Abstract

We found that the Eu3+ ion occupies several distinct sites in Y2SiO5. We were also able to perform hole-burning studies in more than 40 different transitions.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. E. Moerner, ed., Persistent Spectral Hole-Burning: Science and Applications, Vol. 44 of Topics in Current Physics (Springer-Verlag, New York, 1988).
    [CrossRef]
  2. Y. Mao, P. Gavrilovic, S. Singh, A. Bruce, W. H. Grodkiewicz, “Persistent spectral hole burning at liquid nitrogen temperature in Eu3+-doped aluminosilicate glass,” Appl. Phys. Letts. 68, 3677–3679 (1996).
    [CrossRef]
  3. K. Fujita, K. Hirao, K. Tanaka, N. Soga, H. Sasaki, “Persistent spectral hole burning of Eu3+ ions in sodium aluminosilicate glasses,” J. Appl. Phys. 82, 5114–5120 (1997).
    [CrossRef]
  4. R. J. Hamers, J. R. Weitfeldt, J. C. Wright, “Defect chemistry in CaF2:Eu3+,” J. Chem. Phys. 77, 683–692 (1982).
    [CrossRef]
  5. R. Yano, M. Mitsunaga, N. Uesugi, “Ultralong optical dephasing time in Eu3+:Y2SiO5,” Opt. Lett. 16, 1884–1886 (1991).
    [CrossRef] [PubMed]
  6. M. Mitsunaga, R. Yano, N. Uesugi, “Time- and frequency-domain hybrid optical memory: 1.6-kbit data storage in Eu3+:Y2SiO5,” Opt. Lett. 16, 1890–1893 (1991).
    [CrossRef] [PubMed]
  7. X. A. Shen, R. Kachru, “7F0–5D1 Transition in Eu3+:Y2SiO5,” J. Opt. Soc. Am. B 11, 591–596 (1994).
    [CrossRef]
  8. R. Yano, M. Mitsunaga, N. Uesugi, “Nonlinear laser spectroscopy of Eu3+:Y2SiO5 and its applications to time domain optical memory,” J. Opt. Soc. Am. B 9, 992–997 (1992).
    [CrossRef]
  9. L. E. Erickson, K. K. Sharma, “Nuclear quadrupole resonance measurement of the anisotropic magnetic shielding and quadrupole coupling constants of 151Eu3+ and 153Eu3+ dilute in YAlO3 single crystal,” Phys. Rev. B 24, 3697–3700 (1981).
    [CrossRef]
  10. R. M. Macfarlane, R. M. Shelby, “Measurement of optical dephasing of Eu3+ and Pr3+ doped silicate glasses by spectral holeburning,” Opt. Commun. 45, 46–51 (1983).
    [CrossRef]
  11. A. J. Silversmith, A. P. Radlinski, N. B. Manson, “Optical study of hyperfine coupling in the 7F0 and 5D0 states of two Eu3+ centers in CaF2 and CdF2,” Phys. Rev. B 34, 7554–7563 (1986).
    [CrossRef]
  12. N. B. Manson, M. J. Sellers, P. T. H. Fisk, R. S. Meltzer, “Hole burning of rare-earth ions with kHz resolution,” J. Lumin. 64, 19–23 (1995).
    [CrossRef]
  13. M. Yamaguchi, K. Koyama, T. Suemoto, M. Mitsunaga, “Mapping of site distribution in Eu3+:YAlO3 on RF-optical frequency axes by using double resonance spectroscopy,” J. Lumin. 76/77, 681–684 (1998).
    [CrossRef]
  14. R. L. Cone, M. J. M. Leask, M. G. Robinson, B. E. Watts, “Nuclear quadrupole optical hole burning in stochiometric EuAsO4,” J. Phys. C 21, 3361–3380 (1988).
    [CrossRef]
  15. A. M. Stoneham, “Shapes of inhomogeneously broadened resonance lines in solids,” Rev. Mod. Phys. 41, 82–108 (1969).
    [CrossRef]
  16. A. L. Schawlow, “Width and positions of sharp optical lines,” in Advances in Quantum Electronics III, P. Grivet, N. Bloembergen, eds. (Columbia U. Press, New York, 1963), pp. 645–653.

