Abstract

We have studied the optical quality of holographic notch filters and have identified that stray illumination during the exposure stage and substrate scatter are the limiting factors. We propose and analyze a novel holographic recording scheme in which the substrate is rotated during exposure. Using this method, we have produced high-uniformity, flare-free dichromated gelatin notch filters with optical density greater than 5 and with scatter comparable with that from polished substrates.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Capolla, A. Beauregard, D. Vincent, “Holographic notch filters recorded on DCG-coated glass and polycarbonate substrates,” in Photopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, and Interconnects, R. A. Lessard, ed., Proc. SPIE2042, 259–262 (1994).
    [CrossRef]
  2. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [CrossRef]
  3. J. A. Arns, T. J. Edwards, G. E. Moea, J. E. Wreede, “Systems for forming improved reflection holograms with a single beam,” U.S. patent4,458,977 (10July1984).
  4. C. Rich, L. Dickerson, S. Pedro, “Lippmann photographic process put to practice with available materials,” in Holographic Materials II, T. Trout, ed., Proc. SPIE2688, 88–95 (1996).
    [CrossRef]
  5. A. M. Tai, C. C. Aleksoff, B. J. Chang, “Imaging through scattering media by interferometric techniques,” Appl. Opt. 20, 2484–2492 (1981).
    [CrossRef] [PubMed]
  6. T. Kubota, “Recording of high quality color holograms,” Appl. Opt. 25, 4141–4145 (1986).
    [CrossRef] [PubMed]
  7. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980), Chap. 8, p. 425.

1986 (1)

1981 (1)

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Aleksoff, C. C.

Arns, J. A.

J. A. Arns, T. J. Edwards, G. E. Moea, J. E. Wreede, “Systems for forming improved reflection holograms with a single beam,” U.S. patent4,458,977 (10July1984).

Beauregard, A.

N. Capolla, A. Beauregard, D. Vincent, “Holographic notch filters recorded on DCG-coated glass and polycarbonate substrates,” in Photopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, and Interconnects, R. A. Lessard, ed., Proc. SPIE2042, 259–262 (1994).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980), Chap. 8, p. 425.

Capolla, N.

N. Capolla, A. Beauregard, D. Vincent, “Holographic notch filters recorded on DCG-coated glass and polycarbonate substrates,” in Photopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, and Interconnects, R. A. Lessard, ed., Proc. SPIE2042, 259–262 (1994).
[CrossRef]

Chang, B. J.

Dickerson, L.

C. Rich, L. Dickerson, S. Pedro, “Lippmann photographic process put to practice with available materials,” in Holographic Materials II, T. Trout, ed., Proc. SPIE2688, 88–95 (1996).
[CrossRef]

Edwards, T. J.

J. A. Arns, T. J. Edwards, G. E. Moea, J. E. Wreede, “Systems for forming improved reflection holograms with a single beam,” U.S. patent4,458,977 (10July1984).

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Kubota, T.

Moea, G. E.

J. A. Arns, T. J. Edwards, G. E. Moea, J. E. Wreede, “Systems for forming improved reflection holograms with a single beam,” U.S. patent4,458,977 (10July1984).

Pedro, S.

C. Rich, L. Dickerson, S. Pedro, “Lippmann photographic process put to practice with available materials,” in Holographic Materials II, T. Trout, ed., Proc. SPIE2688, 88–95 (1996).
[CrossRef]

Rich, C.

C. Rich, L. Dickerson, S. Pedro, “Lippmann photographic process put to practice with available materials,” in Holographic Materials II, T. Trout, ed., Proc. SPIE2688, 88–95 (1996).
[CrossRef]

Tai, A. M.

Vincent, D.

N. Capolla, A. Beauregard, D. Vincent, “Holographic notch filters recorded on DCG-coated glass and polycarbonate substrates,” in Photopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, and Interconnects, R. A. Lessard, ed., Proc. SPIE2042, 259–262 (1994).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980), Chap. 8, p. 425.

Wreede, J. E.

J. A. Arns, T. J. Edwards, G. E. Moea, J. E. Wreede, “Systems for forming improved reflection holograms with a single beam,” U.S. patent4,458,977 (10July1984).

Appl. Opt. (2)

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Other (4)

J. A. Arns, T. J. Edwards, G. E. Moea, J. E. Wreede, “Systems for forming improved reflection holograms with a single beam,” U.S. patent4,458,977 (10July1984).

C. Rich, L. Dickerson, S. Pedro, “Lippmann photographic process put to practice with available materials,” in Holographic Materials II, T. Trout, ed., Proc. SPIE2688, 88–95 (1996).
[CrossRef]

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980), Chap. 8, p. 425.

N. Capolla, A. Beauregard, D. Vincent, “Holographic notch filters recorded on DCG-coated glass and polycarbonate substrates,” in Photopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, and Interconnects, R. A. Lessard, ed., Proc. SPIE2042, 259–262 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Diffraction efficiency of parasitic transmission hologram η and notch OD versus effective hologram thickness ν (i = 0.01).

Fig. 2
Fig. 2

Recording geometry. 1, air; 2, substrate; 3, mirror; OO′, rotation axis; γ, wedge angle of the substrate; t, thickness of the sensitive layer; and θ, angle of incidence of the recording beam.

Fig. 3
Fig. 3

Exposure pattern calculated for different relative separations of the rotation axis and the beam center.

Fig. 4
Fig. 4

Recording scheme.

Fig. 5
Fig. 5

Spectral response of the DCG filter before (dotted curve) and after (solid curve) baking.

Fig. 6
Fig. 6

Scatter signal distribution corresponding to different substrates (lower curves) and holograms recorded in different conditions (upper curves).

Fig. 7
Fig. 7

OD at 542 nm as a function sample position.

Tables (2)

Tables Icon

Table 1 Preparation of the Dichromated Gelatin Samples

Tables Icon

Table 2 Procedure for Developing DCG Holograms

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ηt=sin2ν, ν=πn1d/λ cos θ0,
ηr=th2ν.
i=Is/Ii.
γNλ8d sinθ2N-cosθ,
N=n2-sin2θ1/2.
Λ-=2πΔK,
ΔK=2kn2-sin2θ-γ1/2-n2-sin2θ+γ1/2,
k=2π/λ.
γλN2t sin2θ.
Iexp-cos2θy-b2+x2a2,
Er02π exp-r21-sin2θcos2η-2rb cosηcos2θ+b2 cos2 θa2dη.

Metrics