Abstract

A design for an all-optical crossbar network utilizing wavelength-tunable vertical-cavity surface-emitting laser (VCSEL) technology and a combination of free-space optics and compact optical waveguides is presented. Polymer waveguides route the optical signals from a spatially distributed array of processors to a central free-space optical crossbar, producing a passive, all-optical, fully connected crossbar network directly from processor to processor. The analyzed network could, relatively inexpensively, connect local clusters of tightly integrated processors. In addition, it is also believed that such a network could be extended, with wavelength reuse, to connect much larger numbers of processors in a multicluster network.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. Jewell, Y. H. Lee, A. Scherer, S. L. McCall, J. P. Harbison, L. T. Florez, “Surface-emitting microlasers for photonic switching and interchip connections,” Opt. Eng. 29, 210–214 (1990).
    [CrossRef]
  2. R. A. Morgan, “Advances in vertical-cavity surface-emitting lasers,” in Vertical-Cavity Surface-Emitting Laser Arrays, J. L. Jewell, ed., Proc. SPIE2147, 97–119 (1994).
    [CrossRef]
  3. J. Neff, “Optical interconnects based on two-dimensional VCSEL arrays,” in IEEE Proceedings of the First International Workshop on Massively Parallel Processing Using Optical Interconnections (IEEE Computer Society, Los Alamitos, Calif., 1994), pp. 202–212.
    [CrossRef]
  4. F. Sugihwo, M. Larson, J. S. Harris, “Low threshold continuously tunable vertical-cavity surface-emitting lasers with 19.1 nm wavelength range,” Appl. Phys. Lett. 70, 547–549 (1997).
    [CrossRef]
  5. M. Larson, F. Sugihwo, A. Massengale, J. S. Harris, “Micromachined tunable vertical-cavity surface-emitting lasers,” in Proceedings of the International Electron Device Meetings (IEEE Electron Devices Society, New York, 1996), pp. 405–408.
  6. F. Sugihwo, M. Larson, C. C. Lin, W. Martin, J. S. Harris, “25 nm wavelength range tunable vertical cavity lasers,” in Proceedings of Device Research Conference (IEEE Electron Devices Society, New York, 1997), pp. 108–109.
  7. F. Sugihwo, M. Larson, J. S. Harris, “Monolithically micromachined wavelength tunable vertical cavity lasers,” in Proceedings of State of the Art on Compound Semiconductors XXVII (Electrochemical Society Electronics Division, Paris, 1997), pp. 118–124.
  8. M. Y. Li, W. Yuen, C. J. Chang-Hasnain, “Top-emitting micromechanical VCSEL with a 31.6 nm tuning range,” IEEE Photonics. Technol. Lett. 10, 18–20 (1998).
    [CrossRef]
  9. C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE J. Sel. Areas Commun. 8, 948–964 (1990).
    [CrossRef]
  10. L. Kleinrock, M. Gerla, N. Bambos, J. Cong, E. Gafni, L. Bergman, J. Bannister, S. Monacos, T. Bujewski, P.-C. Hu, “The supercomputer supernet testbed: WDM-based supercomputer interconnect,” J. Lightwave Technol. 14, 1388–1399 (1996).
    [CrossRef]
  11. P. Dowd, K. Bogineni, K. A. Aly, J. A. Perreult, “Hierarchical scalable photonic architectures for high performance processor interconnection,” IEEE Trans. Comput. 42, 1105–1120 (1993).
    [CrossRef]
  12. K. M. Sivalingam, P. W. Dowd, “A multilevel WDM access protocol for an optically interconnected multiprocessor system,” J. Lightwave Technol. 13, 2152–2167 (1995).
    [CrossRef]
  13. E. R. Hedin, F. J. Goetz, “Experimental studies of electro-optic polymer modulators and waveguides,” Appl. Opt. 34, 1554–1561 (1995).
    [CrossRef] [PubMed]
  14. L. Robitaille, C. L. Callender, J. P. Noad, “Design and fabrication of low-loss polymer waveguide components for on-chip optical interconnection,” IEEE Photonics Technol. Lett. 8, 1647–1649 (1996).
    [CrossRef]
  15. Y. S. Liu, R. J. Wojnarowski, W. A. Hennessy, P. A. Piacente, J. Rowlette, M. Kadar-Kallen, J. Stack, Yu. Liu, A. Peczalaski, A. Nahata, J. Yardley, “Plastic VCSEL array packaging and high density polymer waveguides for board and backplane optical interconnects,” in Proceedings of the 1998 IEEE Electronic Components and Technologies Conference (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 999–1005.
  16. L. A. Hornak, ed., Polymers For Lightwave and Integrated Optics (Marcel Dekker, New York, 1992).
  17. A. Louri, R. Gupta, “Hierarchical optical ring interconnection (HORN): scalable interconnection network for multiprocessors and multicomputers,” Appl. Opt. 36, 430–442 (1997).
    [CrossRef] [PubMed]
  18. A. Louri, B. Weech, C. Neocleous, “A spanning multichannel linked hypercube: a gradually scalable optical interconnection network for massively parallel computing,” IEEE Trans. Parallel Distribut. Syst. 9, 497–512 (1998).
    [CrossRef]
  19. E. C. Vail, G. S. Li, W. Yuen, C. J. Chang-Hasnain, “High performance and novel effects of micromachined tunable vertical-cavity lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 691–697 (1997).
    [CrossRef]
  20. P. Tayebati, P. Wang, D. Vakhshoori, C.-C. Lu, M. Azimi, R. N. Sacks, “Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode,” IEEE Photonics Technol. Lett. 10, 1679–1681 (1998).
    [CrossRef]
  21. J. Chang-Hasnain, J. P. Harbison, C.-E. Zah, M. W. Maeda, L. Florez, N. Stoffel, T.-P. Lee, “Multiple wavelength tunable surface-emitting laser arrays,” IEEE J. Quantum Electron. 27, 1368–1376 (1991).
    [CrossRef]
  22. H. Saito, I. Ogura, Y. Sugimoto, K. Kasahara, “Monolithic integration of multiple wavelength vertical-cavity surface-emitting lasers by mask molecular beam epitaxy,” Appl. Phys. Lett. 66, 2466–2468 (1995).
    [CrossRef]
  23. Y. Li, T. Wang, R. A. Linke, “VCSEL-based angle-multiplexed optoelectronic crossbar interconnects,” Appl. Opt. 35, 1282–1295 (1996).
    [CrossRef] [PubMed]
  24. R. Pu, E. M. Hayes, C. W. Wilmsen, K. D. Ohoquette, H. Q. Hou, K. M. Geib, “Comparison of techniques for bonding VCSELs directly to ICs,” J. Opt. A Pure Appl. Opt 1, 324–329 (1999).
    [CrossRef]
  25. H.-J. J. Yeh, J. S. Smith, “Integration of GaAs vertical-cavity surface emitting laser on Si by substrate removal,” Appl. Phys. Lett. 64, 1466–1468 (1994).
    [CrossRef]
  26. L. Eldada, C. C. Xu, K. M. T. Stengel, L. W. Shacklette, J. T. Yardley, “Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704–1713 (1996).
    [CrossRef]
  27. H. J. R. Dutton, Understanding Optical Communications (Prentice Hall, Upper Saddle River, N.J., 1998).
  28. M. C. Hutley, Diffraction Gratings (Academic, London, 1982).
  29. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).
  30. F. Timofeev, P. Bayvel, J. E. Midwinter, M. Sokolskii, “High-performance, free-space ruled concave grating demultiplexer,” Electron. Lett. 31, 2200–2201 (1995).
    [CrossRef]
  31. T. V. Moui, “Receiver design for high-speed optical fiber systems,” IEEE J. Lightwave Technol. LT-2, 243–267 (1984).
    [CrossRef]
  32. L. W. Shacklette, K. M. T. Stengel, C. Xu, J. T. Yardley, “Polymeric waveguides for optical backplanes,” in Fly-by-Light: Technology Transfer, D. B. Thompson, R. J. Baumbick, L. B. Stotts, eds., Proc. SPIE2467, 107–117 (1995).
    [CrossRef]

