Abstract

We analyze and compare two typical recording and thermal fixing procedures of a volume hologram in a Fe:LiNbO3 crystal (low–high–low procedure and high–low procedure). We consider the kinetics of the recording, compensating, and developing processes by taking into account the ratio of the conductivities between the protons and the electrons as a function of temperature. From the analysis the optimal environmental conditions (in terms of the fixing temperature and the compensation time) for each fixing procedure can be deduced for a crystal with given material parameters.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electrooptic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
    [CrossRef]
  2. D. L. Staebler, W. J. Burke, W. Philips, J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975).
    [CrossRef]
  3. R. Matull, R. A. Rupp, “Microphotometric investigation of fixed holograms,” J. Phys. D 21, 1556–1565 (1988).
    [CrossRef]
  4. P. Hertel, K. H. Ringhofer, R. Sommerfeldt, “Theory of thermal hologram fixing and application to LiNbO3:Cu,” Phys. Status Solidi A 104, 855–862 (1987).
    [CrossRef]
  5. V. V. Kulikov, S. I. Stepanov, “Mechanisms of holographic recording and thermal fixing in photorefractive LiNbO3:Fe,” Sov. Phys. Solid State 21, 1849–1851 (1979).
  6. G. Montemezzani, P. Guter, “Thermal hologram fixing in pure and doped KNbO3 crystal,” J. Opt. Soc. Am. B 7, 2323–2328 (1990).
    [CrossRef]
  7. J. F. Heanue, M. C. Bashaw, A. J. Daiber, R. Snyder, L. Hesselink, “Digital holographic storage system incorporating thermal fixing in lithium niobate,” Opt. Lett. 21, 1615–1617 (1996).
    [CrossRef] [PubMed]
  8. A. Mendez, L. Arizmendi, “Maximum diffraction efficiency of fixed holograms in lithium niobate,” Opt. Mater. 10, 55–59 (1998).
    [CrossRef]
  9. B. I. Sturman, M. Carrascosa, F. Agullo-Lopez, J. Limeres, “Two kinetic regimes for high-temperature photorefractive phenomena in LiNbO3,” J. Opt. Soc. Am. B 15, 148–151 (1998).
    [CrossRef]
  10. U. Schlarb, K. Betzler, “Refractive indices of lithium niobate as function of temperature, wavelength, and composition: a generalized fit,” Phys. Rev. B 48, 15,613–15,620 (1993).
    [CrossRef]
  11. A. Mehta, E. K. Chang, D. M. Smyth, “Ionic transport in LiNbO3,” J. Mater. Res. 6, 851–854 (1991).
    [CrossRef]
  12. S. Orlov, D. Psaltis, R. R. Neurgaonkar, “Dynamic electronic compensation of fixed gratings in photorefractive materials,” Appl. Phys. Letts. 63, 2466–2468 (1993).
    [CrossRef]
  13. H. Vormann, G. Weber, S. Kapphan, E. Kratzig, “Hydrogen as origin of thermal fixing in LiNbO3:Fe,” Solid State Commun. 40, 543–545 (1981).
    [CrossRef]
  14. J. M. Cabrera, J. Olivarest, M. Carrascosa, J. Rams, R. Muller, E. Dieguez, “Hydrogen in lithium niobate,” Adv. Phys. 45, 349–392 (1996).
    [CrossRef]
  15. B. I. Sturman, M. Carrascosa, F. Agullo-Lopez, J. Limeres, “Theory of high-temperature photorefractive phenomena in LiNbO3 crystals and applications to experiment,” Phys. Rev. B 57, 792–805 (1990).
  16. M. Carrascosa, L. Arizmendi, “High-temperature photorefractive effects in LiNbO3:Fe,” J. Appl. Phys. 73, 2709–2713 (1993).
    [CrossRef]
  17. A. Yariv, S. Orlov, G. Rakuljic, V. Leyva, “Holographic fixing, read-out, and storage dynamics in photorefractive materials,” Opt. Lett. 20, 1334–1336 (1995).
    [CrossRef] [PubMed]
  18. M. Carrascosa, F. Agullo-Lopez, “Theoretical modeling of the thermal fixing and developing of holographic grating in LiNbO3,” J. Opt. Soc. Am. B 7, 2317–2322 (1990).
    [CrossRef]
  19. J. D. Zook, D. Chen, G. N. Otto, “Temperature dependence and model of the electro-optic effect in LiNbO3,” Appl. Phys. Lett. 11, 159–161 (1967).
    [CrossRef]
  20. G. Montenmezzani, M. Zgonik, P. Gunter, “Photorefractive charge compensation at elevated temperatures and application to KNbO3,” J. Opt. Soc. Am. B 10, 171–185 (1993).
    [CrossRef]
  21. B. Liu, L. Liu, L. Xu, “Characteristics of recording and thermal fixing in lithium niobate,” Appl. Opt. 37, 2170–2176 (1998).
    [CrossRef]
  22. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optics crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
    [CrossRef]
  23. C. Gu, J. Hong, H. Y. Li, D. Psaltis, P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167–1172 (1991).
    [CrossRef]

