Abstract

The MASERATI (middle-atmosphere spectrometric experiment on rockets for analysis of trace-gas influences) instrument is, to our knowledge, the first rocket-borne tunable diode laser absorption spectrometer that was developed for in situ measurements of trace gases in the middle atmosphere. Infrared absorption spectroscopy with lead salt diode lasers is applied to measure water vapor and carbon dioxide in the altitude range from 50 to 90 km and 120 km, respectively. The laser beams are directed into an open multiple-pass absorption setup (total path length 31.7 m) that is mounted on top of a sounding rocket and that is directly exposed to ambient air. The two species are sampled alternately with a sampling time of 7.37 ms, each corresponding to an altitude resolution of approximately 15 m. Frequency-modulation and lock-in techniques are used to achieve high sensitivity. Tests in the laboratory have shown that the instrument is capable of detecting a very small relative absorbance of 10-4–10-5 when integrating spectra for 1 s. The instrument is designed and qualified to resist the mechanical stress occurring during the start of a sounding rocket and to be operational during the cruising phase of the flight when accelerations are very small. Two almost identical versions of the MASERATI instrument were built and were launched on sounding rockets from the Andøya Rocket Range (69 °N) in northern Norway on 12 October 1997 and on 31 January 1998. The good technical performance of the instruments during these flights has demonstrated that MASERATI is indeed a new suitable tool to perform rocket-borne in situ measurements in the upper atmosphere.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Y. N. Cho, J. Röttger, “An updated review of polar mesosphere summer echoes: observation, theory, and their relationship to noctilucent clouds and subvisible aerosols,” J. Geophys. Res. 102, 2001–2020 (1997).
    [CrossRef]
  2. M. Gadsden, W. Schroeder, Noctilucent Clouds (Springer-Verlag, Berlin, 1989).
    [CrossRef]
  3. K. U. Grossmann, “Mesospheric water vapor,” in Proceedings of the Sixth ESA Symposium on European Rocket and Balloon Programmes and Related Research, ESA Spec. Pub. 183 (European Space Agency, Neuilly, France, 1983), pp. 83–87.
  4. F.-J. Lübken, “MASERATI—a new rocketborne tunable diode laser experiment to measure trace gases in the middle atmosphere,” in Proceedings of the Tenth ESA Symposium on European Rocket and Balloon Programmes and Related Research, ESA Spec. Pub. 317, 99–104 (European Space Agency, Neuilly, France, 1991), pp. 99–104.
  5. H. Trinks, K. H. Fricke, “Carbon dioxide concentrations in the lower thermosphere,” J. Geophys. Res. 83, 3883–3886 (1978).
    [CrossRef]
  6. V. I. Fomichev, W. E. Ward, C. McLandress, “Implication of variations in the 15 µm CO2 band cooling in the mesosphere and lower thermosphere associated with current climatologies of the atomic mixing ratio,” J. Geophys. Res. 101, 4041–4055 (1996).
    [CrossRef]
  7. F.-J. Lübken, W. Hillert, G. Lehmacher, U. von Zahn, M. Bittner, D. Offermann, F. Schmidlin, A. Hauchecorne, M. Mourier, P. Czechowsky, “Intercomparison of density and temperature profiles obtained by lidar, ionization gauges, falling spheres, datasondes, and radiosondes during the DYANA campaign,” J. Atmos. Terr. Phys. 56, 1969–1984 (1994).
    [CrossRef]
  8. U. von Zahn, F.-J. Lübken, Ch. Pütz, “‘BUGATTI’ experiments: mass spectrometric studies of lower thermosphere eddy mixing and turbulence,” J. Geophys. Res. 95, 7443–7465 (1990).
    [CrossRef]
  9. F.-J. Lübken, “On the extraction of turbulent parameters from atmospheric density fluctuations,” J. Geophys. Res. 97, 20385–20395 (1992).
    [CrossRef]
  10. P. Werle, “Spectroscopic trace gas analysis using tunable diode lasers,” Spectrochim. Acta A 52, 805–822 (1996).
    [CrossRef]
  11. R. T. Menzies, C. R. Webster, E. D. Hinkley, “Balloon-borne diode laser absorption spectrometer for measurements of stratospheric trace species,” Appl. Opt. 22, 2655–2664 (1983).
    [CrossRef]
  12. F. G. Wienhold, H. Fischer, P. Hoor, V. Wagner, R. Königstedt, G. W. Harris, J. Anders, R. Grisar, M. Knothe, W. J. Riedel, F.-J. Lübken, T. Schilling, “TRISTAR–a tracer in-situ TDLAS for atmospheric research,” Appl. Phys. B 67, 411–417 (1998).
    [CrossRef]
  13. J. Reid, J. Shewchun, B. K. Garside, E. A. Ballik, “High sensitivity pollution detection employing tunable diode lasers,” Appl. Opt. 17, 300–307 (1978).
    [CrossRef] [PubMed]
  14. T. Eriksen, U.-P. Hoppe, E. V. Thrane, T. A. Blix, “Rocketborne Rayleigh lidar for in situ measurements of neutral atmospheric density,” Appl. Opt. 38, 2605–2613 (1999).
    [CrossRef]
  15. J. U. White, “Long optical paths of large aperture,” J. Opt. Soc. Am. 32, 285–288 (1942).
    [CrossRef]
  16. W. J. Riedel, M. Knothe, “Optics for tunable diode laser spectrometers,” in Measurement of Atmospheric Gases, H. I. Schiff, ed., Proc. SPIE1433, 179–189 (1991).
    [CrossRef]
  17. D. Horn, G. C. Pimentel, “2.5-km low-temperature multiple-reflection cell,” Appl. Opt. 10, 1892–1898 (1971).
    [CrossRef] [PubMed]
  18. W. J. Riedel, M. Knothe, W. Kohn, R. Grisar, “An anastigmatic White cell for IR diode laser spectroscopy,” in Proceedings of the International Symposium on Monitoring of Gaseous Pollutants by Tunable Diode Lasers (Kluwer Academic, Dordrecht, The Netherlands, 1988), pp. 165–171.
  19. U. v. Zahn, “Achievements of ALOMAR,” in Proceedings of the Thirteenth ESA Symposium on European Rockets and Balloon Programmes and Related Research, ESA Spec. Pub. 397 (European Space Agency, Neuilly, France, 1997), pp. 141–163.
  20. F.-J. Lübken, F. Dingler, H. v. Lucke, “MASERATI: Experimental Method and First Results from a new Rocket-borne TDL Absorption Spectrometer” in Proceedings of the 5th International Symposium on Gas Analysis by Tunable Diode Lasers, Freiburg, 25–26. February 1998, organized by Fraunhofer Institut für Physikalische Meßtechnik IPM, Freiburg, Germany, and Verein Deutscher Ingenieure/Verein Deutscher Elektroingenieure - Gesellschaft Messund Automatisierungstechnik (VDI/VDE-GMA), VDI report, 1366, 101–110, Düsseldorf, Germany, 1998.