1999 (1)

R. Pu, E. M. Hayes, C. W. Wilmsen, K. D. Ohoquette, H. Q. Hou, K. M. Geib, “Comparison of techniques for bonding VCSELs directly to ICs,” J. Opt. A Pure Appl. Opt 1, 324–329 (1999).
[CrossRef]

1998 (3)

P. Tayebati, P. Wang, D. Vakhshoori, C.-C. Lu, M. Azimi, R. N. Sacks, “Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode,” IEEE Photonics Technol. Lett. 10, 1679–1681 (1998).
[CrossRef]

M. Y. Li, W. Yuen, C. J. Chang-Hasnain, “Top-emitting micromechanical VCSEL with a 31.6 nm tuning range,” IEEE Photonics. Technol. Lett. 10, 18–20 (1998).
[CrossRef]

A. Louri, B. Weech, C. Neocleous, “A spanning multichannel linked hypercube: a gradually scalable optical interconnection network for massively parallel computing,” IEEE Trans. Parallel Distribut. Syst. 9, 497–512 (1998).
[CrossRef]

1997 (3)

E. C. Vail, G. S. Li, W. Yuen, C. J. Chang-Hasnain, “High performance and novel effects of micromachined tunable vertical-cavity lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 691–697 (1997).
[CrossRef]

F. Sugihwo, M. Larson, J. S. Harris, “Low threshold continuously tunable vertical-cavity surface-emitting lasers with 19.1 nm wavelength range,” Appl. Phys. Lett. 70, 547–549 (1997).
[CrossRef]

A. Louri, R. Gupta, “Hierarchical optical ring interconnection (HORN): scalable interconnection network for multiprocessors and multicomputers,” Appl. Opt. 36, 430–442 (1997).
[CrossRef] [PubMed]

1996 (4)

L. Robitaille, C. L. Callender, J. P. Noad, “Design and fabrication of low-loss polymer waveguide components for on-chip optical interconnection,” IEEE Photonics Technol. Lett. 8, 1647–1649 (1996).
[CrossRef]

Y. Li, T. Wang, R. A. Linke, “VCSEL-based angle-multiplexed optoelectronic crossbar interconnects,” Appl. Opt. 35, 1282–1295 (1996).
[CrossRef] [PubMed]

L. Kleinrock, M. Gerla, N. Bambos, J. Cong, E. Gafni, L. Bergman, J. Bannister, S. Monacos, T. Bujewski, P.-C. Hu, “The supercomputer supernet testbed: WDM-based supercomputer interconnect,” J. Lightwave Technol. 14, 1388–1399 (1996).
[CrossRef]

L. Eldada, C. C. Xu, K. M. T. Stengel, L. W. Shacklette, J. T. Yardley, “Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704–1713 (1996).
[CrossRef]

1995 (4)

F. Timofeev, P. Bayvel, J. E. Midwinter, M. Sokolskii, “High-performance, free-space ruled concave grating demultiplexer,” Electron. Lett. 31, 2200–2201 (1995).
[CrossRef]

K. M. Sivalingam, P. W. Dowd, “A multilevel WDM access protocol for an optically interconnected multiprocessor system,” J. Lightwave Technol. 13, 2152–2167 (1995).
[CrossRef]

H. Saito, I. Ogura, Y. Sugimoto, K. Kasahara, “Monolithic integration of multiple wavelength vertical-cavity surface-emitting lasers by mask molecular beam epitaxy,” Appl. Phys. Lett. 66, 2466–2468 (1995).
[CrossRef]

E. R. Hedin, F. J. Goetz, “Experimental studies of electro-optic polymer modulators and waveguides,” Appl. Opt. 34, 1554–1561 (1995).
[CrossRef] [PubMed]

1994 (1)

H.-J. J. Yeh, J. S. Smith, “Integration of GaAs vertical-cavity surface emitting laser on Si by substrate removal,” Appl. Phys. Lett. 64, 1466–1468 (1994).
[CrossRef]

1993 (1)

P. Dowd, K. Bogineni, K. A. Aly, J. A. Perreult, “Hierarchical scalable photonic architectures for high performance processor interconnection,” IEEE Trans. Comput. 42, 1105–1120 (1993).
[CrossRef]

1991 (1)

J. Chang-Hasnain, J. P. Harbison, C.-E. Zah, M. W. Maeda, L. Florez, N. Stoffel, T.-P. Lee, “Multiple wavelength tunable surface-emitting laser arrays,” IEEE J. Quantum Electron. 27, 1368–1376 (1991).
[CrossRef]

1990 (2)

J. L. Jewell, Y. H. Lee, A. Scherer, S. L. McCall, J. P. Harbison, L. T. Florez, “Surface-emitting microlasers for photonic switching and interchip connections,” Opt. Eng. 29, 210–214 (1990).
[CrossRef]

C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE J. Sel. Areas Commun. 8, 948–964 (1990).
[CrossRef]

1984 (1)

T. V. Moui, “Receiver design for high-speed optical fiber systems,” IEEE J. Lightwave Technol. LT-2, 243–267 (1984).
[CrossRef]

Aly, K. A.

P. Dowd, K. Bogineni, K. A. Aly, J. A. Perreult, “Hierarchical scalable photonic architectures for high performance processor interconnection,” IEEE Trans. Comput. 42, 1105–1120 (1993).
[CrossRef]

Azimi, M.