1998 (3)

1996 (2)

1995 (1)

1993 (4)

S. Orlov, D. Psaltis, R. R. Neurgaonkar, “Dynamic electronic compensation of fixed gratings in photorefractive materials,” Appl. Phys. Letts. 63, 2466–2468 (1993).
[CrossRef]

U. Schlarb, K. Betzler, “Refractive indices of lithium niobate as function of temperature, wavelength, and composition: a generalized fit,” Phys. Rev. B 48, 15,613–15,620 (1993).
[CrossRef]

M. Carrascosa, L. Arizmendi, “High-temperature photorefractive effects in LiNbO3:Fe,” J. Appl. Phys. 73, 2709–2713 (1993).
[CrossRef]

G. Montenmezzani, M. Zgonik, P. Gunter, “Photorefractive charge compensation at elevated temperatures and application to KNbO3,” J. Opt. Soc. Am. B 10, 171–185 (1993).
[CrossRef]

1991 (2)

C. Gu, J. Hong, H. Y. Li, D. Psaltis, P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167–1172 (1991).
[CrossRef]

A. Mehta, E. K. Chang, D. M. Smyth, “Ionic transport in LiNbO3,” J. Mater. Res. 6, 851–854 (1991).
[CrossRef]

1990 (3)

1988 (1)

R. Matull, R. A. Rupp, “Microphotometric investigation of fixed holograms,” J. Phys. D 21, 1556–1565 (1988).
[CrossRef]

1987 (1)

P. Hertel, K. H. Ringhofer, R. Sommerfeldt, “Theory of thermal hologram fixing and application to LiNbO3:Cu,” Phys. Status Solidi A 104, 855–862 (1987).
[CrossRef]

1981 (1)

H. Vormann, G. Weber, S. Kapphan, E. Kratzig, “Hydrogen as origin of thermal fixing in LiNbO3:Fe,” Solid State Commun. 40, 543–545 (1981).
[CrossRef]

1979 (2)

V. V. Kulikov, S. I. Stepanov, “Mechanisms of holographic recording and thermal fixing in photorefractive LiNbO3:Fe,” Sov. Phys. Solid State 21, 1849–1851 (1979).

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optics crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

1975 (1)

D. L. Staebler, W. J. Burke, W. Philips, J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975).
[CrossRef]

1971 (1)

J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electrooptic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

1967 (1)

J. D. Zook, D. Chen, G. N. Otto, “Temperature dependence and model of the electro-optic effect in LiNbO3,” Appl. Phys. Lett. 11, 159–161 (1967).
[CrossRef]

Agullo-Lopez, F.

Amodei, J. J.

D. L. Staebler, W. J. Burke, W. Philips, J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975).
[CrossRef]

J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electrooptic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

Arizmendi, L.

A. Mendez, L. Arizmendi, “Maximum diffraction efficiency of fixed holograms in lithium niobate,” Opt. Mater. 10, 55–59 (1998).
[CrossRef]

M. Carrascosa, L. Arizmendi, “High-temperature photorefractive effects in LiNbO3:Fe,” J. Appl. Phys. 73, 2709–2713 (1993).
[CrossRef]

Bashaw, M. C.

Betzler, K.

U. Schlarb, K. Betzler, “Refractive indices of lithium niobate as function of temperature, wavelength, and composition: a generalized fit,” Phys. Rev. B 48, 15,613–15,620 (1993).
[CrossRef]

Burke, W. J.

D. L. Staebler, W. J. Burke, W. Philips, J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975).
[CrossRef]

Cabrera, J. M.

J. M. Cabrera, J. Olivarest, M. Carrascosa, J. Rams, R. Muller, E. Dieguez, “Hydrogen in lithium niobate,” Adv. Phys. 45, 349–392 (1996).
[CrossRef]

Carrascosa, M.

