Abstract

We present the results of three-dimensional third-harmonic generation imaging of laser-induced breakdown in glass by focused microjoule femtosecond near-IR pulses. This technique has the potential to resolve three dimensionally microstructures that result from laser-induced breakdown. As a potential optical data storage approach it is shown that the same IR laser beam can be used for writing and, at a lower power, for reading. The induced microdamage is shown to be three dimensionally confined and to depend on the write power.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Du, X. Liu, G. Korn, J. Squier, G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071–3073 (1994).
    [CrossRef]
  2. D. v. d. Linde, H. Schüler, “Breakdown threshold and plasma formation in femtosecond laser-solid interaction,” J. Opt. Soc. Am. B 13, 216–222 (1996).
    [CrossRef]
  3. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B 13, 459–468 (1996).
    [CrossRef]
  4. C. B. Schaffer, N. Nishimura, E. Mazur, “Thresholds for femtosecond laser-induced breakdown in bulk transparent solids and water,” in Time Structure of X-Ray Sources and Its Applications, A. K. Freund, H. P. Freund, M. R. Howells, eds., Proc. SPIE3451, 2–8 (1998).
    [CrossRef]
  5. C. B. Schaffer, E. N. Glezer, N. Nishimura, E. Mazur, “Ultrafast laser-induced microexplosions: explosive dynamics and submicrometer structures,” in Commercial Applications of Ultrafast Lasers, M. K. Reid, ed., Proc. SPIE3269, 36–45 (1998).
    [CrossRef]
  6. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21, 2023–2025 (1996).
    [CrossRef] [PubMed]
  7. M. Müller, J. Squier, K. R. Wilson, G. J. Brakenhoff, “3D-microscopy of transparent objects using third-harmonic generation,” J. Microsc. (Oxford) 191, 266–274 (1998).
    [CrossRef]
  8. T. Y. F. Tsang, “Optical third-harmonic generation at interfaces,” Phys. Rev. A 52, 4116–4125 (1995).
    [CrossRef] [PubMed]
  9. R. W. Boyd, Nonlinear optics (Academic, Boston, 1992).
  10. Y. Barad, H. Eisenberg, M. Horowitz, Y. Silberberg, “Nonlinear scanning laser microscopy by third-harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
    [CrossRef]
  11. J. Squier, M. Müller, G. J. Brakenhoff, K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express 3, 315–324 (1998).
    [CrossRef] [PubMed]
  12. M. Müller, J. Squier, R. Wolleschensky, U. Simon, G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. (Oxford) 191, 141–150 (1998).
    [CrossRef]

1998

M. Müller, J. Squier, K. R. Wilson, G. J. Brakenhoff, “3D-microscopy of transparent objects using third-harmonic generation,” J. Microsc. (Oxford) 191, 266–274 (1998).
[CrossRef]

M. Müller, J. Squier, R. Wolleschensky, U. Simon, G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. (Oxford) 191, 141–150 (1998).
[CrossRef]

J. Squier, M. Müller, G. J. Brakenhoff, K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express 3, 315–324 (1998).
[CrossRef] [PubMed]

1997

Y. Barad, H. Eisenberg, M. Horowitz, Y. Silberberg, “Nonlinear scanning laser microscopy by third-harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[CrossRef]

1996

1995

T. Y. F. Tsang, “Optical third-harmonic generation at interfaces,” Phys. Rev. A 52, 4116–4125 (1995).
[CrossRef] [PubMed]

1994

D. Du, X. Liu, G. Korn, J. Squier, G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071–3073 (1994).
[CrossRef]

Barad, Y.

Y. Barad, H. Eisenberg, M. Horowitz, Y. Silberberg, “Nonlinear scanning laser microscopy by third-harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear optics (Academic, Boston, 1992).

Brakenhoff, G. J.

J. Squier, M. Müller, G. J. Brakenhoff, K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express 3, 315–324 (1998).
[CrossRef] [PubMed]

M. Müller, J. Squier, K. R. Wilson, G. J. Brakenhoff, “3D-microscopy of transparent objects using third-harmonic generation,” J. Microsc. (Oxford) 191, 266–274 (1998).
[CrossRef]

M. Müller, J. Squier, R. Wolleschensky, U. Simon, G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. (Oxford) 191, 141–150 (1998).
[CrossRef]

Callan, J. P.

Du, D.

D. Du, X. Liu, G. Korn, J. Squier, G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071–3073 (1994).
[CrossRef]

Eisenberg, H.

Y. Barad, H. Eisenberg, M. Horowitz, Y. Silberberg, “Nonlinear scanning laser microscopy by third-harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[CrossRef]

Feit, M. D.

Finlay, R. J.

Glezer, E. N.