1998 (1)

M. Yamaguchi, K. Koyama, T. Suemoto, M. Mitsunaga, “Mapping of site distribution in Eu3+:YAlO3 on RF-optical frequency axes by using double resonance spectroscopy,” J. Lumin. 76/77, 681–684 (1998).
[CrossRef]

1997 (1)

K. Fujita, K. Hirao, K. Tanaka, N. Soga, H. Sasaki, “Persistent spectral hole burning of Eu3+ ions in sodium aluminosilicate glasses,” J. Appl. Phys. 82, 5114–5120 (1997).
[CrossRef]

1996 (1)

Y. Mao, P. Gavrilovic, S. Singh, A. Bruce, W. H. Grodkiewicz, “Persistent spectral hole burning at liquid nitrogen temperature in Eu3+-doped aluminosilicate glass,” Appl. Phys. Letts. 68, 3677–3679 (1996).
[CrossRef]

1995 (1)

N. B. Manson, M. J. Sellers, P. T. H. Fisk, R. S. Meltzer, “Hole burning of rare-earth ions with kHz resolution,” J. Lumin. 64, 19–23 (1995).
[CrossRef]

1994 (1)

1992 (1)

1991 (2)

1988 (1)

R. L. Cone, M. J. M. Leask, M. G. Robinson, B. E. Watts, “Nuclear quadrupole optical hole burning in stochiometric EuAsO4,” J. Phys. C 21, 3361–3380 (1988).
[CrossRef]

1986 (1)

A. J. Silversmith, A. P. Radlinski, N. B. Manson, “Optical study of hyperfine coupling in the 7F0 and 5D0 states of two Eu3+ centers in CaF2 and CdF2,” Phys. Rev. B 34, 7554–7563 (1986).
[CrossRef]

1983 (1)

R. M. Macfarlane, R. M. Shelby, “Measurement of optical dephasing of Eu3+ and Pr3+ doped silicate glasses by spectral holeburning,” Opt. Commun. 45, 46–51 (1983).
[CrossRef]

1982 (1)

R. J. Hamers, J. R. Weitfeldt, J. C. Wright, “Defect chemistry in CaF2:Eu3+,” J. Chem. Phys. 77, 683–692 (1982).
[CrossRef]

1981 (1)

L. E. Erickson, K. K. Sharma, “Nuclear quadrupole resonance measurement of the anisotropic magnetic shielding and quadrupole coupling constants of 151Eu3+ and 153Eu3+ dilute in YAlO3 single crystal,” Phys. Rev. B 24, 3697–3700 (1981).
[CrossRef]

1969 (1)

A. M. Stoneham, “Shapes of inhomogeneously broadened resonance lines in solids,” Rev. Mod. Phys. 41, 82–108 (1969).
[CrossRef]

Bruce, A.

Y. Mao, P. Gavrilovic, S. Singh, A. Bruce, W. H. Grodkiewicz, “Persistent spectral hole burning at liquid nitrogen temperature in Eu3+-doped aluminosilicate glass,” Appl. Phys. Letts. 68, 3677–3679 (1996).
[CrossRef]

Cone, R. L.

R. L. Cone, M. J. M. Leask, M. G. Robinson, B. E. Watts, “Nuclear quadrupole optical hole burning in stochiometric EuAsO4,” J. Phys. C 21, 3361–3380 (1988).
[CrossRef]

Erickson, L. E.

L. E. Erickson, K. K. Sharma, “Nuclear quadrupole resonance measurement of the anisotropic magnetic shielding and quadrupole coupling constants of 151Eu3+ and 153Eu3+ dilute in YAlO3 single crystal,” Phys. Rev. B 24, 3697–3700 (1981).
[CrossRef]

Fisk, P. T. H.

N. B. Manson, M. J. Sellers, P. T. H. Fisk, R. S. Meltzer, “Hole burning of rare-earth ions with kHz resolution,” J. Lumin. 64, 19–23 (1995).
[CrossRef]

Fujita, K.

K. Fujita, K. Hirao, K. Tanaka, N. Soga, H. Sasaki, “Persistent spectral hole burning of Eu3+ ions in sodium aluminosilicate glasses,” J. Appl. Phys. 82, 5114–5120 (1997).
[CrossRef]

Gavrilovic, P.