B. I. Sturman, M. Carrascosa, F. Agullo-Lopez, J. Limeres, “Two kinetic regimes for high-temperature photorefractive phenomena in LiNbO3,” J. Opt. Soc. Am. B 15, 148–151 (1998).
[CrossRef]

J. M. Cabrera, J. Olivarest, M. Carrascosa, J. Rams, R. Muller, E. Dieguez, “Hydrogen in lithium niobate,” Adv. Phys. 45, 349–392 (1996).
[CrossRef]

M. Carrascosa, L. Arizmendi, “High-temperature photorefractive effects in LiNbO3:Fe,” J. Appl. Phys. 73, 2709–2713 (1993).
[CrossRef]

B. I. Sturman, M. Carrascosa, F. Agullo-Lopez, J. Limeres, “Theory of high-temperature photorefractive phenomena in LiNbO3 crystals and applications to experiment,” Phys. Rev. B 57, 792–805 (1990).

M. Carrascosa, F. Agullo-Lopez, “Theoretical modeling of the thermal fixing and developing of holographic grating in LiNbO3,” J. Opt. Soc. Am. B 7, 2317–2322 (1990).
[CrossRef]

Chang, E. K.

A. Mehta, E. K. Chang, D. M. Smyth, “Ionic transport in LiNbO3,” J. Mater. Res. 6, 851–854 (1991).
[CrossRef]

Chen, D.

J. D. Zook, D. Chen, G. N. Otto, “Temperature dependence and model of the electro-optic effect in LiNbO3,” Appl. Phys. Lett. 11, 159–161 (1967).
[CrossRef]

Daiber, A. J.

Dieguez, E.

J. M. Cabrera, J. Olivarest, M. Carrascosa, J. Rams, R. Muller, E. Dieguez, “Hydrogen in lithium niobate,” Adv. Phys. 45, 349–392 (1996).
[CrossRef]

Gu, C.

C. Gu, J. Hong, H. Y. Li, D. Psaltis, P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167–1172 (1991).
[CrossRef]

Gunter, P.

Guter, P.

Heanue, J. F.

Hertel, P.

P. Hertel, K. H. Ringhofer, R. Sommerfeldt, “Theory of thermal hologram fixing and application to LiNbO3:Cu,” Phys. Status Solidi A 104, 855–862 (1987).
[CrossRef]

Hesselink, L.

Hong, J.

C. Gu, J. Hong, H. Y. Li, D. Psaltis, P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167–1172 (1991).
[CrossRef]

Kapphan, S.

H. Vormann, G. Weber, S. Kapphan, E. Kratzig, “Hydrogen as origin of thermal fixing in LiNbO3:Fe,” Solid State Commun. 40, 543–545 (1981).
[CrossRef]

Kratzig, E.

H. Vormann, G. Weber, S. Kapphan, E. Kratzig, “Hydrogen as origin of thermal fixing in LiNbO3:Fe,” Solid State Commun. 40, 543–545 (1981).
[CrossRef]

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optics crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Kulikov, V. V.

V. V. Kulikov, S. I. Stepanov, “Mechanisms of holographic recording and thermal fixing in photorefractive LiNbO3:Fe,” Sov. Phys. Solid State 21, 1849–1851 (1979).

Leyva, V.

Li, H. Y.

C. Gu, J. Hong, H. Y. Li, D. Psaltis, P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167–1172 (1991).
[CrossRef]

Limeres, J.

B. I. Sturman, M. Carrascosa, F. Agullo-Lopez, J. Limeres, “Two kinetic regimes for high-temperature photorefractive phenomena in LiNbO3,” J. Opt. Soc. Am. B 15, 148–151 (1998).
[CrossRef]

B. I. Sturman, M. Carrascosa, F. Agullo-Lopez, J. Limeres, “Theory of high-temperature photorefractive phenomena in LiNbO3 crystals and applications to experiment,” Phys. Rev. B 57, 792–805 (1990).

Liu, B.

Liu, L.

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optics crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Matull, R.

R. Matull, R. A. Rupp, “Microphotometric investigation of fixed holograms,” J. Phys. D 21, 1556–1565 (1988).
[CrossRef]

Mehta, A.

A. Mehta, E. K. Chang, D. M. Smyth, “Ionic transport in LiNbO3,” J. Mater. Res. 6, 851–854 (1991).
[CrossRef]

Mendez, A.

A. Mendez, L. Arizmendi, “Maximum diffraction efficiency of fixed holograms in lithium niobate,” Opt. Mater. 10, 55–59 (1998).
[CrossRef]

Montemezzani, G.

