Abstract

We describe the application of a motion model to OH images collected by CCD cameras during three nights in February and April 1995 (3 February, 1 April, and 4 April) at the StarFire Optical Range, New Mexico. We used the instrument to take broadband images of OH Meinel bands at an altitude of 87 km to record the footprints of dynamics created by acoustic gravity waves in the mesosphere. We used the motion model to extract the velocity of the gravity waves from the images. The results of a total of 181 observations with the motion model were compared with a total of 189 observations obtained by manual estimation. We used these results to extract the intrinsic properties of the gravity waves. The mean intrinsic velocity for the three nights under consideration was 61.5 ± 17.0 m/s with the motion model and 61.1 ± 23.3 m/s with manual estimation.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. S. Gardner, “Testing theories of atmospheric gravity wave saturation and dissipation,” J. Atmos. Terr. Phys. 58, 1575–1589, 1996.
    [CrossRef]
  2. C. Sidi, J. Lefrere, F. Dalaudier, J. Barat, “An improved atmospheric buoyancy wave spectrum model,” J. Geophys. Res. 93, 774–790 (1988).
    [CrossRef]
  3. C. McLandress, “On the importance of gravity waves in the middle atmosphere and their parameterization in general circulation models,” J. Atmos. Solar-Terr. Phys. 60, 1357–1383 (1998).
    [CrossRef]
  4. V. I. Krassovsky, “Infrasonic variations of the OH emission in the upper atmosphere,” Ann. Geophys. 28, 739–746 (1972).
  5. A. W. Peterson, “Airglow events visible to the naked eye,” Appl. Opt. 18, 3390–3393 (1975).
    [CrossRef]
  6. M. J. Taylor, M. A. Hapgood, P. Rothwell, “Observations of gravity wave propagation in the OI (557.7 nm), Na (589.2 nm) and the near infrared OH nightglow emission,” Planet. Space Sci. 35, 413–427 (1987).
    [CrossRef]
  7. G. R. Swenson, S. B. Mende, “OH emission and gravity waves (including a breaking wave) in all-sky imagery from Bear Lake, UT,” Geophys. Res. Lett. 21, 2239–2242 (1994).
    [CrossRef]
  8. C. S. Gardner, S. J. Franke, W. Yang, X. Tao, J. R. Yu, “Interpretation of gravity waves observed in the mesopause region at Starfire optical range, New Mexico: strong evidence for nonseparable intrinsic (m, w) spectra,” J. Geophys. Res. 103, 8699–8713 (1998).
    [CrossRef]
  9. P. Garcia-Martinez, D. Mas, J. Garcia, C. Ferreira, “Nonlinear morphological correlation: opto-electronic implementation,” Appl. Opt. 37, 2112–2118 (1998).
    [CrossRef]
  10. H. H. Nagel, “On the estimation of optical flow: relations between different approaches and some new results,” Artif. Intell. 33, 299–324 (1987).
    [CrossRef]
  11. B. K. P. Horn, B. G. Schunck, “Determining optical flow,” Artif. Intell. 17, 185–203 (1981).
    [CrossRef]
  12. R. O. Duda, P. E. Hart, Pattern Classification and Scene Analysis (Wiley, New York, 1973).
  13. S. B. Mende, R. H. Eather, E. K. Aamodt, “Instrument for the monochromatic observation of all sky auroral images,” Appl. Opt. 16, 1691–1700 (1977).
    [CrossRef] [PubMed]
  14. G. R. Swenson, S. B. Mende, “Atmospheric airglow imaging with CCDs,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, P. B. Hays, J. Wang, eds., Proc. SPIE2266, 109–121 (1994).
    [CrossRef]
  15. M. T. Orchard, G. J. Sullivan, “Overlapped block motion compensation: an estimation-theoretic approach,” IEEE Trans. Image Process. 3, 693–699 (1994).
    [CrossRef] [PubMed]
  16. A. M. Tekalp, Digital Video Processing (Prentice-Hall, Englewood Cliffs, N.J., 1995).
  17. J. H. Hecht, T. J. Kane, R. L. Walterscheid, C. S. Gardner, C. A. Tepley, “Simultaneous nightglow and Na lidar observations at Arecibo during the AIDA-89 campaign,” J. Atmos. Terr. Phys. 55, 409–423 (1993).
    [CrossRef]
  18. G. R. Swenson, C. S. Gardner, “Analytical models for the responses of the mesospheric OH* and Na layers to atmospheric gravity waves,” J. Geophys. Res. [Atmos.] 103, 6271–6294 (1998).
    [CrossRef]
  19. R. P. Lowe, L. M. LeBlanc, K. L. Gilbert, “WINDII/UARS observation of twilight behavior of hydroxyl airglow at mid-latitude equinox,” J. Atmos. Terr. Phys. 58, 1863–1869 (1996).
    [CrossRef]
  20. C. S. Gardner, “Introduction to ALOHA/ANLC-93: the 1993 airborne lidar and observations of the Hawaiian airglow/airborne noctilucent cloud campaigns,” Geophys. Res. Lett. 22, 2789–2793 (1995).
    [CrossRef]
  21. G. R. Swenson, R. Haque, W. Yang, C. S. Gardner, “Momentum and energy fluxes of monochromatic gravity waves observed by an OH imager at StarFire optical range, NM,” J. Geophys. Res. 104, 6064–6080 (1999).
  22. C. S. Gardner, M. Coble, G. C. Papen, G. R. Swenson, “Observations of the unambiguous two-dimensional horizontal wave number spectrum of OH intensity perturbations,” Geophys. Res. Lett. 23, 3739–3742 (1996).
    [CrossRef]
  23. A. Rosenfeld, “Image analysis: problems, progress, and prospects,” Pattern Recog. 17, 3–12 (1984).
    [CrossRef]
  24. G. R. Swenson, A. Z. Liu, “A model for calculating acoustic gravity wave energy and momentum flux in the mesosphere from OH airglow,” Geophys. Res. Lett. 25, 477–480 (1998).
    [CrossRef]