Y. Mao, P. Gavrilovic, S. Singh, A. Bruce, W. H. Grodkiewicz, “Persistent spectral hole burning at liquid nitrogen temperature in Eu3+-doped aluminosilicate glass,” Appl. Phys. Letts. 68, 3677–3679 (1996).
[CrossRef]

Grodkiewicz, W. H.

Y. Mao, P. Gavrilovic, S. Singh, A. Bruce, W. H. Grodkiewicz, “Persistent spectral hole burning at liquid nitrogen temperature in Eu3+-doped aluminosilicate glass,” Appl. Phys. Letts. 68, 3677–3679 (1996).
[CrossRef]

Hamers, R. J.

R. J. Hamers, J. R. Weitfeldt, J. C. Wright, “Defect chemistry in CaF2:Eu3+,” J. Chem. Phys. 77, 683–692 (1982).
[CrossRef]

Hirao, K.

K. Fujita, K. Hirao, K. Tanaka, N. Soga, H. Sasaki, “Persistent spectral hole burning of Eu3+ ions in sodium aluminosilicate glasses,” J. Appl. Phys. 82, 5114–5120 (1997).
[CrossRef]

Kachru, R.

Koyama, K.

M. Yamaguchi, K. Koyama, T. Suemoto, M. Mitsunaga, “Mapping of site distribution in Eu3+:YAlO3 on RF-optical frequency axes by using double resonance spectroscopy,” J. Lumin. 76/77, 681–684 (1998).
[CrossRef]

Leask, M. J. M.

R. L. Cone, M. J. M. Leask, M. G. Robinson, B. E. Watts, “Nuclear quadrupole optical hole burning in stochiometric EuAsO4,” J. Phys. C 21, 3361–3380 (1988).
[CrossRef]

Macfarlane, R. M.

R. M. Macfarlane, R. M. Shelby, “Measurement of optical dephasing of Eu3+ and Pr3+ doped silicate glasses by spectral holeburning,” Opt. Commun. 45, 46–51 (1983).
[CrossRef]

Manson, N. B.

N. B. Manson, M. J. Sellers, P. T. H. Fisk, R. S. Meltzer, “Hole burning of rare-earth ions with kHz resolution,” J. Lumin. 64, 19–23 (1995).
[CrossRef]

A. J. Silversmith, A. P. Radlinski, N. B. Manson, “Optical study of hyperfine coupling in the 7F0 and 5D0 states of two Eu3+ centers in CaF2 and CdF2,” Phys. Rev. B 34, 7554–7563 (1986).
[CrossRef]

Mao, Y.

Y. Mao, P. Gavrilovic, S. Singh, A. Bruce, W. H. Grodkiewicz, “Persistent spectral hole burning at liquid nitrogen temperature in Eu3+-doped aluminosilicate glass,” Appl. Phys. Letts. 68, 3677–3679 (1996).
[CrossRef]

Meltzer, R. S.

N. B. Manson, M. J. Sellers, P. T. H. Fisk, R. S. Meltzer, “Hole burning of rare-earth ions with kHz resolution,” J. Lumin. 64, 19–23 (1995).
[CrossRef]

Mitsunaga, M.

Radlinski, A. P.

A. J. Silversmith, A. P. Radlinski, N. B. Manson, “Optical study of hyperfine coupling in the 7F0 and 5D0 states of two Eu3+ centers in CaF2 and CdF2,” Phys. Rev. B 34, 7554–7563 (1986).
[CrossRef]

Robinson, M. G.

R. L. Cone, M. J. M. Leask, M. G. Robinson, B. E. Watts, “Nuclear quadrupole optical hole burning in stochiometric EuAsO4,” J. Phys. C 21, 3361–3380 (1988).
[CrossRef]

Sasaki, H.

K. Fujita, K. Hirao, K. Tanaka, N. Soga, H. Sasaki, “Persistent spectral hole burning of Eu3+ ions in sodium aluminosilicate glasses,” J. Appl. Phys. 82, 5114–5120 (1997).
[CrossRef]

Schawlow, A. L.