Montenmezzani, G.

Muller, R.

J. M. Cabrera, J. Olivarest, M. Carrascosa, J. Rams, R. Muller, E. Dieguez, “Hydrogen in lithium niobate,” Adv. Phys. 45, 349–392 (1996).
[CrossRef]

Neurgaonkar, R. R.

S. Orlov, D. Psaltis, R. R. Neurgaonkar, “Dynamic electronic compensation of fixed gratings in photorefractive materials,” Appl. Phys. Letts. 63, 2466–2468 (1993).
[CrossRef]

Odulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optics crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Olivarest, J.

J. M. Cabrera, J. Olivarest, M. Carrascosa, J. Rams, R. Muller, E. Dieguez, “Hydrogen in lithium niobate,” Adv. Phys. 45, 349–392 (1996).
[CrossRef]

Orlov, S.

A. Yariv, S. Orlov, G. Rakuljic, V. Leyva, “Holographic fixing, read-out, and storage dynamics in photorefractive materials,” Opt. Lett. 20, 1334–1336 (1995).
[CrossRef] [PubMed]

S. Orlov, D. Psaltis, R. R. Neurgaonkar, “Dynamic electronic compensation of fixed gratings in photorefractive materials,” Appl. Phys. Letts. 63, 2466–2468 (1993).
[CrossRef]

Otto, G. N.

J. D. Zook, D. Chen, G. N. Otto, “Temperature dependence and model of the electro-optic effect in LiNbO3,” Appl. Phys. Lett. 11, 159–161 (1967).
[CrossRef]

Philips, W.

D. L. Staebler, W. J. Burke, W. Philips, J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975).
[CrossRef]

Psaltis, D.

S. Orlov, D. Psaltis, R. R. Neurgaonkar, “Dynamic electronic compensation of fixed gratings in photorefractive materials,” Appl. Phys. Letts. 63, 2466–2468 (1993).
[CrossRef]

C. Gu, J. Hong, H. Y. Li, D. Psaltis, P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167–1172 (1991).
[CrossRef]

Rakuljic, G.

Rams, J.

J. M. Cabrera, J. Olivarest, M. Carrascosa, J. Rams, R. Muller, E. Dieguez, “Hydrogen in lithium niobate,” Adv. Phys. 45, 349–392 (1996).
[CrossRef]

Ringhofer, K. H.

P. Hertel, K. H. Ringhofer, R. Sommerfeldt, “Theory of thermal hologram fixing and application to LiNbO3:Cu,” Phys. Status Solidi A 104, 855–862 (1987).
[CrossRef]

Rupp, R. A.

R. Matull, R. A. Rupp, “Microphotometric investigation of fixed holograms,” J. Phys. D 21, 1556–1565 (1988).
[CrossRef]

Schlarb, U.

U. Schlarb, K. Betzler, “Refractive indices of lithium niobate as function of temperature, wavelength, and composition: a generalized fit,” Phys. Rev. B 48, 15,613–15,620 (1993).
[CrossRef]

Smyth, D. M.

A. Mehta, E. K. Chang, D. M. Smyth, “Ionic transport in LiNbO3,” J. Mater. Res. 6, 851–854 (1991).
[CrossRef]

Snyder, R.

Sommerfeldt, R.

P. Hertel, K. H. Ringhofer, R. Sommerfeldt, “Theory of thermal hologram fixing and application to LiNbO3:Cu,” Phys. Status Solidi A 104, 855–862 (1987).
[CrossRef]

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optics crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Staebler, D. L.

D. L. Staebler, W. J. Burke, W. Philips, J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975).
[CrossRef]

J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electrooptic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

Stepanov, S. I.

V. V. Kulikov, S. I. Stepanov, “Mechanisms of holographic recording and thermal fixing in photorefractive LiNbO3:Fe,” Sov. Phys. Solid State 21, 1849–1851 (1979).

Sturman, B. I.

B. I. Sturman, M. Carrascosa, F. Agullo-Lopez, J. Limeres, “Two kinetic regimes for high-temperature photorefractive phenomena in LiNbO3,” J. Opt. Soc. Am. B 15, 148–151 (1998).
[CrossRef]

B. I. Sturman, M. Carrascosa, F. Agullo-Lopez, J. Limeres, “Theory of high-temperature photorefractive phenomena in LiNbO3 crystals and applications to experiment,” Phys. Rev. B 57, 792–805 (1990).

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optics crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Vormann, H.