1999 (1)

1998 (1)

F. G. Wienhold, H. Fischer, P. Hoor, V. Wagner, R. Königstedt, G. W. Harris, J. Anders, R. Grisar, M. Knothe, W. J. Riedel, F.-J. Lübken, T. Schilling, “TRISTAR–a tracer in-situ TDLAS for atmospheric research,” Appl. Phys. B 67, 411–417 (1998).
[CrossRef]

1997 (1)

J. Y. N. Cho, J. Röttger, “An updated review of polar mesosphere summer echoes: observation, theory, and their relationship to noctilucent clouds and subvisible aerosols,” J. Geophys. Res. 102, 2001–2020 (1997).
[CrossRef]

1996 (2)

V. I. Fomichev, W. E. Ward, C. McLandress, “Implication of variations in the 15 µm CO2 band cooling in the mesosphere and lower thermosphere associated with current climatologies of the atomic mixing ratio,” J. Geophys. Res. 101, 4041–4055 (1996).
[CrossRef]

P. Werle, “Spectroscopic trace gas analysis using tunable diode lasers,” Spectrochim. Acta A 52, 805–822 (1996).
[CrossRef]

1994 (1)

F.-J. Lübken, W. Hillert, G. Lehmacher, U. von Zahn, M. Bittner, D. Offermann, F. Schmidlin, A. Hauchecorne, M. Mourier, P. Czechowsky, “Intercomparison of density and temperature profiles obtained by lidar, ionization gauges, falling spheres, datasondes, and radiosondes during the DYANA campaign,” J. Atmos. Terr. Phys. 56, 1969–1984 (1994).
[CrossRef]

1992 (1)

F.-J. Lübken, “On the extraction of turbulent parameters from atmospheric density fluctuations,” J. Geophys. Res. 97, 20385–20395 (1992).
[CrossRef]

1990 (1)

U. von Zahn, F.-J. Lübken, Ch. Pütz, “‘BUGATTI’ experiments: mass spectrometric studies of lower thermosphere eddy mixing and turbulence,” J. Geophys. Res. 95, 7443–7465 (1990).
[CrossRef]

1983 (1)

1978 (2)

J. Reid, J. Shewchun, B. K. Garside, E. A. Ballik, “High sensitivity pollution detection employing tunable diode lasers,” Appl. Opt. 17, 300–307 (1978).
[CrossRef] [PubMed]

H. Trinks, K. H. Fricke, “Carbon dioxide concentrations in the lower thermosphere,” J. Geophys. Res. 83, 3883–3886 (1978).
[CrossRef]

1971 (1)

1942 (1)

Anders, J.