P. Tayebati, P. Wang, D. Vakhshoori, C.-C. Lu, M. Azimi, R. N. Sacks, “Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode,” IEEE Photonics Technol. Lett. 10, 1679–1681 (1998).
[CrossRef]

Bambos, N.

L. Kleinrock, M. Gerla, N. Bambos, J. Cong, E. Gafni, L. Bergman, J. Bannister, S. Monacos, T. Bujewski, P.-C. Hu, “The supercomputer supernet testbed: WDM-based supercomputer interconnect,” J. Lightwave Technol. 14, 1388–1399 (1996).
[CrossRef]

Bannister, J.

L. Kleinrock, M. Gerla, N. Bambos, J. Cong, E. Gafni, L. Bergman, J. Bannister, S. Monacos, T. Bujewski, P.-C. Hu, “The supercomputer supernet testbed: WDM-based supercomputer interconnect,” J. Lightwave Technol. 14, 1388–1399 (1996).
[CrossRef]

Bayvel, P.

F. Timofeev, P. Bayvel, J. E. Midwinter, M. Sokolskii, “High-performance, free-space ruled concave grating demultiplexer,” Electron. Lett. 31, 2200–2201 (1995).
[CrossRef]

Bergman, L.

L. Kleinrock, M. Gerla, N. Bambos, J. Cong, E. Gafni, L. Bergman, J. Bannister, S. Monacos, T. Bujewski, P.-C. Hu, “The supercomputer supernet testbed: WDM-based supercomputer interconnect,” J. Lightwave Technol. 14, 1388–1399 (1996).
[CrossRef]

Bogineni, K.

P. Dowd, K. Bogineni, K. A. Aly, J. A. Perreult, “Hierarchical scalable photonic architectures for high performance processor interconnection,” IEEE Trans. Comput. 42, 1105–1120 (1993).
[CrossRef]

Brackett, C. A.

C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE J. Sel. Areas Commun. 8, 948–964 (1990).
[CrossRef]

Bujewski, T.

L. Kleinrock, M. Gerla, N. Bambos, J. Cong, E. Gafni, L. Bergman, J. Bannister, S. Monacos, T. Bujewski, P.-C. Hu, “The supercomputer supernet testbed: WDM-based supercomputer interconnect,” J. Lightwave Technol. 14, 1388–1399 (1996).
[CrossRef]

Callender, C. L.

L. Robitaille, C. L. Callender, J. P. Noad, “Design and fabrication of low-loss polymer waveguide components for on-chip optical interconnection,” IEEE Photonics Technol. Lett. 8, 1647–1649 (1996).
[CrossRef]

Chang-Hasnain, C. J.

M. Y. Li, W. Yuen, C. J. Chang-Hasnain, “Top-emitting micromechanical VCSEL with a 31.6 nm tuning range,” IEEE Photonics. Technol. Lett. 10, 18–20 (1998).
[CrossRef]

E. C. Vail, G. S. Li, W. Yuen, C. J. Chang-Hasnain, “High performance and novel effects of micromachined tunable vertical-cavity lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 691–697 (1997).
[CrossRef]

Chang-Hasnain, J.

J. Chang-Hasnain, J. P. Harbison, C.-E. Zah, M. W. Maeda, L. Florez, N. Stoffel, T.-P. Lee, “Multiple wavelength tunable surface-emitting laser arrays,” IEEE J. Quantum Electron. 27, 1368–1376 (1991).
[CrossRef]

Cong, J.

L. Kleinrock, M. Gerla, N. Bambos, J. Cong, E. Gafni, L. Bergman, J. Bannister, S. Monacos, T. Bujewski, P.-C. Hu, “The supercomputer supernet testbed: WDM-based supercomputer interconnect,” J. Lightwave Technol. 14, 1388–1399 (1996).
[CrossRef]

Dowd, P.

P. Dowd, K. Bogineni, K. A. Aly, J. A. Perreult, “Hierarchical scalable photonic architectures for high performance processor interconnection,” IEEE Trans. Comput. 42, 1105–1120 (1993).
[CrossRef]

Dowd, P. W.

K. M. Sivalingam, P. W. Dowd, “A multilevel WDM access protocol for an optically interconnected multiprocessor system,” J. Lightwave Technol. 13, 2152–2167 (1995).
[CrossRef]

Dutton, H. J. R.

H. J. R. Dutton, Understanding Optical Communications (Prentice Hall, Upper Saddle River, N.J., 1998).

Eldada, L.

L. Eldada, C. C. Xu, K. M. T. Stengel, L. W. Shacklette, J. T. Yardley, “Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704–1713 (1996).
[CrossRef]

Florez, L.

J. Chang-Hasnain, J. P. Harbison, C.-E. Zah, M. W. Maeda, L. Florez, N. Stoffel, T.-P. Lee, “Multiple wavelength tunable surface-emitting laser arrays,” IEEE J. Quantum Electron. 27, 1368–1376 (1991).
[CrossRef]

Florez, L. T.

J. L. Jewell, Y. H. Lee, A. Scherer, S. L. McCall, J. P. Harbison, L. T. Florez, “Surface-emitting microlasers for photonic switching and interchip connections,” Opt. Eng. 29, 210–214 (1990).
[CrossRef]

Gafni, E.

L. Kleinrock, M. Gerla, N. Bambos, J. Cong, E. Gafni, L. Bergman, J. Bannister, S. Monacos, T. Bujewski, P.-C. Hu, “The supercomputer supernet testbed: WDM-based supercomputer interconnect,” J. Lightwave Technol. 14, 1388–1399 (1996).
[CrossRef]

Geib, K. M.

R. Pu, E. M. Hayes, C. W. Wilmsen, K. D. Ohoquette, H. Q. Hou, K. M. Geib, “Comparison of techniques for bonding VCSELs directly to ICs,” J. Opt. A Pure Appl. Opt 1, 324–329 (1999).
[CrossRef]

Gerla, M.

L. Kleinrock, M. Gerla, N. Bambos, J. Cong, E. Gafni, L. Bergman, J. Bannister, S. Monacos, T. Bujewski, P.-C. Hu, “The supercomputer supernet testbed: WDM-based supercomputer interconnect,” J. Lightwave Technol. 14, 1388–1399 (1996).
[CrossRef]

Goetz, F. J.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).

Gupta, R.

Harbison, J. P.