H. Vormann, G. Weber, S. Kapphan, E. Kratzig, “Hydrogen as origin of thermal fixing in LiNbO3:Fe,” Solid State Commun. 40, 543–545 (1981).
[CrossRef]

Weber, G.

H. Vormann, G. Weber, S. Kapphan, E. Kratzig, “Hydrogen as origin of thermal fixing in LiNbO3:Fe,” Solid State Commun. 40, 543–545 (1981).
[CrossRef]

Xu, L.

Yariv, A.

Yeh, P.

C. Gu, J. Hong, H. Y. Li, D. Psaltis, P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167–1172 (1991).
[CrossRef]

Zgonik, M.

Zook, J. D.

J. D. Zook, D. Chen, G. N. Otto, “Temperature dependence and model of the electro-optic effect in LiNbO3,” Appl. Phys. Lett. 11, 159–161 (1967).
[CrossRef]

Adv. Phys. (1)

J. M. Cabrera, J. Olivarest, M. Carrascosa, J. Rams, R. Muller, E. Dieguez, “Hydrogen in lithium niobate,” Adv. Phys. 45, 349–392 (1996).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

J. D. Zook, D. Chen, G. N. Otto, “Temperature dependence and model of the electro-optic effect in LiNbO3,” Appl. Phys. Lett. 11, 159–161 (1967).
[CrossRef]

J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electrooptic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

D. L. Staebler, W. J. Burke, W. Philips, J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975).
[CrossRef]

Appl. Phys. Letts. (1)

S. Orlov, D. Psaltis, R. R. Neurgaonkar, “Dynamic electronic compensation of fixed gratings in photorefractive materials,” Appl. Phys. Letts. 63, 2466–2468 (1993).
[CrossRef]

Ferroelectrics (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optics crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

J. Appl. Phys. (2)

C. Gu, J. Hong, H. Y. Li, D. Psaltis, P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167–1172 (1991).
[CrossRef]

M. Carrascosa, L. Arizmendi, “High-temperature photorefractive effects in LiNbO3:Fe,” J. Appl. Phys. 73, 2709–2713 (1993).
[CrossRef]

J. Mater. Res. (1)

A. Mehta, E. K. Chang, D. M. Smyth, “Ionic transport in LiNbO3,” J. Mater. Res. 6, 851–854 (1991).
[CrossRef]

J. Opt. Soc. Am. B (4)

J. Phys. D (1)

R. Matull, R. A. Rupp, “Microphotometric investigation of fixed holograms,” J. Phys. D 21, 1556–1565 (1988).
[CrossRef]

Opt. Lett. (2)

Opt. Mater. (1)

A. Mendez, L. Arizmendi, “Maximum diffraction efficiency of fixed holograms in lithium niobate,” Opt. Mater. 10, 55–59 (1998).
[CrossRef]

Phys. Rev. B (2)

U. Schlarb, K. Betzler, “Refractive indices of lithium niobate as function of temperature, wavelength, and composition: a generalized fit,” Phys. Rev. B 48, 15,613–15,620 (1993).
[CrossRef]

B. I. Sturman, M. Carrascosa, F. Agullo-Lopez, J. Limeres, “Theory of high-temperature photorefractive phenomena in LiNbO3 crystals and applications to experiment,” Phys. Rev. B 57, 792–805 (1990).

Phys. Status Solidi A (1)

P. Hertel, K. H. Ringhofer, R. Sommerfeldt, “Theory of thermal hologram fixing and application to LiNbO3:Cu,” Phys. Status Solidi A 104, 855–862 (1987).
[CrossRef]

Solid State Commun. (1)

H. Vormann, G. Weber, S. Kapphan, E. Kratzig, “Hydrogen as origin of thermal fixing in LiNbO3:Fe,” Solid State Commun. 40, 543–545 (1981).
[CrossRef]

Sov. Phys. Solid State (1)

V. V. Kulikov, S. I. Stepanov, “Mechanisms of holographic recording and thermal fixing in photorefractive LiNbO3:Fe,” Sov. Phys. Solid State 21, 1849–1851 (1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Ratio of the ionic conductivity and the electronic conductivity and the absolute value of the ionic conductivity as a function of temperature: (a) under light illumination of intensity 150 mW cm-2, (b) in dark.

Fig. 2
Fig. 2

Typical temporal behaviors of the strength of E sc and the temperature for a L–H–L procedure.