F. G. Wienhold, H. Fischer, P. Hoor, V. Wagner, R. Königstedt, G. W. Harris, J. Anders, R. Grisar, M. Knothe, W. J. Riedel, F.-J. Lübken, T. Schilling, “TRISTAR–a tracer in-situ TDLAS for atmospheric research,” Appl. Phys. B 67, 411–417 (1998).
[CrossRef]

Ballik, E. A.

Bittner, M.

F.-J. Lübken, W. Hillert, G. Lehmacher, U. von Zahn, M. Bittner, D. Offermann, F. Schmidlin, A. Hauchecorne, M. Mourier, P. Czechowsky, “Intercomparison of density and temperature profiles obtained by lidar, ionization gauges, falling spheres, datasondes, and radiosondes during the DYANA campaign,” J. Atmos. Terr. Phys. 56, 1969–1984 (1994).
[CrossRef]

Blix, T. A.

Cho, J. Y. N.

J. Y. N. Cho, J. Röttger, “An updated review of polar mesosphere summer echoes: observation, theory, and their relationship to noctilucent clouds and subvisible aerosols,” J. Geophys. Res. 102, 2001–2020 (1997).
[CrossRef]

Czechowsky, P.

F.-J. Lübken, W. Hillert, G. Lehmacher, U. von Zahn, M. Bittner, D. Offermann, F. Schmidlin, A. Hauchecorne, M. Mourier, P. Czechowsky, “Intercomparison of density and temperature profiles obtained by lidar, ionization gauges, falling spheres, datasondes, and radiosondes during the DYANA campaign,” J. Atmos. Terr. Phys. 56, 1969–1984 (1994).
[CrossRef]

Dingler, F.

F.-J. Lübken, F. Dingler, H. v. Lucke, “MASERATI: Experimental Method and First Results from a new Rocket-borne TDL Absorption Spectrometer” in Proceedings of the 5th International Symposium on Gas Analysis by Tunable Diode Lasers, Freiburg, 25–26. February 1998, organized by Fraunhofer Institut für Physikalische Meßtechnik IPM, Freiburg, Germany, and Verein Deutscher Ingenieure/Verein Deutscher Elektroingenieure - Gesellschaft Messund Automatisierungstechnik (VDI/VDE-GMA), VDI report, 1366, 101–110, Düsseldorf, Germany, 1998.

Eriksen, T.

Fischer, H.

F. G. Wienhold, H. Fischer, P. Hoor, V. Wagner, R. Königstedt, G. W. Harris, J. Anders, R. Grisar, M. Knothe, W. J. Riedel, F.-J. Lübken, T. Schilling, “TRISTAR–a tracer in-situ TDLAS for atmospheric research,” Appl. Phys. B 67, 411–417 (1998).
[CrossRef]

Fomichev, V. I.

V. I. Fomichev, W. E. Ward, C. McLandress, “Implication of variations in the 15 µm CO2 band cooling in the mesosphere and lower thermosphere associated with current climatologies of the atomic mixing ratio,” J. Geophys. Res. 101, 4041–4055 (1996).
[CrossRef]

Fricke, K. H.

H. Trinks, K. H. Fricke, “Carbon dioxide concentrations in the lower thermosphere,” J. Geophys. Res. 83, 3883–3886 (1978).
[CrossRef]

Gadsden, M.

M. Gadsden, W. Schroeder, Noctilucent Clouds (Springer-Verlag, Berlin, 1989).
[CrossRef]

Garside, B. K.

Grisar, R.

F. G. Wienhold, H. Fischer, P. Hoor, V. Wagner, R. Königstedt, G. W. Harris, J. Anders, R. Grisar, M. Knothe, W. J. Riedel, F.-J. Lübken, T. Schilling, “TRISTAR–a tracer in-situ TDLAS for atmospheric research,” Appl. Phys. B 67, 411–417 (1998).
[CrossRef]

W. J. Riedel, M. Knothe, W. Kohn, R. Grisar, “An anastigmatic White cell for IR diode laser spectroscopy,” in Proceedings of the International Symposium on Monitoring of Gaseous Pollutants by Tunable Diode Lasers (Kluwer Academic, Dordrecht, The Netherlands, 1988), pp. 165–171.

Grossmann, K. U.

K. U. Grossmann, “Mesospheric water vapor,” in Proceedings of the Sixth ESA Symposium on European Rocket and Balloon Programmes and Related Research, ESA Spec. Pub. 183 (European Space Agency, Neuilly, France, 1983), pp. 83–87.

Harris, G. W.