J. Chang-Hasnain, J. P. Harbison, C.-E. Zah, M. W. Maeda, L. Florez, N. Stoffel, T.-P. Lee, “Multiple wavelength tunable surface-emitting laser arrays,” IEEE J. Quantum Electron. 27, 1368–1376 (1991).
[CrossRef]

J. L. Jewell, Y. H. Lee, A. Scherer, S. L. McCall, J. P. Harbison, L. T. Florez, “Surface-emitting microlasers for photonic switching and interchip connections,” Opt. Eng. 29, 210–214 (1990).
[CrossRef]

Harris, J. S.

F. Sugihwo, M. Larson, J. S. Harris, “Low threshold continuously tunable vertical-cavity surface-emitting lasers with 19.1 nm wavelength range,” Appl. Phys. Lett. 70, 547–549 (1997).
[CrossRef]

F. Sugihwo, M. Larson, C. C. Lin, W. Martin, J. S. Harris, “25 nm wavelength range tunable vertical cavity lasers,” in Proceedings of Device Research Conference (IEEE Electron Devices Society, New York, 1997), pp. 108–109.

F. Sugihwo, M. Larson, J. S. Harris, “Monolithically micromachined wavelength tunable vertical cavity lasers,” in Proceedings of State of the Art on Compound Semiconductors XXVII (Electrochemical Society Electronics Division, Paris, 1997), pp. 118–124.

M. Larson, F. Sugihwo, A. Massengale, J. S. Harris, “Micromachined tunable vertical-cavity surface-emitting lasers,” in Proceedings of the International Electron Device Meetings (IEEE Electron Devices Society, New York, 1996), pp. 405–408.

Hayes, E. M.

R. Pu, E. M. Hayes, C. W. Wilmsen, K. D. Ohoquette, H. Q. Hou, K. M. Geib, “Comparison of techniques for bonding VCSELs directly to ICs,” J. Opt. A Pure Appl. Opt 1, 324–329 (1999).
[CrossRef]

Hedin, E. R.

Hennessy, W. A.

Y. S. Liu, R. J. Wojnarowski, W. A. Hennessy, P. A. Piacente, J. Rowlette, M. Kadar-Kallen, J. Stack, Yu. Liu, A. Peczalaski, A. Nahata, J. Yardley, “Plastic VCSEL array packaging and high density polymer waveguides for board and backplane optical interconnects,” in Proceedings of the 1998 IEEE Electronic Components and Technologies Conference (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 999–1005.

Hou, H. Q.

R. Pu, E. M. Hayes, C. W. Wilmsen, K. D. Ohoquette, H. Q. Hou, K. M. Geib, “Comparison of techniques for bonding VCSELs directly to ICs,” J. Opt. A Pure Appl. Opt 1, 324–329 (1999).
[CrossRef]

Hu, P.-C.

L. Kleinrock, M. Gerla, N. Bambos, J. Cong, E. Gafni, L. Bergman, J. Bannister, S. Monacos, T. Bujewski, P.-C. Hu, “The supercomputer supernet testbed: WDM-based supercomputer interconnect,” J. Lightwave Technol. 14, 1388–1399 (1996).
[CrossRef]

Hutley, M. C.

M. C. Hutley, Diffraction Gratings (Academic, London, 1982).

Jewell, J. L.

J. L. Jewell, Y. H. Lee, A. Scherer, S. L. McCall, J. P. Harbison, L. T. Florez, “Surface-emitting microlasers for photonic switching and interchip connections,” Opt. Eng. 29, 210–214 (1990).
[CrossRef]

Kadar-Kallen, M.

Y. S. Liu, R. J. Wojnarowski, W. A. Hennessy, P. A. Piacente, J. Rowlette, M. Kadar-Kallen, J. Stack, Yu. Liu, A. Peczalaski, A. Nahata, J. Yardley, “Plastic VCSEL array packaging and high density polymer waveguides for board and backplane optical interconnects,” in Proceedings of the 1998 IEEE Electronic Components and Technologies Conference (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 999–1005.

Kasahara, K.

H. Saito, I. Ogura, Y. Sugimoto, K. Kasahara, “Monolithic integration of multiple wavelength vertical-cavity surface-emitting lasers by mask molecular beam epitaxy,” Appl. Phys. Lett. 66, 2466–2468 (1995).
[CrossRef]

Kleinrock, L.

L. Kleinrock, M. Gerla, N. Bambos, J. Cong, E. Gafni, L. Bergman, J. Bannister, S. Monacos, T. Bujewski, P.-C. Hu, “The supercomputer supernet testbed: WDM-based supercomputer interconnect,” J. Lightwave Technol. 14, 1388–1399 (1996).
[CrossRef]

Larson, M.

F. Sugihwo, M. Larson, J. S. Harris, “Low threshold continuously tunable vertical-cavity surface-emitting lasers with 19.1 nm wavelength range,” Appl. Phys. Lett. 70, 547–549 (1997).
[CrossRef]

F. Sugihwo, M. Larson, C. C. Lin, W. Martin, J. S. Harris, “25 nm wavelength range tunable vertical cavity lasers,” in Proceedings of Device Research Conference (IEEE Electron Devices Society, New York, 1997), pp. 108–109.

F. Sugihwo, M. Larson, J. S. Harris, “Monolithically micromachined wavelength tunable vertical cavity lasers,” in Proceedings of State of the Art on Compound Semiconductors XXVII (Electrochemical Society Electronics Division, Paris, 1997), pp. 118–124.

M. Larson, F. Sugihwo, A. Massengale, J. S. Harris, “Micromachined tunable vertical-cavity surface-emitting lasers,” in Proceedings of the International Electron Device Meetings (IEEE Electron Devices Society, New York, 1996), pp. 405–408.

Lee, T.-P.

J. Chang-Hasnain, J. P. Harbison, C.-E. Zah, M. W. Maeda, L. Florez, N. Stoffel, T.-P. Lee, “Multiple wavelength tunable surface-emitting laser arrays,” IEEE J. Quantum Electron. 27, 1368–1376 (1991).
[CrossRef]

Lee, Y. H.

J. L. Jewell, Y. H. Lee, A. Scherer, S. L. McCall, J. P. Harbison, L. T. Florez, “Surface-emitting microlasers for photonic switching and interchip connections,” Opt. Eng. 29, 210–214 (1990).
[CrossRef]

Li, G. S.

E. C. Vail, G. S. Li, W. Yuen, C. J. Chang-Hasnain, “High performance and novel effects of micromachined tunable vertical-cavity lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 691–697 (1997).
[CrossRef]

Li, M. Y.

M. Y. Li, W. Yuen, C. J. Chang-Hasnain, “Top-emitting micromechanical VCSEL with a 31.6 nm tuning range,” IEEE Photonics. Technol. Lett. 10, 18–20 (1998).
[CrossRef]

Li, Y.

Lin, C. C.

