coherent anti-Stokes Raman scattering spectroscopy of hydrogen,” (Sandia National Laboratories, Livermore, Calif., 1989).

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, Mass., 1988), pp. 220–300.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic layout of the CARS apparatus. BS, beam splitter (R = 80%); CCD optical array detector; CL, cylindrical lens; DM, dichroic mirror; F1, short-pass filter; F2, holographic filter; L1 and L2, plano–convex lenses; TS, telescope and spatial filter; VS, vertical slit.

Fig. 2
Fig. 2

Three-dimensional mesh representation of the D2 CARS image on the CCD detector. The experimental data shown are from an amount-of-substance fraction mixture of 10% D2 in Ar at 8.11 MPa (80 atm) and was cropped and coma corrected. The x axis labels the pixel columns and the y axis labels the pixel rows. The locations of the pixel columns containing the peaks of the Q-branch spectral lines of D2 are labeled Q(n).

Fig. 3
Fig. 3

Fabry–Perot pattern for Q(2) for the amount-of-substance fraction mixture of 10% D2 in Ar taken from a single shot at 2.13 MPa (21 atm). Also shown is the best-fit simulation without line broadening and a finesse of 12, the difference between the measurement and the fit, and the envelope function used in the fit to account for the CARS beam spatial profile.

Fig. 4
Fig. 4

Summary of the fitting analysis for the line shifts of all the analyzed D2 Q-branch lines. An arbitrary offset was applied for all lines of J > 0 to improve the readability of the chart.

Fig. 5
Fig. 5

carsfit code fit to the Q(2) line for an amount-of-substance fraction mixture of 10% D2 in Ar at 4.05 MPa (40 atm).

Fig. 6
Fig. 6

Summary of the linewidths inferred from the carsfit fits to the Q(2) lines at pressures up to 10.1 MPa (100 atm).

Fig. 7
Fig. 7

D2 room-temperature (296 K) CARS spectra for an amount-of-substance fraction mixture of 10% D2 in Ar at 10.1 MPa (100 atm) taken without and with a Fabry–Perot etalon for improved resolution. Also shown is the best-fit spectrum from the carsfit program. The best-fit parameters for pressure and temperature are 10.44 MPa (103 atm) and 304 K, respectively.

Tables (1)

Tables Icon

Table 1 Line-Shifting Coefficients for the Amount-of-Substance Fraction Mixture of 10% D2 in Ar at 296 K

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

nλ=2μd cosy/Mf,

Metrics