F. G. Wienhold, H. Fischer, P. Hoor, V. Wagner, R. Königstedt, G. W. Harris, J. Anders, R. Grisar, M. Knothe, W. J. Riedel, F.-J. Lübken, T. Schilling, “TRISTAR–a tracer in-situ TDLAS for atmospheric research,” Appl. Phys. B 67, 411–417 (1998).
[CrossRef]

Hauchecorne, A.

F.-J. Lübken, W. Hillert, G. Lehmacher, U. von Zahn, M. Bittner, D. Offermann, F. Schmidlin, A. Hauchecorne, M. Mourier, P. Czechowsky, “Intercomparison of density and temperature profiles obtained by lidar, ionization gauges, falling spheres, datasondes, and radiosondes during the DYANA campaign,” J. Atmos. Terr. Phys. 56, 1969–1984 (1994).
[CrossRef]

Hillert, W.

F.-J. Lübken, W. Hillert, G. Lehmacher, U. von Zahn, M. Bittner, D. Offermann, F. Schmidlin, A. Hauchecorne, M. Mourier, P. Czechowsky, “Intercomparison of density and temperature profiles obtained by lidar, ionization gauges, falling spheres, datasondes, and radiosondes during the DYANA campaign,” J. Atmos. Terr. Phys. 56, 1969–1984 (1994).
[CrossRef]

Hinkley, E. D.

Hoor, P.

F. G. Wienhold, H. Fischer, P. Hoor, V. Wagner, R. Königstedt, G. W. Harris, J. Anders, R. Grisar, M. Knothe, W. J. Riedel, F.-J. Lübken, T. Schilling, “TRISTAR–a tracer in-situ TDLAS for atmospheric research,” Appl. Phys. B 67, 411–417 (1998).
[CrossRef]

Hoppe, U.-P.

Horn, D.

Knothe, M.

F. G. Wienhold, H. Fischer, P. Hoor, V. Wagner, R. Königstedt, G. W. Harris, J. Anders, R. Grisar, M. Knothe, W. J. Riedel, F.-J. Lübken, T. Schilling, “TRISTAR–a tracer in-situ TDLAS for atmospheric research,” Appl. Phys. B 67, 411–417 (1998).
[CrossRef]

W. J. Riedel, M. Knothe, W. Kohn, R. Grisar, “An anastigmatic White cell for IR diode laser spectroscopy,” in Proceedings of the International Symposium on Monitoring of Gaseous Pollutants by Tunable Diode Lasers (Kluwer Academic, Dordrecht, The Netherlands, 1988), pp. 165–171.

W. J. Riedel, M. Knothe, “Optics for tunable diode laser spectrometers,” in Measurement of Atmospheric Gases, H. I. Schiff, ed., Proc. SPIE1433, 179–189 (1991).
[CrossRef]

Kohn, W.

W. J. Riedel, M. Knothe, W. Kohn, R. Grisar, “An anastigmatic White cell for IR diode laser spectroscopy,” in Proceedings of the International Symposium on Monitoring of Gaseous Pollutants by Tunable Diode Lasers (Kluwer Academic, Dordrecht, The Netherlands, 1988), pp. 165–171.

Königstedt, R.

F. G. Wienhold, H. Fischer, P. Hoor, V. Wagner, R. Königstedt, G. W. Harris, J. Anders, R. Grisar, M. Knothe, W. J. Riedel, F.-J. Lübken, T. Schilling, “TRISTAR–a tracer in-situ TDLAS for atmospheric research,” Appl. Phys. B 67, 411–417 (1998).
[CrossRef]

Lehmacher, G.

F.-J. Lübken, W. Hillert, G. Lehmacher, U. von Zahn, M. Bittner, D. Offermann, F. Schmidlin, A. Hauchecorne, M. Mourier, P. Czechowsky, “Intercomparison of density and temperature profiles obtained by lidar, ionization gauges, falling spheres, datasondes, and radiosondes during the DYANA campaign,” J. Atmos. Terr. Phys. 56, 1969–1984 (1994).
[CrossRef]

Lübken, F.-J.

F. G. Wienhold, H. Fischer, P. Hoor, V. Wagner, R. Königstedt, G. W. Harris, J. Anders, R. Grisar, M. Knothe, W. J. Riedel, F.-J. Lübken, T. Schilling, “TRISTAR–a tracer in-situ TDLAS for atmospheric research,” Appl. Phys. B 67, 411–417 (1998).
[CrossRef]

F.-J. Lübken, W. Hillert, G. Lehmacher, U. von Zahn, M. Bittner, D. Offermann, F. Schmidlin, A. Hauchecorne, M. Mourier, P. Czechowsky, “Intercomparison of density and temperature profiles obtained by lidar, ionization gauges, falling spheres, datasondes, and radiosondes during the DYANA campaign,” J. Atmos. Terr. Phys. 56, 1969–1984 (1994).
[CrossRef]

