Abstract

An optical-loss measurement system based on a resonant Fabry–Perot cavity at 1.06 µm in vacuum has been developed for independent monitoring of the cavity total loss and the optical absorption loss. Maintenance of cavity resonance over a one-month period allows the assessment of long-term degradation of the cavity optics in the presence of outgassing materials, with sensitivities of 5 ppm/yr for total cavity loss and 2 ppm/yr for cavity absorption loss. Test results for light-emitting diodes, Kapton-insulated cable assemblies, and Vac-seal epoxy adhesive are given. Scaling of these results to the optical performance requirements of LIGO is discussed.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
    [CrossRef] [PubMed]
  2. D. Z. Anderson, J. C. Frisch, C. S. Masser, “Mirror reflectometer based on optical cavity decay time,” Appl. Opt. 23, 1238–1245 (1984).
    [CrossRef] [PubMed]
  3. A. Abramovici, T. T. Lyons, F. J. Raab, “Measured limits to contamination of optical surfaces by elastomers in vacuum,” Appl. Opt. 34, 183–185 (1995).
    [CrossRef] [PubMed]
  4. A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381–431 (1986).
    [CrossRef]
  5. E. Welsch, D. Ristau, “Photothermal measurements on optical thin films,” Appl. Opt. 34, 7239–7253 (1995).
    [CrossRef] [PubMed]
  6. Z. L. Wu, M. Thomsen, P. K. Kuo, Y. S. Lu, C. Stolz, M. Kozlowski, “Photothermal characterization of optical thin film coatings,” Opt. Eng. 36, 251–262 (1997).
    [CrossRef]
  7. N. Uehara, E. K. Gustafson, M. M. Fejer, R. L. Byer, “Modeling of efficient mode-matching and thermal-lensing effect on a laser-beam coupling into a mode-cleaner cavity,” in Modeling and Simulation of High-Power Laser Systems IV, U. O. Farrukh, S. Basu, eds., Proc. SPIE2989, 57–68 (1997).
    [CrossRef]
  8. W. Winkler, K. Danzmann, A. Rüdiger, R. Schilling, “Heating by optical absorption and the performance of interferometric gravitational-wave detectors,” Phys. Rev. A 44, 7022–7036 (1991).
    [CrossRef] [PubMed]
  9. P. W. Milonni, J. H. Eberly, Lasers (Wiley, 1988), p. 505.
  10. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
    [CrossRef]
  11. J. F. O’Hanlon, A User’s Guide to Vacuum Technology (Wiley, 1989), pp. 8–23.

1997 (1)

Z. L. Wu, M. Thomsen, P. K. Kuo, Y. S. Lu, C. Stolz, M. Kozlowski, “Photothermal characterization of optical thin film coatings,” Opt. Eng. 36, 251–262 (1997).
[CrossRef]

1995 (2)

1992 (1)

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

1991 (1)

W. Winkler, K. Danzmann, A. Rüdiger, R. Schilling, “Heating by optical absorption and the performance of interferometric gravitational-wave detectors,” Phys. Rev. A 44, 7022–7036 (1991).
[CrossRef] [PubMed]

1986 (1)

A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381–431 (1986).
[CrossRef]

1984 (1)

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Abramovici, A.

A. Abramovici, T. T. Lyons, F. J. Raab, “Measured limits to contamination of optical surfaces by elastomers in vacuum,” Appl. Opt. 34, 183–185 (1995).
[CrossRef] [PubMed]

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Althouse, W. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Anderson, D. Z.

Byer, R. L.

N. Uehara, E. K. Gustafson, M. M. Fejer, R. L. Byer, “Modeling of efficient mode-matching and thermal-lensing effect on a laser-beam coupling into a mode-cleaner cavity,” in Modeling and Simulation of High-Power Laser Systems IV, U. O. Farrukh, S. Basu, eds., Proc. SPIE2989, 57–68 (1997).
[CrossRef]

Danzmann, K.

W. Winkler, K. Danzmann, A. Rüdiger, R. Schilling, “Heating by optical absorption and the performance of interferometric gravitational-wave detectors,” Phys. Rev. A 44, 7022–7036 (1991).
[CrossRef] [PubMed]

Drever, R. W. P.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Eberly, J. H.