F. Sugihwo, M. Larson, C. C. Lin, W. Martin, J. S. Harris, “25 nm wavelength range tunable vertical cavity lasers,” in Proceedings of Device Research Conference (IEEE Electron Devices Society, New York, 1997), pp. 108–109.

Linke, R. A.

Liu, Y. S.

Y. S. Liu, R. J. Wojnarowski, W. A. Hennessy, P. A. Piacente, J. Rowlette, M. Kadar-Kallen, J. Stack, Yu. Liu, A. Peczalaski, A. Nahata, J. Yardley, “Plastic VCSEL array packaging and high density polymer waveguides for board and backplane optical interconnects,” in Proceedings of the 1998 IEEE Electronic Components and Technologies Conference (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 999–1005.

Liu, Yu.

Y. S. Liu, R. J. Wojnarowski, W. A. Hennessy, P. A. Piacente, J. Rowlette, M. Kadar-Kallen, J. Stack, Yu. Liu, A. Peczalaski, A. Nahata, J. Yardley, “Plastic VCSEL array packaging and high density polymer waveguides for board and backplane optical interconnects,” in Proceedings of the 1998 IEEE Electronic Components and Technologies Conference (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 999–1005.

Louri, A.

A. Louri, B. Weech, C. Neocleous, “A spanning multichannel linked hypercube: a gradually scalable optical interconnection network for massively parallel computing,” IEEE Trans. Parallel Distribut. Syst. 9, 497–512 (1998).
[CrossRef]

A. Louri, R. Gupta, “Hierarchical optical ring interconnection (HORN): scalable interconnection network for multiprocessors and multicomputers,” Appl. Opt. 36, 430–442 (1997).
[CrossRef] [PubMed]

Lu, C.-C.

P. Tayebati, P. Wang, D. Vakhshoori, C.-C. Lu, M. Azimi, R. N. Sacks, “Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode,” IEEE Photonics Technol. Lett. 10, 1679–1681 (1998).
[CrossRef]

Maeda, M. W.

J. Chang-Hasnain, J. P. Harbison, C.-E. Zah, M. W. Maeda, L. Florez, N. Stoffel, T.-P. Lee, “Multiple wavelength tunable surface-emitting laser arrays,” IEEE J. Quantum Electron. 27, 1368–1376 (1991).
[CrossRef]

Martin, W.

F. Sugihwo, M. Larson, C. C. Lin, W. Martin, J. S. Harris, “25 nm wavelength range tunable vertical cavity lasers,” in Proceedings of Device Research Conference (IEEE Electron Devices Society, New York, 1997), pp. 108–109.

Massengale, A.

M. Larson, F. Sugihwo, A. Massengale, J. S. Harris, “Micromachined tunable vertical-cavity surface-emitting lasers,” in Proceedings of the International Electron Device Meetings (IEEE Electron Devices Society, New York, 1996), pp. 405–408.

McCall, S. L.

J. L. Jewell, Y. H. Lee, A. Scherer, S. L. McCall, J. P. Harbison, L. T. Florez, “Surface-emitting microlasers for photonic switching and interchip connections,” Opt. Eng. 29, 210–214 (1990).
[CrossRef]

Midwinter, J. E.

F. Timofeev, P. Bayvel, J. E. Midwinter, M. Sokolskii, “High-performance, free-space ruled concave grating demultiplexer,” Electron. Lett. 31, 2200–2201 (1995).
[CrossRef]

Monacos, S.

L. Kleinrock, M. Gerla, N. Bambos, J. Cong, E. Gafni, L. Bergman, J. Bannister, S. Monacos, T. Bujewski, P.-C. Hu, “The supercomputer supernet testbed: WDM-based supercomputer interconnect,” J. Lightwave Technol. 14, 1388–1399 (1996).
[CrossRef]

Morgan, R. A.

R. A. Morgan, “Advances in vertical-cavity surface-emitting lasers,” in Vertical-Cavity Surface-Emitting Laser Arrays, J. L. Jewell, ed., Proc. SPIE2147, 97–119 (1994).
[CrossRef]

Moui, T. V.

T. V. Moui, “Receiver design for high-speed optical fiber systems,” IEEE J. Lightwave Technol. LT-2, 243–267 (1984).
[CrossRef]

Nahata, A.

Y. S. Liu, R. J. Wojnarowski, W. A. Hennessy, P. A. Piacente, J. Rowlette, M. Kadar-Kallen, J. Stack, Yu. Liu, A. Peczalaski, A. Nahata, J. Yardley, “Plastic VCSEL array packaging and high density polymer waveguides for board and backplane optical interconnects,” in Proceedings of the 1998 IEEE Electronic Components and Technologies Conference (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 999–1005.

Neff, J.

J. Neff, “Optical interconnects based on two-dimensional VCSEL arrays,” in IEEE Proceedings of the First International Workshop on Massively Parallel Processing Using Optical Interconnections (IEEE Computer Society, Los Alamitos, Calif., 1994), pp. 202–212.
[CrossRef]

Neocleous, C.

A. Louri, B. Weech, C. Neocleous, “A spanning multichannel linked hypercube: a gradually scalable optical interconnection network for massively parallel computing,” IEEE Trans. Parallel Distribut. Syst. 9, 497–512 (1998).
[CrossRef]

Noad, J. P.

L. Robitaille, C. L. Callender, J. P. Noad, “Design and fabrication of low-loss polymer waveguide components for on-chip optical interconnection,” IEEE Photonics Technol. Lett. 8, 1647–1649 (1996).
[CrossRef]

Ogura, I.

H. Saito, I. Ogura, Y. Sugimoto, K. Kasahara, “Monolithic integration of multiple wavelength vertical-cavity surface-emitting lasers by mask molecular beam epitaxy,” Appl. Phys. Lett. 66, 2466–2468 (1995).
[CrossRef]

Ohoquette, K. D.

R. Pu, E. M. Hayes, C. W. Wilmsen, K. D. Ohoquette, H. Q. Hou, K. M. Geib, “Comparison of techniques for bonding VCSELs directly to ICs,” J. Opt. A Pure Appl. Opt 1, 324–329 (1999).
[CrossRef]

Peczalaski, A.

Y. S. Liu, R. J. Wojnarowski, W. A. Hennessy, P. A. Piacente, J. Rowlette, M. Kadar-Kallen, J. Stack, Yu. Liu, A. Peczalaski, A. Nahata, J. Yardley, “Plastic VCSEL array packaging and high density polymer waveguides for board and backplane optical interconnects,” in Proceedings of the 1998 IEEE Electronic Components and Technologies Conference (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 999–1005.

Perreult, J. A.

P. Dowd, K. Bogineni, K. A. Aly, J. A. Perreult, “Hierarchical scalable photonic architectures for high performance processor interconnection,” IEEE Trans. Comput. 42, 1105–1120 (1993).
[CrossRef]

Piacente, P. A.