F.-J. Lübken, “On the extraction of turbulent parameters from atmospheric density fluctuations,” J. Geophys. Res. 97, 20385–20395 (1992).
[CrossRef]

U. von Zahn, F.-J. Lübken, Ch. Pütz, “‘BUGATTI’ experiments: mass spectrometric studies of lower thermosphere eddy mixing and turbulence,” J. Geophys. Res. 95, 7443–7465 (1990).
[CrossRef]

F.-J. Lübken, “MASERATI—a new rocketborne tunable diode laser experiment to measure trace gases in the middle atmosphere,” in Proceedings of the Tenth ESA Symposium on European Rocket and Balloon Programmes and Related Research, ESA Spec. Pub. 317, 99–104 (European Space Agency, Neuilly, France, 1991), pp. 99–104.

F.-J. Lübken, F. Dingler, H. v. Lucke, “MASERATI: Experimental Method and First Results from a new Rocket-borne TDL Absorption Spectrometer” in Proceedings of the 5th International Symposium on Gas Analysis by Tunable Diode Lasers, Freiburg, 25–26. February 1998, organized by Fraunhofer Institut für Physikalische Meßtechnik IPM, Freiburg, Germany, and Verein Deutscher Ingenieure/Verein Deutscher Elektroingenieure - Gesellschaft Messund Automatisierungstechnik (VDI/VDE-GMA), VDI report, 1366, 101–110, Düsseldorf, Germany, 1998.

Lucke, H. v.

F.-J. Lübken, F. Dingler, H. v. Lucke, “MASERATI: Experimental Method and First Results from a new Rocket-borne TDL Absorption Spectrometer” in Proceedings of the 5th International Symposium on Gas Analysis by Tunable Diode Lasers, Freiburg, 25–26. February 1998, organized by Fraunhofer Institut für Physikalische Meßtechnik IPM, Freiburg, Germany, and Verein Deutscher Ingenieure/Verein Deutscher Elektroingenieure - Gesellschaft Messund Automatisierungstechnik (VDI/VDE-GMA), VDI report, 1366, 101–110, Düsseldorf, Germany, 1998.

McLandress, C.

V. I. Fomichev, W. E. Ward, C. McLandress, “Implication of variations in the 15 µm CO2 band cooling in the mesosphere and lower thermosphere associated with current climatologies of the atomic mixing ratio,” J. Geophys. Res. 101, 4041–4055 (1996).
[CrossRef]

Menzies, R. T.

Mourier, M.

F.-J. Lübken, W. Hillert, G. Lehmacher, U. von Zahn, M. Bittner, D. Offermann, F. Schmidlin, A. Hauchecorne, M. Mourier, P. Czechowsky, “Intercomparison of density and temperature profiles obtained by lidar, ionization gauges, falling spheres, datasondes, and radiosondes during the DYANA campaign,” J. Atmos. Terr. Phys. 56, 1969–1984 (1994).
[CrossRef]

Offermann, D.

F.-J. Lübken, W. Hillert, G. Lehmacher, U. von Zahn, M. Bittner, D. Offermann, F. Schmidlin, A. Hauchecorne, M. Mourier, P. Czechowsky, “Intercomparison of density and temperature profiles obtained by lidar, ionization gauges, falling spheres, datasondes, and radiosondes during the DYANA campaign,” J. Atmos. Terr. Phys. 56, 1969–1984 (1994).
[CrossRef]

Pimentel, G. C.

Pütz, Ch.

U. von Zahn, F.-J. Lübken, Ch. Pütz, “‘BUGATTI’ experiments: mass spectrometric studies of lower thermosphere eddy mixing and turbulence,” J. Geophys. Res. 95, 7443–7465 (1990).
[CrossRef]

Reid, J.

Riedel, W. J.

F. G. Wienhold, H. Fischer, P. Hoor, V. Wagner, R. Königstedt, G. W. Harris, J. Anders, R. Grisar, M. Knothe, W. J. Riedel, F.-J. Lübken, T. Schilling, “TRISTAR–a tracer in-situ TDLAS for atmospheric research,” Appl. Phys. B 67, 411–417 (1998).
[CrossRef]

W. J. Riedel, M. Knothe, “Optics for tunable diode laser spectrometers,” in Measurement of Atmospheric Gases, H. I. Schiff, ed., Proc. SPIE1433, 179–189 (1991).
[CrossRef]

W. J. Riedel, M. Knothe, W. Kohn, R. Grisar, “An anastigmatic White cell for IR diode laser spectroscopy,” in Proceedings of the International Symposium on Monitoring of Gaseous Pollutants by Tunable Diode Lasers (Kluwer Academic, Dordrecht, The Netherlands, 1988), pp. 165–171.

Röttger, J.