P. W. Milonni, J. H. Eberly, Lasers (Wiley, 1988), p. 505.

Fejer, M. M.

N. Uehara, E. K. Gustafson, M. M. Fejer, R. L. Byer, “Modeling of efficient mode-matching and thermal-lensing effect on a laser-beam coupling into a mode-cleaner cavity,” in Modeling and Simulation of High-Power Laser Systems IV, U. O. Farrukh, S. Basu, eds., Proc. SPIE2989, 57–68 (1997).
[CrossRef]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Frisch, J. C.

Gürsel, Y.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Gustafson, E. K.

N. Uehara, E. K. Gustafson, M. M. Fejer, R. L. Byer, “Modeling of efficient mode-matching and thermal-lensing effect on a laser-beam coupling into a mode-cleaner cavity,” in Modeling and Simulation of High-Power Laser Systems IV, U. O. Farrukh, S. Basu, eds., Proc. SPIE2989, 57–68 (1997).
[CrossRef]

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Kawamura, S.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Kozlowski, M.

Z. L. Wu, M. Thomsen, P. K. Kuo, Y. S. Lu, C. Stolz, M. Kozlowski, “Photothermal characterization of optical thin film coatings,” Opt. Eng. 36, 251–262 (1997).
[CrossRef]

Kuo, P. K.

Z. L. Wu, M. Thomsen, P. K. Kuo, Y. S. Lu, C. Stolz, M. Kozlowski, “Photothermal characterization of optical thin film coatings,” Opt. Eng. 36, 251–262 (1997).
[CrossRef]

Lu, Y. S.

Z. L. Wu, M. Thomsen, P. K. Kuo, Y. S. Lu, C. Stolz, M. Kozlowski, “Photothermal characterization of optical thin film coatings,” Opt. Eng. 36, 251–262 (1997).
[CrossRef]

Lyons, T. T.

Masser, C. S.

Milonni, P. W.

P. W. Milonni, J. H. Eberly, Lasers (Wiley, 1988), p. 505.

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

O’Hanlon, J. F.

J. F. O’Hanlon, A User’s Guide to Vacuum Technology (Wiley, 1989), pp. 8–23.

Raab, F. J.

A. Abramovici, T. T. Lyons, F. J. Raab, “Measured limits to contamination of optical surfaces by elastomers in vacuum,” Appl. Opt. 34, 183–185 (1995).
[CrossRef] [PubMed]

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Ristau, D.

Rüdiger, A.

W. Winkler, K. Danzmann, A. Rüdiger, R. Schilling, “Heating by optical absorption and the performance of interferometric gravitational-wave detectors,” Phys. Rev. A 44, 7022–7036 (1991).
[CrossRef] [PubMed]

Schilling, R.

W. Winkler, K. Danzmann, A. Rüdiger, R. Schilling, “Heating by optical absorption and the performance of interferometric gravitational-wave detectors,” Phys. Rev. A 44, 7022–7036 (1991).
[CrossRef] [PubMed]

Shoemaker, D.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Sievers, L.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Spero, R. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Stolz, C.

Z. L. Wu, M. Thomsen, P. K. Kuo, Y. S. Lu, C. Stolz, M. Kozlowski, “Photothermal characterization of optical thin film coatings,” Opt. Eng. 36, 251–262 (1997).
[CrossRef]

Tam, A. C.

A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381–431 (1986).
[CrossRef]

Thomsen, M.

Z. L. Wu, M. Thomsen, P. K. Kuo, Y. S. Lu, C. Stolz, M. Kozlowski, “Photothermal characterization of optical thin film coatings,” Opt. Eng. 36, 251–262 (1997).
[CrossRef]

Thorne, K. S.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Uehara, N.

N. Uehara, E. K. Gustafson, M. M. Fejer, R. L. Byer, “Modeling of efficient mode-matching and thermal-lensing effect on a laser-beam coupling into a mode-cleaner cavity,” in Modeling and Simulation of High-Power Laser Systems IV, U. O. Farrukh, S. Basu, eds., Proc. SPIE2989, 57–68 (1997).
[CrossRef]

Vogt, R. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Weiss, R.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Welsch, E.