Y. S. Liu, R. J. Wojnarowski, W. A. Hennessy, P. A. Piacente, J. Rowlette, M. Kadar-Kallen, J. Stack, Yu. Liu, A. Peczalaski, A. Nahata, J. Yardley, “Plastic VCSEL array packaging and high density polymer waveguides for board and backplane optical interconnects,” in Proceedings of the 1998 IEEE Electronic Components and Technologies Conference (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 999–1005.

Pu, R.

R. Pu, E. M. Hayes, C. W. Wilmsen, K. D. Ohoquette, H. Q. Hou, K. M. Geib, “Comparison of techniques for bonding VCSELs directly to ICs,” J. Opt. A Pure Appl. Opt 1, 324–329 (1999).
[CrossRef]

Robitaille, L.

L. Robitaille, C. L. Callender, J. P. Noad, “Design and fabrication of low-loss polymer waveguide components for on-chip optical interconnection,” IEEE Photonics Technol. Lett. 8, 1647–1649 (1996).
[CrossRef]

Rowlette, J.

Y. S. Liu, R. J. Wojnarowski, W. A. Hennessy, P. A. Piacente, J. Rowlette, M. Kadar-Kallen, J. Stack, Yu. Liu, A. Peczalaski, A. Nahata, J. Yardley, “Plastic VCSEL array packaging and high density polymer waveguides for board and backplane optical interconnects,” in Proceedings of the 1998 IEEE Electronic Components and Technologies Conference (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 999–1005.

Sacks, R. N.

P. Tayebati, P. Wang, D. Vakhshoori, C.-C. Lu, M. Azimi, R. N. Sacks, “Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode,” IEEE Photonics Technol. Lett. 10, 1679–1681 (1998).
[CrossRef]

Saito, H.

H. Saito, I. Ogura, Y. Sugimoto, K. Kasahara, “Monolithic integration of multiple wavelength vertical-cavity surface-emitting lasers by mask molecular beam epitaxy,” Appl. Phys. Lett. 66, 2466–2468 (1995).
[CrossRef]

Scherer, A.

J. L. Jewell, Y. H. Lee, A. Scherer, S. L. McCall, J. P. Harbison, L. T. Florez, “Surface-emitting microlasers for photonic switching and interchip connections,” Opt. Eng. 29, 210–214 (1990).
[CrossRef]

Shacklette, L. W.

L. Eldada, C. C. Xu, K. M. T. Stengel, L. W. Shacklette, J. T. Yardley, “Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704–1713 (1996).
[CrossRef]

L. W. Shacklette, K. M. T. Stengel, C. Xu, J. T. Yardley, “Polymeric waveguides for optical backplanes,” in Fly-by-Light: Technology Transfer, D. B. Thompson, R. J. Baumbick, L. B. Stotts, eds., Proc. SPIE2467, 107–117 (1995).
[CrossRef]

Sivalingam, K. M.

K. M. Sivalingam, P. W. Dowd, “A multilevel WDM access protocol for an optically interconnected multiprocessor system,” J. Lightwave Technol. 13, 2152–2167 (1995).
[CrossRef]

Smith, J. S.

H.-J. J. Yeh, J. S. Smith, “Integration of GaAs vertical-cavity surface emitting laser on Si by substrate removal,” Appl. Phys. Lett. 64, 1466–1468 (1994).
[CrossRef]

Sokolskii, M.

F. Timofeev, P. Bayvel, J. E. Midwinter, M. Sokolskii, “High-performance, free-space ruled concave grating demultiplexer,” Electron. Lett. 31, 2200–2201 (1995).
[CrossRef]

Stack, J.

Y. S. Liu, R. J. Wojnarowski, W. A. Hennessy, P. A. Piacente, J. Rowlette, M. Kadar-Kallen, J. Stack, Yu. Liu, A. Peczalaski, A. Nahata, J. Yardley, “Plastic VCSEL array packaging and high density polymer waveguides for board and backplane optical interconnects,” in Proceedings of the 1998 IEEE Electronic Components and Technologies Conference (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 999–1005.

Stengel, K. M. T.

L. Eldada, C. C. Xu, K. M. T. Stengel, L. W. Shacklette, J. T. Yardley, “Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704–1713 (1996).
[CrossRef]

L. W. Shacklette, K. M. T. Stengel, C. Xu, J. T. Yardley, “Polymeric waveguides for optical backplanes,” in Fly-by-Light: Technology Transfer, D. B. Thompson, R. J. Baumbick, L. B. Stotts, eds., Proc. SPIE2467, 107–117 (1995).
[CrossRef]

Stoffel, N.

J. Chang-Hasnain, J. P. Harbison, C.-E. Zah, M. W. Maeda, L. Florez, N. Stoffel, T.-P. Lee, “Multiple wavelength tunable surface-emitting laser arrays,” IEEE J. Quantum Electron. 27, 1368–1376 (1991).
[CrossRef]

Sugihwo, F.

F. Sugihwo, M. Larson, J. S. Harris, “Low threshold continuously tunable vertical-cavity surface-emitting lasers with 19.1 nm wavelength range,” Appl. Phys. Lett. 70, 547–549 (1997).
[CrossRef]

F. Sugihwo, M. Larson, C. C. Lin, W. Martin, J. S. Harris, “25 nm wavelength range tunable vertical cavity lasers,” in Proceedings of Device Research Conference (IEEE Electron Devices Society, New York, 1997), pp. 108–109.

M. Larson, F. Sugihwo, A. Massengale, J. S. Harris, “Micromachined tunable vertical-cavity surface-emitting lasers,” in Proceedings of the International Electron Device Meetings (IEEE Electron Devices Society, New York, 1996), pp. 405–408.

F. Sugihwo, M. Larson, J. S. Harris, “Monolithically micromachined wavelength tunable vertical cavity lasers,” in Proceedings of State of the Art on Compound Semiconductors XXVII (Electrochemical Society Electronics Division, Paris, 1997), pp. 118–124.

Sugimoto, Y.

H. Saito, I. Ogura, Y. Sugimoto, K. Kasahara, “Monolithic integration of multiple wavelength vertical-cavity surface-emitting lasers by mask molecular beam epitaxy,” Appl. Phys. Lett. 66, 2466–2468 (1995).
[CrossRef]

Tayebati, P.

P. Tayebati, P. Wang, D. Vakhshoori, C.-C. Lu, M. Azimi, R. N. Sacks, “Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode,” IEEE Photonics Technol. Lett. 10, 1679–1681 (1998).
[CrossRef]

Timofeev, F.