J. Y. N. Cho, J. Röttger, “An updated review of polar mesosphere summer echoes: observation, theory, and their relationship to noctilucent clouds and subvisible aerosols,” J. Geophys. Res. 102, 2001–2020 (1997).
[CrossRef]

Schilling, T.

F. G. Wienhold, H. Fischer, P. Hoor, V. Wagner, R. Königstedt, G. W. Harris, J. Anders, R. Grisar, M. Knothe, W. J. Riedel, F.-J. Lübken, T. Schilling, “TRISTAR–a tracer in-situ TDLAS for atmospheric research,” Appl. Phys. B 67, 411–417 (1998).
[CrossRef]

Schmidlin, F.

F.-J. Lübken, W. Hillert, G. Lehmacher, U. von Zahn, M. Bittner, D. Offermann, F. Schmidlin, A. Hauchecorne, M. Mourier, P. Czechowsky, “Intercomparison of density and temperature profiles obtained by lidar, ionization gauges, falling spheres, datasondes, and radiosondes during the DYANA campaign,” J. Atmos. Terr. Phys. 56, 1969–1984 (1994).
[CrossRef]

Schroeder, W.

M. Gadsden, W. Schroeder, Noctilucent Clouds (Springer-Verlag, Berlin, 1989).
[CrossRef]

Shewchun, J.

Thrane, E. V.

Trinks, H.

H. Trinks, K. H. Fricke, “Carbon dioxide concentrations in the lower thermosphere,” J. Geophys. Res. 83, 3883–3886 (1978).
[CrossRef]

von Zahn, U.

F.-J. Lübken, W. Hillert, G. Lehmacher, U. von Zahn, M. Bittner, D. Offermann, F. Schmidlin, A. Hauchecorne, M. Mourier, P. Czechowsky, “Intercomparison of density and temperature profiles obtained by lidar, ionization gauges, falling spheres, datasondes, and radiosondes during the DYANA campaign,” J. Atmos. Terr. Phys. 56, 1969–1984 (1994).
[CrossRef]

U. von Zahn, F.-J. Lübken, Ch. Pütz, “‘BUGATTI’ experiments: mass spectrometric studies of lower thermosphere eddy mixing and turbulence,” J. Geophys. Res. 95, 7443–7465 (1990).
[CrossRef]

Wagner, V.

F. G. Wienhold, H. Fischer, P. Hoor, V. Wagner, R. Königstedt, G. W. Harris, J. Anders, R. Grisar, M. Knothe, W. J. Riedel, F.-J. Lübken, T. Schilling, “TRISTAR–a tracer in-situ TDLAS for atmospheric research,” Appl. Phys. B 67, 411–417 (1998).
[CrossRef]

Ward, W. E.

V. I. Fomichev, W. E. Ward, C. McLandress, “Implication of variations in the 15 µm CO2 band cooling in the mesosphere and lower thermosphere associated with current climatologies of the atomic mixing ratio,” J. Geophys. Res. 101, 4041–4055 (1996).
[CrossRef]

Webster, C. R.

Werle, P.

P. Werle, “Spectroscopic trace gas analysis using tunable diode lasers,” Spectrochim. Acta A 52, 805–822 (1996).
[CrossRef]

White, J. U.

Wienhold, F. G.

F. G. Wienhold, H. Fischer, P. Hoor, V. Wagner, R. Königstedt, G. W. Harris, J. Anders, R. Grisar, M. Knothe, W. J. Riedel, F.-J. Lübken, T. Schilling, “TRISTAR–a tracer in-situ TDLAS for atmospheric research,” Appl. Phys. B 67, 411–417 (1998).
[CrossRef]

Zahn, U. v.

U. v. Zahn, “Achievements of ALOMAR,” in Proceedings of the Thirteenth ESA Symposium on European Rockets and Balloon Programmes and Related Research, ESA Spec. Pub. 397 (European Space Agency, Neuilly, France, 1997), pp. 141–163.

Appl. Opt. (4)

Appl. Phys. B (1)

F. G. Wienhold, H. Fischer, P. Hoor, V. Wagner, R. Königstedt, G. W. Harris, J. Anders, R. Grisar, M. Knothe, W. J. Riedel, F.-J. Lübken, T. Schilling, “TRISTAR–a tracer in-situ TDLAS for atmospheric research,” Appl. Phys. B 67, 411–417 (1998).
[CrossRef]

J. Atmos. Terr. Phys. (1)

F.-J. Lübken, W. Hillert, G. Lehmacher, U. von Zahn, M. Bittner, D. Offermann, F. Schmidlin, A. Hauchecorne, M. Mourier, P. Czechowsky, “Intercomparison of density and temperature profiles obtained by lidar, ionization gauges, falling spheres, datasondes, and radiosondes during the DYANA campaign,” J. Atmos. Terr. Phys. 56, 1969–1984 (1994).
[CrossRef]