Whitcomb, S. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Winkler, W.

W. Winkler, K. Danzmann, A. Rüdiger, R. Schilling, “Heating by optical absorption and the performance of interferometric gravitational-wave detectors,” Phys. Rev. A 44, 7022–7036 (1991).
[CrossRef] [PubMed]

Wu, Z. L.

Z. L. Wu, M. Thomsen, P. K. Kuo, Y. S. Lu, C. Stolz, M. Kozlowski, “Photothermal characterization of optical thin film coatings,” Opt. Eng. 36, 251–262 (1997).
[CrossRef]

Zucker, M. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Appl. Opt. (3)

Appl. Phys. B (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Opt. Eng. (1)

Z. L. Wu, M. Thomsen, P. K. Kuo, Y. S. Lu, C. Stolz, M. Kozlowski, “Photothermal characterization of optical thin film coatings,” Opt. Eng. 36, 251–262 (1997).
[CrossRef]

Phys. Rev. A (1)

W. Winkler, K. Danzmann, A. Rüdiger, R. Schilling, “Heating by optical absorption and the performance of interferometric gravitational-wave detectors,” Phys. Rev. A 44, 7022–7036 (1991).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381–431 (1986).
[CrossRef]

Science (1)

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Other (3)

N. Uehara, E. K. Gustafson, M. M. Fejer, R. L. Byer, “Modeling of efficient mode-matching and thermal-lensing effect on a laser-beam coupling into a mode-cleaner cavity,” in Modeling and Simulation of High-Power Laser Systems IV, U. O. Farrukh, S. Basu, eds., Proc. SPIE2989, 57–68 (1997).
[CrossRef]

P. W. Milonni, J. H. Eberly, Lasers (Wiley, 1988), p. 505.

J. F. O’Hanlon, A User’s Guide to Vacuum Technology (Wiley, 1989), pp. 8–23.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the optical contamination cavity setup. λ/2 and λ/4, half-wave and quarter-wave plates; M1–M6, mirrors; EOM, electro-optic modulator; PBS, polarizing beam splitter; PD, photodetector; A1 and A2, low-noise amplifiers; BS, beam splitter; SPZT and FPZT, slow and fast piezofrequency actuators of the laser frequency servo system. The PBS in combination with the λ/4 plate function to discriminate the cavity reflection beam from the incident beam. The decay PD is used to monitor the cavity transmitted power decay for total cavity loss measurement, whereas the fast PD measures the beat frequency between cavity resonant modes for optical absorption inference.

Fig. 2
Fig. 2

Exponential decay in cavity stored power with a decay time of 25.738 ± 0.018 µs corresponding to 129.51 ± 0.09 ppm in total cavity loss. Multiplication symbols (×) represent the experimental data points and the solid curve is the least-squares-fitted exponential curve.

Fig. 3
Fig. 3

Shift of a first-order mode frequency due to a 400-W change in cavity stored power with the cavity locked to a fundamental mode, revealing roughly 1.3 ± 0.4 ppm in cavity total absorption loss.

Fig. 4
Fig. 4

Decay time (top trace) and shift of the first-order mode frequency (bottom trace) with a consistent step change in cavity stored power for the cavity containing Vac-seal epoxy over 33 days. Linear least-squares fit of the data against time yields slopes of +0.005 ± 0.001 µs/day for the decay time and -0.004 ± 0.005 kHz/day for the frequency shift.

Tables (1)

Tables Icon

Table 1 Annual Loss Predictions of LED’s and IC Chips, Kapton Cable Assemblies, and Vac-seal Epoxy Adhesive in Contamination Test Apparatus

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Itt=It0exp-t/τ,
Lloss=2l/cτ,
δsα/4πκPa,
Reff=w2/2δs,
g=1-l/Reff=1+2lδs/w2.
g=1+αlItA/2πκw2T,
Pa=PsA,
Δν10-00-Δν10-00 =c2πl cos-1g1g21/2-c2πl cos-1g1g21/3,
ΦD=3.3×1019J4πr2,
ΦP=P2πMkT1/2=2×1021PAMU1/2,
P=J/Stot,

Metrics