A. L. Schawlow, “Width and positions of sharp optical lines,” in Advances in Quantum Electronics III, P. Grivet, N. Bloembergen, eds. (Columbia U. Press, New York, 1963), pp. 645–653.

Sellers, M. J.

N. B. Manson, M. J. Sellers, P. T. H. Fisk, R. S. Meltzer, “Hole burning of rare-earth ions with kHz resolution,” J. Lumin. 64, 19–23 (1995).
[CrossRef]

Sharma, K. K.

L. E. Erickson, K. K. Sharma, “Nuclear quadrupole resonance measurement of the anisotropic magnetic shielding and quadrupole coupling constants of 151Eu3+ and 153Eu3+ dilute in YAlO3 single crystal,” Phys. Rev. B 24, 3697–3700 (1981).
[CrossRef]

Shelby, R. M.

R. M. Macfarlane, R. M. Shelby, “Measurement of optical dephasing of Eu3+ and Pr3+ doped silicate glasses by spectral holeburning,” Opt. Commun. 45, 46–51 (1983).
[CrossRef]

Shen, X. A.

Silversmith, A. J.

A. J. Silversmith, A. P. Radlinski, N. B. Manson, “Optical study of hyperfine coupling in the 7F0 and 5D0 states of two Eu3+ centers in CaF2 and CdF2,” Phys. Rev. B 34, 7554–7563 (1986).
[CrossRef]

Singh, S.

Y. Mao, P. Gavrilovic, S. Singh, A. Bruce, W. H. Grodkiewicz, “Persistent spectral hole burning at liquid nitrogen temperature in Eu3+-doped aluminosilicate glass,” Appl. Phys. Letts. 68, 3677–3679 (1996).
[CrossRef]

Soga, N.

K. Fujita, K. Hirao, K. Tanaka, N. Soga, H. Sasaki, “Persistent spectral hole burning of Eu3+ ions in sodium aluminosilicate glasses,” J. Appl. Phys. 82, 5114–5120 (1997).
[CrossRef]

Stoneham, A. M.

A. M. Stoneham, “Shapes of inhomogeneously broadened resonance lines in solids,” Rev. Mod. Phys. 41, 82–108 (1969).
[CrossRef]

Suemoto, T.

M. Yamaguchi, K. Koyama, T. Suemoto, M. Mitsunaga, “Mapping of site distribution in Eu3+:YAlO3 on RF-optical frequency axes by using double resonance spectroscopy,” J. Lumin. 76/77, 681–684 (1998).
[CrossRef]

Tanaka, K.

K. Fujita, K. Hirao, K. Tanaka, N. Soga, H. Sasaki, “Persistent spectral hole burning of Eu3+ ions in sodium aluminosilicate glasses,” J. Appl. Phys. 82, 5114–5120 (1997).
[CrossRef]

Uesugi, N.

Watts, B. E.

R. L. Cone, M. J. M. Leask, M. G. Robinson, B. E. Watts, “Nuclear quadrupole optical hole burning in stochiometric EuAsO4,” J. Phys. C 21, 3361–3380 (1988).
[CrossRef]

Weitfeldt, J. R.

R. J. Hamers, J. R. Weitfeldt, J. C. Wright, “Defect chemistry in CaF2:Eu3+,” J. Chem. Phys. 77, 683–692 (1982).
[CrossRef]

Wright, J. C.

R. J. Hamers, J. R. Weitfeldt, J. C. Wright, “Defect chemistry in CaF2:Eu3+,” J. Chem. Phys. 77, 683–692 (1982).
[CrossRef]

Yamaguchi, M.

M. Yamaguchi, K. Koyama, T. Suemoto, M. Mitsunaga, “Mapping of site distribution in Eu3+:YAlO3 on RF-optical frequency axes by using double resonance spectroscopy,” J. Lumin. 76/77, 681–684 (1998).
[CrossRef]

Yano, R.