J. Geophys. Res. (5)

U. von Zahn, F.-J. Lübken, Ch. Pütz, “‘BUGATTI’ experiments: mass spectrometric studies of lower thermosphere eddy mixing and turbulence,” J. Geophys. Res. 95, 7443–7465 (1990).
[CrossRef]

F.-J. Lübken, “On the extraction of turbulent parameters from atmospheric density fluctuations,” J. Geophys. Res. 97, 20385–20395 (1992).
[CrossRef]

J. Y. N. Cho, J. Röttger, “An updated review of polar mesosphere summer echoes: observation, theory, and their relationship to noctilucent clouds and subvisible aerosols,” J. Geophys. Res. 102, 2001–2020 (1997).
[CrossRef]

H. Trinks, K. H. Fricke, “Carbon dioxide concentrations in the lower thermosphere,” J. Geophys. Res. 83, 3883–3886 (1978).
[CrossRef]

V. I. Fomichev, W. E. Ward, C. McLandress, “Implication of variations in the 15 µm CO2 band cooling in the mesosphere and lower thermosphere associated with current climatologies of the atomic mixing ratio,” J. Geophys. Res. 101, 4041–4055 (1996).
[CrossRef]

J. Opt. Soc. Am. (1)

Spectrochim. Acta A (1)

P. Werle, “Spectroscopic trace gas analysis using tunable diode lasers,” Spectrochim. Acta A 52, 805–822 (1996).
[CrossRef]

Other (7)

M. Gadsden, W. Schroeder, Noctilucent Clouds (Springer-Verlag, Berlin, 1989).
[CrossRef]

K. U. Grossmann, “Mesospheric water vapor,” in Proceedings of the Sixth ESA Symposium on European Rocket and Balloon Programmes and Related Research, ESA Spec. Pub. 183 (European Space Agency, Neuilly, France, 1983), pp. 83–87.

F.-J. Lübken, “MASERATI—a new rocketborne tunable diode laser experiment to measure trace gases in the middle atmosphere,” in Proceedings of the Tenth ESA Symposium on European Rocket and Balloon Programmes and Related Research, ESA Spec. Pub. 317, 99–104 (European Space Agency, Neuilly, France, 1991), pp. 99–104.

W. J. Riedel, M. Knothe, “Optics for tunable diode laser spectrometers,” in Measurement of Atmospheric Gases, H. I. Schiff, ed., Proc. SPIE1433, 179–189 (1991).
[CrossRef]

W. J. Riedel, M. Knothe, W. Kohn, R. Grisar, “An anastigmatic White cell for IR diode laser spectroscopy,” in Proceedings of the International Symposium on Monitoring of Gaseous Pollutants by Tunable Diode Lasers (Kluwer Academic, Dordrecht, The Netherlands, 1988), pp. 165–171.

U. v. Zahn, “Achievements of ALOMAR,” in Proceedings of the Thirteenth ESA Symposium on European Rockets and Balloon Programmes and Related Research, ESA Spec. Pub. 397 (European Space Agency, Neuilly, France, 1997), pp. 141–163.

F.-J. Lübken, F. Dingler, H. v. Lucke, “MASERATI: Experimental Method and First Results from a new Rocket-borne TDL Absorption Spectrometer” in Proceedings of the 5th International Symposium on Gas Analysis by Tunable Diode Lasers, Freiburg, 25–26. February 1998, organized by Fraunhofer Institut für Physikalische Meßtechnik IPM, Freiburg, Germany, and Verein Deutscher Ingenieure/Verein Deutscher Elektroingenieure - Gesellschaft Messund Automatisierungstechnik (VDI/VDE-GMA), VDI report, 1366, 101–110, Düsseldorf, Germany, 1998.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Schematics of the CO2 energy levels (not to scale) in the 4.3-µm band indicating the two transitions used in the MASERATI instrument. Two absorption lines from a ground level and an excited level were chosen to allow for the measurement of temperatures and the detection of non-LTE effects in the lower thermosphere.

Fig. 2
Fig. 2

Sketch of the RONALD payload and the MASERATI instrument: Apart from MASERATI (1) the other main instrument on board the payload is the transmitter and receiver of laser light (TROLL) (2). Furthermore, the payload consists of a telemetry section (3) and a recovery unit (4). A conical adapter (5) is used as an interface between the payload and the motor (6). More details on the MASERATI instrument section are given in the text (see Section 3).

Fig. 3
Fig. 3

Photograph of the open multiple-pass absorption setup on top of the MASERATI section.