E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21, 2023–2025 (1996).
[CrossRef] [PubMed]

C. B. Schaffer, E. N. Glezer, N. Nishimura, E. Mazur, “Ultrafast laser-induced microexplosions: explosive dynamics and submicrometer structures,” in Commercial Applications of Ultrafast Lasers, M. K. Reid, ed., Proc. SPIE3269, 36–45 (1998).
[CrossRef]

Her, T.-H.

Herman, S.

Horowitz, M.

Y. Barad, H. Eisenberg, M. Horowitz, Y. Silberberg, “Nonlinear scanning laser microscopy by third-harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[CrossRef]

Huang, L.

Korn, G.

D. Du, X. Liu, G. Korn, J. Squier, G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071–3073 (1994).
[CrossRef]

Linde, D. v. d.

Liu, X.

D. Du, X. Liu, G. Korn, J. Squier, G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071–3073 (1994).
[CrossRef]

Mazur, E.

E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21, 2023–2025 (1996).
[CrossRef] [PubMed]

C. B. Schaffer, N. Nishimura, E. Mazur, “Thresholds for femtosecond laser-induced breakdown in bulk transparent solids and water,” in Time Structure of X-Ray Sources and Its Applications, A. K. Freund, H. P. Freund, M. R. Howells, eds., Proc. SPIE3451, 2–8 (1998).
[CrossRef]

C. B. Schaffer, E. N. Glezer, N. Nishimura, E. Mazur, “Ultrafast laser-induced microexplosions: explosive dynamics and submicrometer structures,” in Commercial Applications of Ultrafast Lasers, M. K. Reid, ed., Proc. SPIE3269, 36–45 (1998).
[CrossRef]

Milosavljevic, M.

Mourou, G.

D. Du, X. Liu, G. Korn, J. Squier, G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071–3073 (1994).
[CrossRef]

Müller, M.

M. Müller, J. Squier, K. R. Wilson, G. J. Brakenhoff, “3D-microscopy of transparent objects using third-harmonic generation,” J. Microsc. (Oxford) 191, 266–274 (1998).
[CrossRef]

J. Squier, M. Müller, G. J. Brakenhoff, K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express 3, 315–324 (1998).
[CrossRef] [PubMed]

M. Müller, J. Squier, R. Wolleschensky, U. Simon, G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. (Oxford) 191, 141–150 (1998).
[CrossRef]

Nishimura, N.

C. B. Schaffer, E. N. Glezer, N. Nishimura, E. Mazur, “Ultrafast laser-induced microexplosions: explosive dynamics and submicrometer structures,” in Commercial Applications of Ultrafast Lasers, M. K. Reid, ed., Proc. SPIE3269, 36–45 (1998).
[CrossRef]

C. B. Schaffer, N. Nishimura, E. Mazur, “Thresholds for femtosecond laser-induced breakdown in bulk transparent solids and water,” in Time Structure of X-Ray Sources and Its Applications, A. K. Freund, H. P. Freund, M. R. Howells, eds., Proc. SPIE3451, 2–8 (1998).
[CrossRef]

Perry, M. D.

Rubenchik, A. M.

Schaffer, C. B.

C. B. Schaffer, N. Nishimura, E. Mazur, “Thresholds for femtosecond laser-induced breakdown in bulk transparent solids and water,” in Time Structure of X-Ray Sources and Its Applications, A. K. Freund, H. P. Freund, M. R. Howells, eds., Proc. SPIE3451, 2–8 (1998).
[CrossRef]

C. B. Schaffer, E. N. Glezer, N. Nishimura, E. Mazur, “Ultrafast laser-induced microexplosions: explosive dynamics and submicrometer structures,” in Commercial Applications of Ultrafast Lasers, M. K. Reid, ed., Proc. SPIE3269, 36–45 (1998).
[CrossRef]

Schüler, H.

Shore, B. W.

Silberberg, Y.

Y. Barad, H. Eisenberg, M. Horowitz, Y. Silberberg, “Nonlinear scanning laser microscopy by third-harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[CrossRef]

Simon, U.

M. Müller, J. Squier, R. Wolleschensky, U. Simon, G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. (Oxford) 191, 141–150 (1998).
[CrossRef]

Squier, J.

M. Müller, J. Squier, R. Wolleschensky, U. Simon, G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. (Oxford) 191, 141–150 (1998).
[CrossRef]

M. Müller, J. Squier, K. R. Wilson, G. J. Brakenhoff, “3D-microscopy of transparent objects using third-harmonic generation,” J. Microsc. (Oxford) 191, 266–274 (1998).
[CrossRef]

J. Squier, M. Müller, G. J. Brakenhoff, K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express 3, 315–324 (1998).
[CrossRef] [PubMed]

D. Du, X. Liu, G. Korn, J. Squier, G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071–3073 (1994).
[CrossRef]

Stuart, B. C.