F. Timofeev, P. Bayvel, J. E. Midwinter, M. Sokolskii, “High-performance, free-space ruled concave grating demultiplexer,” Electron. Lett. 31, 2200–2201 (1995).
[CrossRef]

Vail, E. C.

E. C. Vail, G. S. Li, W. Yuen, C. J. Chang-Hasnain, “High performance and novel effects of micromachined tunable vertical-cavity lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 691–697 (1997).
[CrossRef]

Vakhshoori, D.

P. Tayebati, P. Wang, D. Vakhshoori, C.-C. Lu, M. Azimi, R. N. Sacks, “Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode,” IEEE Photonics Technol. Lett. 10, 1679–1681 (1998).
[CrossRef]

Wang, P.

P. Tayebati, P. Wang, D. Vakhshoori, C.-C. Lu, M. Azimi, R. N. Sacks, “Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode,” IEEE Photonics Technol. Lett. 10, 1679–1681 (1998).
[CrossRef]

Wang, T.

Weech, B.

A. Louri, B. Weech, C. Neocleous, “A spanning multichannel linked hypercube: a gradually scalable optical interconnection network for massively parallel computing,” IEEE Trans. Parallel Distribut. Syst. 9, 497–512 (1998).
[CrossRef]

Wilmsen, C. W.

R. Pu, E. M. Hayes, C. W. Wilmsen, K. D. Ohoquette, H. Q. Hou, K. M. Geib, “Comparison of techniques for bonding VCSELs directly to ICs,” J. Opt. A Pure Appl. Opt 1, 324–329 (1999).
[CrossRef]

Wojnarowski, R. J.

Y. S. Liu, R. J. Wojnarowski, W. A. Hennessy, P. A. Piacente, J. Rowlette, M. Kadar-Kallen, J. Stack, Yu. Liu, A. Peczalaski, A. Nahata, J. Yardley, “Plastic VCSEL array packaging and high density polymer waveguides for board and backplane optical interconnects,” in Proceedings of the 1998 IEEE Electronic Components and Technologies Conference (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 999–1005.

Xu, C.

L. W. Shacklette, K. M. T. Stengel, C. Xu, J. T. Yardley, “Polymeric waveguides for optical backplanes,” in Fly-by-Light: Technology Transfer, D. B. Thompson, R. J. Baumbick, L. B. Stotts, eds., Proc. SPIE2467, 107–117 (1995).
[CrossRef]

Xu, C. C.

L. Eldada, C. C. Xu, K. M. T. Stengel, L. W. Shacklette, J. T. Yardley, “Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704–1713 (1996).
[CrossRef]

Yardley, J.

Y. S. Liu, R. J. Wojnarowski, W. A. Hennessy, P. A. Piacente, J. Rowlette, M. Kadar-Kallen, J. Stack, Yu. Liu, A. Peczalaski, A. Nahata, J. Yardley, “Plastic VCSEL array packaging and high density polymer waveguides for board and backplane optical interconnects,” in Proceedings of the 1998 IEEE Electronic Components and Technologies Conference (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 999–1005.

Yardley, J. T.

L. Eldada, C. C. Xu, K. M. T. Stengel, L. W. Shacklette, J. T. Yardley, “Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704–1713 (1996).
[CrossRef]

L. W. Shacklette, K. M. T. Stengel, C. Xu, J. T. Yardley, “Polymeric waveguides for optical backplanes,” in Fly-by-Light: Technology Transfer, D. B. Thompson, R. J. Baumbick, L. B. Stotts, eds., Proc. SPIE2467, 107–117 (1995).
[CrossRef]

Yeh, H.-J. J.

H.-J. J. Yeh, J. S. Smith, “Integration of GaAs vertical-cavity surface emitting laser on Si by substrate removal,” Appl. Phys. Lett. 64, 1466–1468 (1994).
[CrossRef]

Yuen, W.

M. Y. Li, W. Yuen, C. J. Chang-Hasnain, “Top-emitting micromechanical VCSEL with a 31.6 nm tuning range,” IEEE Photonics. Technol. Lett. 10, 18–20 (1998).
[CrossRef]

E. C. Vail, G. S. Li, W. Yuen, C. J. Chang-Hasnain, “High performance and novel effects of micromachined tunable vertical-cavity lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 691–697 (1997).
[CrossRef]

Zah, C.-E.

J. Chang-Hasnain, J. P. Harbison, C.-E. Zah, M. W. Maeda, L. Florez, N. Stoffel, T.-P. Lee, “Multiple wavelength tunable surface-emitting laser arrays,” IEEE J. Quantum Electron. 27, 1368–1376 (1991).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (3)

H.-J. J. Yeh, J. S. Smith, “Integration of GaAs vertical-cavity surface emitting laser on Si by substrate removal,” Appl. Phys. Lett. 64, 1466–1468 (1994).
[CrossRef]

H. Saito, I. Ogura, Y. Sugimoto, K. Kasahara, “Monolithic integration of multiple wavelength vertical-cavity surface-emitting lasers by mask molecular beam epitaxy,” Appl. Phys. Lett. 66, 2466–2468 (1995).
[CrossRef]

F. Sugihwo, M. Larson, J. S. Harris, “Low threshold continuously tunable vertical-cavity surface-emitting lasers with 19.1 nm wavelength range,” Appl. Phys. Lett. 70, 547–549 (1997).
[CrossRef]

Electron. Lett. (1)

F. Timofeev, P. Bayvel, J. E. Midwinter, M. Sokolskii, “High-performance, free-space ruled concave grating demultiplexer,” Electron. Lett. 31, 2200–2201 (1995).
[CrossRef]

IEEE J. Lightwave Technol. (1)

T. V. Moui, “Receiver design for high-speed optical fiber systems,” IEEE J. Lightwave Technol. LT-2, 243–267 (1984).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Chang-Hasnain, J. P. Harbison, C.-E. Zah, M. W. Maeda, L. Florez, N. Stoffel, T.-P. Lee, “Multiple wavelength tunable surface-emitting laser arrays,” IEEE J. Quantum Electron. 27, 1368–1376 (1991).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE J. Sel. Areas Commun. 8, 948–964 (1990).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

E. C. Vail, G. S. Li, W. Yuen, C. J. Chang-Hasnain, “High performance and novel effects of micromachined tunable vertical-cavity lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 691–697 (1997).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

P. Tayebati, P. Wang, D. Vakhshoori, C.-C. Lu, M. Azimi, R. N. Sacks, “Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode,” IEEE Photonics Technol. Lett. 10, 1679–1681 (1998).
[CrossRef]

L. Robitaille, C. L. Callender, J. P. Noad, “Design and fabrication of low-loss polymer waveguide components for on-chip optical interconnection,” IEEE Photonics Technol. Lett. 8, 1647–1649 (1996).
[CrossRef]