Fig. 4
Fig. 4

Simulation of the gas flow at the top of the payload for conditions typically encountered during the upleg of the rocket flight. The path of the laser beam inside the multiple-pass absorption setup is indicated. The calculations have been performed for an altitude of 70 km, at which the rocket velocity is typically 990 m/s, the ambient pressure is 3.6 × 10-2 mbar, and the atmospheric temperature is typically 227 K. As can be seen from the color-coded pressure distribution, the main pressure increase caused by the supersonic motion of the rocket occurs downstream of the optical path. There is only very little disturbance at the light path inside the multiple-pass absorption setup. The calculations have been performed by means of a commercially available flow software (CFX 4.1, AEA Technology, U.K.).

Fig. 5
Fig. 5

Schematic sketch of the two optical platforms of the MASERATI instrument. Upper panel; cryostat with lasers and detectors and various optics to collimate and guide the beams to the multiple-pass absorption setup (not shown here) and to the second platform (lower panel). Details are described in Subsection 4.B. The second platform is used to determine the frequency and tuning rate of the lasers by means of a grating monochromator and a Mach–Zehnder interferometer (see text for definitions of abbreviations used).

Fig. 6
Fig. 6

Optical path through the MASERATI multiple-pass absorption setup: (a) field mirror and supporting optics, including mirrors to guide the laser beam into and out of the multiple-pass absorption setup; (b) projection of the central ray of the laser beam to the field mirror. The numbers denote the sequence of focal points on the field mirror. OM 1 and OM 2 denote the centers of curvature of the two objective mirrors.

Fig. 7
Fig. 7

Schematic diagram of the sensor and the MASERATI electronics that consist of three main subsystems: the sensor electronics, the telemetry interface including the analog-to-digital (AD) converters, and the power supply with the dc/dc converters and batteries.

Fig. 8
Fig. 8

Setup for the laboratory tests and calibrations of the MASERATI instrument. The calibration gas is prepared in the conditioning unit: gas samples with different water-vapor mixing ratios are provided by diluting the flow of permeation source PS with dry N2 regulated by flow controller FC. The gas enters the main vacuum chamber through a needle valve that is used to control the total pressure inside the chamber. The temperature of the gas is varied by means of liquid-N2 cooling. A frostpoint hygrometer in the reference unit is used to determine the water-vapor mixing ratio. To reduce the water-vapor background in the calibration system before calibration, N2 gas is directed through molecular adsorption sieve MS instead of permeation source PS. Thereby a gas flow with water-vapor mixing ratios below 1 ppmv is achieved.

Fig. 9
Fig. 9

2f spectra of CO2 and water vapor measured in the laboratory at three different total pressures (see inset) but constant mixing ratios. The two absorption lines at the left of the plot correspond to CO2, whereas the right line is caused by H2O.

Fig. 10
Fig. 10

Signal amplitude as a function of relative absorbance for the two CO2 absorption lines shown in Fig. 9. The signal amplitudes increase linearly with the relative absorbances over 4 orders of magnitude. For a time resolution of 1 s, a detection limit below 1 × 10-4 is achieved.

Fig. 11
Fig. 11

Three scans of the two CO2 lines recorded at different gas temperatures. Note that the left line increases with increasing temperature, whereas the right line decreases. This is due to the fact that the transition corresponding to the left absorption line starts from an excited level, whereas the right line starts from a ground level.

Fig. 12
Fig. 12

Ratio of the signal amplitudes of the two CO2 lines shown in Fig. 11 measured in the laboratory as a function of temperature (filled circles with error bars). The solid curve represents the theoretical curve normalized to the measurement at 240 K.

Fig. 13
Fig. 13

Fifty successive 2f signals for H2O measured in the White cell during the first MASERATI flight (time interval; 10–10.75 s after lift-off). Despite strong mechanical vibrations and large accelerations of approximately 6 g, the spectra are persistent and stable.

Fig. 14
Fig. 14

Two CO2 2f spectra measured in the atmosphere during the second MASERATI flight on 31 January 1998. The spectra were measured immediately before and after nosecone separation, which occurred 50.0 s after lift-off. The shape of the spectra changes rapidly (within ≤15 ms) after nosecone release since the pressure in the vacuum cover (which is released together with the nosecone) is larger compared with the ambient pressure.

Fig. 15
Fig. 15

Fifty successive 2f signals in the CO2 channel measured in the atmosphere during the second MASERATI flight on 31 January 1998. These scans were recorded 65.8–66.5 s after lift-off, which corresponds to an altitude range of 66–67 km. Again, very persistent and stable spectra are measured with a maximum deviation of less than 1% from the mean.

Tables (3)

Tables Icon

Table 1 Mechanical Specifications of MASERATI

Tables Icon

Table 2 Electronics Specifications of the MASERATI Instrument

Tables Icon

Table 3 Events during the RONALD Flighta

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Iν=I0νexp-σνnl,

Metrics