Appl. Phys. Letts. (1)

Y. Mao, P. Gavrilovic, S. Singh, A. Bruce, W. H. Grodkiewicz, “Persistent spectral hole burning at liquid nitrogen temperature in Eu3+-doped aluminosilicate glass,” Appl. Phys. Letts. 68, 3677–3679 (1996).
[CrossRef]

J. Appl. Phys. (1)

K. Fujita, K. Hirao, K. Tanaka, N. Soga, H. Sasaki, “Persistent spectral hole burning of Eu3+ ions in sodium aluminosilicate glasses,” J. Appl. Phys. 82, 5114–5120 (1997).
[CrossRef]

J. Chem. Phys. (1)

R. J. Hamers, J. R. Weitfeldt, J. C. Wright, “Defect chemistry in CaF2:Eu3+,” J. Chem. Phys. 77, 683–692 (1982).
[CrossRef]

J. Lumin. (2)

N. B. Manson, M. J. Sellers, P. T. H. Fisk, R. S. Meltzer, “Hole burning of rare-earth ions with kHz resolution,” J. Lumin. 64, 19–23 (1995).
[CrossRef]

M. Yamaguchi, K. Koyama, T. Suemoto, M. Mitsunaga, “Mapping of site distribution in Eu3+:YAlO3 on RF-optical frequency axes by using double resonance spectroscopy,” J. Lumin. 76/77, 681–684 (1998).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. C (1)

R. L. Cone, M. J. M. Leask, M. G. Robinson, B. E. Watts, “Nuclear quadrupole optical hole burning in stochiometric EuAsO4,” J. Phys. C 21, 3361–3380 (1988).
[CrossRef]

Opt. Commun. (1)

R. M. Macfarlane, R. M. Shelby, “Measurement of optical dephasing of Eu3+ and Pr3+ doped silicate glasses by spectral holeburning,” Opt. Commun. 45, 46–51 (1983).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. B (2)

A. J. Silversmith, A. P. Radlinski, N. B. Manson, “Optical study of hyperfine coupling in the 7F0 and 5D0 states of two Eu3+ centers in CaF2 and CdF2,” Phys. Rev. B 34, 7554–7563 (1986).
[CrossRef]

L. E. Erickson, K. K. Sharma, “Nuclear quadrupole resonance measurement of the anisotropic magnetic shielding and quadrupole coupling constants of 151Eu3+ and 153Eu3+ dilute in YAlO3 single crystal,” Phys. Rev. B 24, 3697–3700 (1981).
[CrossRef]

Rev. Mod. Phys. (1)

A. M. Stoneham, “Shapes of inhomogeneously broadened resonance lines in solids,” Rev. Mod. Phys. 41, 82–108 (1969).
[CrossRef]

Other (2)

A. L. Schawlow, “Width and positions of sharp optical lines,” in Advances in Quantum Electronics III, P. Grivet, N. Bloembergen, eds. (Columbia U. Press, New York, 1963), pp. 645–653.

W. E. Moerner, ed., Persistent Spectral Hole-Burning: Science and Applications, Vol. 44 of Topics in Current Physics (Springer-Verlag, New York, 1988).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Excitation spectrum of the 612-nm peak revealing the absorption transition, 7 F 05 D 0.

Fig. 2
Fig. 2

5 D 07 F j (j = 0–2) emission spectra observed on excitation of different sites: (a) λex = 580.42 nm, (b) λex = 580.57 nm, (c) λex = 580.72 nm, (d) λex = 580.89 nm. The 612- and the 613-nm peaks are not resolved in this figure. (a) and (d) are expanded 100× when compared with the other two.

Fig. 3
Fig. 3

Excitation spectrum (7 F 05 D 0) reveals holes in both peaks 1 and 2, indicating that they are electronic levels of different sites.

Fig. 4
Fig. 4

Excitation spectrum of the 612-nm emission peak reveals 42 distinct peaks. Each peak represents the 5 D 0 level of a particular site. Peaks 12 and 34 are the strongest and were reported by Mitsunaga et al., and the wavelengths they measured are given in parentheses (Refs. 5 and 8). The numbers along the bottom are multiplication factors used to record the spectrum.

Fig. 5
Fig. 5

Hole-burning spectra of the 7 F 05 D 0 transition in Y2SiO5:Eu3+ observed at 9 K for peaks 3 and 12. The data were acquired with a computer, and the high-frequency noise was removed by use of fast-Fourier-transform filtering.

Metrics