IEEE Photonics. Technol. Lett. (1)

M. Y. Li, W. Yuen, C. J. Chang-Hasnain, “Top-emitting micromechanical VCSEL with a 31.6 nm tuning range,” IEEE Photonics. Technol. Lett. 10, 18–20 (1998).
[CrossRef]

IEEE Trans. Comput. (1)

P. Dowd, K. Bogineni, K. A. Aly, J. A. Perreult, “Hierarchical scalable photonic architectures for high performance processor interconnection,” IEEE Trans. Comput. 42, 1105–1120 (1993).
[CrossRef]

IEEE Trans. Parallel Distribut. Syst. (1)

A. Louri, B. Weech, C. Neocleous, “A spanning multichannel linked hypercube: a gradually scalable optical interconnection network for massively parallel computing,” IEEE Trans. Parallel Distribut. Syst. 9, 497–512 (1998).
[CrossRef]

J. Lightwave Technol. (3)

K. M. Sivalingam, P. W. Dowd, “A multilevel WDM access protocol for an optically interconnected multiprocessor system,” J. Lightwave Technol. 13, 2152–2167 (1995).
[CrossRef]

L. Kleinrock, M. Gerla, N. Bambos, J. Cong, E. Gafni, L. Bergman, J. Bannister, S. Monacos, T. Bujewski, P.-C. Hu, “The supercomputer supernet testbed: WDM-based supercomputer interconnect,” J. Lightwave Technol. 14, 1388–1399 (1996).
[CrossRef]

L. Eldada, C. C. Xu, K. M. T. Stengel, L. W. Shacklette, J. T. Yardley, “Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704–1713 (1996).
[CrossRef]

J. Opt. A Pure Appl. Opt (1)

R. Pu, E. M. Hayes, C. W. Wilmsen, K. D. Ohoquette, H. Q. Hou, K. M. Geib, “Comparison of techniques for bonding VCSELs directly to ICs,” J. Opt. A Pure Appl. Opt 1, 324–329 (1999).
[CrossRef]

Opt. Eng. (1)

J. L. Jewell, Y. H. Lee, A. Scherer, S. L. McCall, J. P. Harbison, L. T. Florez, “Surface-emitting microlasers for photonic switching and interchip connections,” Opt. Eng. 29, 210–214 (1990).
[CrossRef]

Other (11)

R. A. Morgan, “Advances in vertical-cavity surface-emitting lasers,” in Vertical-Cavity Surface-Emitting Laser Arrays, J. L. Jewell, ed., Proc. SPIE2147, 97–119 (1994).
[CrossRef]

J. Neff, “Optical interconnects based on two-dimensional VCSEL arrays,” in IEEE Proceedings of the First International Workshop on Massively Parallel Processing Using Optical Interconnections (IEEE Computer Society, Los Alamitos, Calif., 1994), pp. 202–212.
[CrossRef]

M. Larson, F. Sugihwo, A. Massengale, J. S. Harris, “Micromachined tunable vertical-cavity surface-emitting lasers,” in Proceedings of the International Electron Device Meetings (IEEE Electron Devices Society, New York, 1996), pp. 405–408.

F. Sugihwo, M. Larson, C. C. Lin, W. Martin, J. S. Harris, “25 nm wavelength range tunable vertical cavity lasers,” in Proceedings of Device Research Conference (IEEE Electron Devices Society, New York, 1997), pp. 108–109.

F. Sugihwo, M. Larson, J. S. Harris, “Monolithically micromachined wavelength tunable vertical cavity lasers,” in Proceedings of State of the Art on Compound Semiconductors XXVII (Electrochemical Society Electronics Division, Paris, 1997), pp. 118–124.

Y. S. Liu, R. J. Wojnarowski, W. A. Hennessy, P. A. Piacente, J. Rowlette, M. Kadar-Kallen, J. Stack, Yu. Liu, A. Peczalaski, A. Nahata, J. Yardley, “Plastic VCSEL array packaging and high density polymer waveguides for board and backplane optical interconnects,” in Proceedings of the 1998 IEEE Electronic Components and Technologies Conference (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 999–1005.

L. A. Hornak, ed., Polymers For Lightwave and Integrated Optics (Marcel Dekker, New York, 1992).

L. W. Shacklette, K. M. T. Stengel, C. Xu, J. T. Yardley, “Polymeric waveguides for optical backplanes,” in Fly-by-Light: Technology Transfer, D. B. Thompson, R. J. Baumbick, L. B. Stotts, eds., Proc. SPIE2467, 107–117 (1995).
[CrossRef]

H. J. R. Dutton, Understanding Optical Communications (Prentice Hall, Upper Saddle River, N.J., 1998).

M. C. Hutley, Diffraction Gratings (Academic, London, 1982).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Conceptual overview of a free-space optical crossbar with WDM for interprocessor interconnects. Tunable VCSEL lasers are used to select the destination processor, and each processor contains a fixed-wavelength optical receiver. A concave diffraction grating is used to diffract individual wavelengths to the appropriate processor.

Fig. 2
Fig. 2

Proposed compact optical crossbar consisting of polymer waveguides directly coupled to processor-mounted VCSEL’s, a polymer waveguide-based optical combiner, and a free-space optical crossbar–demultiplexer based on a concave sawtooth diffraction grating.

Fig. 3
Fig. 3

Optical power at each optical receiver for varying numbers of processors (channels). It can be seen that, from a power budget perspective, the -30-dBm optical power required by the receivers is sufficient to support 32 processors, although improvements in the VCSEL efficiencies would likely increase the maximum number of processors.

Fig. 4
Fig. 4

Proposed implementation of a hierarchical network architecture called the SOCN. A SOCN system consists of a network of multiprocessor clusters linked by means of free-space and fiber-based WDM optical crossbars. Free-space optical interconnects are used for intraboard interconnects (within the cluster), and fiber interconnects are used for interboard interconnects (between clusters). Polymer waveguides are used to route the optical signals on the PC boards.

Tables (1)

Tables Icon

Table 1 Losses for Each Component of the Optical Crossbar

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Λsin α+sin β=nλ,
ΔβΔλ=nΛ cos β.
Δβ=ΔλΛ cos β=tan-1RDRD.
D=RΔβ=RΛ cos βΔλ.
β=sin-1λΛ-sin α=0.243 rad
Δβ=ΔλΛ cos β=1.0 mrad.
D=RΔβ=10 cm.
dR=Dcos β=10.3 cm,
BER=12πexp-Q2/2Q,
P¯=2πhcqηλ4kTΓI3gm1/2QCTB3/2,
Ltotal=Lvc+Lw+LY+Ld+Lrc=-16.5 dB+-3 dB log2n.

Metrics