Fig. 3
Fig. 3

Dynamics of (a) N D1 t (t) and (b) n i1(t) for the case of I 0 = 150 mW cm-2, I 1 = 50 mW cm-2, and T = 300 K in the recording phase for a L–H–L procedure.

Fig. 4
Fig. 4

Dynamics of (a) N D1 t (t) and (b) n i1(t) for the compensating phase for a L–H–H procedure and T = 400 K.

Fig. 5
Fig. 5

Dynamics of (a) N D1 t (t) and (b) n i1(t) for the developing phase for a L–H–H procedure; I 0 = 150 mW cm-2, and T = 300 K.

Fig. 6
Fig. 6

Final strength of the space-charge field as a function of temperature for compensation time t c in the range of 500–8000 s for a L–H–L procedure.

Fig. 7
Fig. 7

Maximum reachable strength of the space-charge field and the required compensation time as a function of temperature for a L–H–L procedure under the short-circuit condition.

Fig. 8
Fig. 8

Dynamics of (a) N D1 t (t) and (b) n i1(t) for the recording and the compensation phase for a H–L procedure; I 0 = 150 mW cm-2, I 1 = 50 mW cm-2, and T = 400 K.

Fig. 9
Fig. 9

Final strength of the space-charge field as a function of temperature for various compensation times t c in the range of 500–8000 s for a H–L procedure.

Fig. 10
Fig. 10

Maximum reachable strength of the space-charge field and the required recording time as a function of temperature for a H–L procedure under the short-circuit condition.

Fig. 11
Fig. 11

Maximum reachable strength of the space-charge field and the required compensation time as a function of temperature for a L–H–L procedure under the open-circuit condition.

Fig. 12
Fig. 12

Maximum reachable strength of the space-charge field and the required recording time as a function of temperature for a H–L procedure under the open-circuit condition.

Tables (1)

Tables Icon

Table 1 Parameters Chosen for Numerical Calculation

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

ND1ttt=aND1tt+bni1t+c,
ni1tt=dND1tt+eni1t,
a=-ωeγRNA+sI0+βNDNAωe+DeK2+jμeKE0+j PI0Kq γRNAγRNA+ωe+DeK2+jμeKE0,
b=-ωeγRNAγRNA+ωe+DeK2+jμeKE0,
c=jK PND-NAq I1-sND-NAI1γRNA+ωe+DeK2+jμeKE0 γRNA+sND-NAI1,
d=-ωi,
e=-ωi+DiK2-jμiKE0,
ωeqμene0/, the electronic dielectric relaxation rate,
ωiqμini0/, the ionic dielectric relaxation rate.
Esct=E0+E1texp-jKx+c.c.,
E1t=jqKND1tt+ni1t.
σeT=qμene0=q2ND-NAkBTγRNAsI0+β0 exp-D/kBT×De0 exp-e/kBT,
σiT=qμini0=q2ni0kBTDi0 exp-i/kBT.
E1t=jqKA+Bexp-t/τ1+C+Dexp-t/τ2+cd-eae-bd,
τ1=-2a+e+a+e2-4ae-bd1/2,
τ2=-2a+e-a+e2-4ae-bd1/2,
ND1tt=-τ1c+τ1τ1-τ2ceae-bd+τ1cexp-t/τ1-τ2τ1-τ2ceae-bd+τ1cexp-t/τ2-ceae-bd,
ni1t=cdae-bd1-τ1τ1-τ2exp-t/τ1+τ2τ1-τ2exp-t/τ2.
ND1tt=τ1τ2τ1-τ2 ND1ttr×-1τ2 + aexp-t - tr/τ1+1τ1 + aexp-t - tr/τ2,  t  tr,
ni1t=τ1τ2τ1-τ2 dND1ttrexp-t-tr/τ1-exp-t-tr/τ2,  ttr.
ND1tt=τ1τ2τ1-τ2-1τ2+aND1ttr+tc+bni1t4+tcexp-t-tr+tc/τ1+1τ1+aND1ttr+tc+bni1tr+tcexp-t-tr+tc/τ2,  ttr+tc,
ni1t=τ1τ2τ1-τ2-1τ2+fni1tr+tc+dND1ttr+tcexp-t-tr+tc/τ1+1τ1+fni1tr+tc+dND1ttr+tcexp-t-tr+tc/τ2,  ttr+tc.
E0t=E0ph1-exp-ωe+ωit,
E0ph=-PI0ND-NAqμene0+μini0,
E0t=E0trexp-ωe+ωit,
E0t=E0ph1-exp-ωe+ωit+E0tc×exp-ωe+ωit,

Metrics