Tsang, T. Y. F.

T. Y. F. Tsang, “Optical third-harmonic generation at interfaces,” Phys. Rev. A 52, 4116–4125 (1995).
[CrossRef] [PubMed]

Wilson, K. R.

J. Squier, M. Müller, G. J. Brakenhoff, K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express 3, 315–324 (1998).
[CrossRef] [PubMed]

M. Müller, J. Squier, K. R. Wilson, G. J. Brakenhoff, “3D-microscopy of transparent objects using third-harmonic generation,” J. Microsc. (Oxford) 191, 266–274 (1998).
[CrossRef]

Wolleschensky, R.

M. Müller, J. Squier, R. Wolleschensky, U. Simon, G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. (Oxford) 191, 141–150 (1998).
[CrossRef]

Appl. Phys. Lett.

D. Du, X. Liu, G. Korn, J. Squier, G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071–3073 (1994).
[CrossRef]

Y. Barad, H. Eisenberg, M. Horowitz, Y. Silberberg, “Nonlinear scanning laser microscopy by third-harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[CrossRef]

J. Microsc. (Oxford)

M. Müller, J. Squier, R. Wolleschensky, U. Simon, G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. (Oxford) 191, 141–150 (1998).
[CrossRef]

M. Müller, J. Squier, K. R. Wilson, G. J. Brakenhoff, “3D-microscopy of transparent objects using third-harmonic generation,” J. Microsc. (Oxford) 191, 266–274 (1998).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Phys. Rev. A

T. Y. F. Tsang, “Optical third-harmonic generation at interfaces,” Phys. Rev. A 52, 4116–4125 (1995).
[CrossRef] [PubMed]

Other

R. W. Boyd, Nonlinear optics (Academic, Boston, 1992).

C. B. Schaffer, N. Nishimura, E. Mazur, “Thresholds for femtosecond laser-induced breakdown in bulk transparent solids and water,” in Time Structure of X-Ray Sources and Its Applications, A. K. Freund, H. P. Freund, M. R. Howells, eds., Proc. SPIE3451, 2–8 (1998).
[CrossRef]

C. B. Schaffer, E. N. Glezer, N. Nishimura, E. Mazur, “Ultrafast laser-induced microexplosions: explosive dynamics and submicrometer structures,” in Commercial Applications of Ultrafast Lasers, M. K. Reid, ed., Proc. SPIE3269, 36–45 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the experimental setup used for both writing and reading of microdamage patterns in optical glass: OPA, optical parametric amplifier; F1, RG1000 long-wave pass filter; Ms, scanning mirror; L, lens; O1, 40×/0.65 numerical aperture Zeiss A-Plan microscope objective; S, specimen; O2, 20×/0.45 numerical aperture Zeiss A-Plan microscope objective; F2, BG39 blocking filter; M1, insertable mirror; CCD, video CCD camera; Spetr, liquid-nitrogen-cooled spectrometer.

Fig. 2
Fig. 2

Single-shot, background-free, SHG autocorrelation trace of the laser pulse from the OPA.

Fig. 3
Fig. 3

THG output spectrum from a focal point in the bulk of the sample, a 140-µm microscope cover slip, as a function of power in the fundamental beam: (a) P = 5.7 × 1013 W/cm2, (b) P = 7.1 × 1013 W/cm2, (c) P = 9.0 × 1013 W/cm2. The three curves have been offset relative to each other at 0.1 increments to emphasize the appearance of longer wavelength components (≥450 nm) in the spectrum at higher energy levels.

Fig. 4
Fig. 4

Raw data THG readout images of four above-threshold-written, microdamage patterns. The frames were taken at 4-µm axial intervals from an original stack at 2-µm axial intervals. The letters are written in axial planes spaced 19 µm apart. The arrow indicates the position at which the lateral THG intensity profile was taken for Fig. 5.

Fig. 5
Fig. 5

Lateral THG intensity profile of the letter D taken at the arrow position in frame 17, Fig. 4.

Fig. 6
Fig. 6

Three-dimensional reconstruction from the axially sectioned THG image of Fig. 4. The letters are approximately 20 µm wide and were written in focal planes spaced 19 µm apart.

Fig. 7
Fig. 7

(a), (b) Lateral and (c), (d) axial THG image intensity profiles of a single written spot. The write power is 2.4 µJ/pulse in (a) and (c) and 0.7 µJ in (b) and (d). The FWHM for the profiles are listed in Table 1.

Fig. 8
Fig. 8

Three-dimensional reconstruction from the axially sectioned THG images of a single written spot. The spots were written with (a) 2.4 µJ/pulse and (b) 0.7 µJ/pulse.

Tables (1)

Tables Icon

Table 1 FWHM of the THG Intensity Profiles of Fig. 5

Metrics