1999

G. R. Swenson, R. Haque, W. Yang, C. S. Gardner, “Momentum and energy fluxes of monochromatic gravity waves observed by an OH imager at StarFire optical range, NM,” J. Geophys. Res. 104, 6064–6080 (1999).

1998

G. R. Swenson, C. S. Gardner, “Analytical models for the responses of the mesospheric OH* and Na layers to atmospheric gravity waves,” J. Geophys. Res. [Atmos.] 103, 6271–6294 (1998).
[CrossRef]

G. R. Swenson, A. Z. Liu, “A model for calculating acoustic gravity wave energy and momentum flux in the mesosphere from OH airglow,” Geophys. Res. Lett. 25, 477–480 (1998).
[CrossRef]

C. McLandress, “On the importance of gravity waves in the middle atmosphere and their parameterization in general circulation models,” J. Atmos. Solar-Terr. Phys. 60, 1357–1383 (1998).
[CrossRef]

C. S. Gardner, S. J. Franke, W. Yang, X. Tao, J. R. Yu, “Interpretation of gravity waves observed in the mesopause region at Starfire optical range, New Mexico: strong evidence for nonseparable intrinsic (m, w) spectra,” J. Geophys. Res. 103, 8699–8713 (1998).
[CrossRef]

P. Garcia-Martinez, D. Mas, J. Garcia, C. Ferreira, “Nonlinear morphological correlation: opto-electronic implementation,” Appl. Opt. 37, 2112–2118 (1998).
[CrossRef]

1996

C. S. Gardner, “Testing theories of atmospheric gravity wave saturation and dissipation,” J. Atmos. Terr. Phys. 58, 1575–1589, 1996.
[CrossRef]

R. P. Lowe, L. M. LeBlanc, K. L. Gilbert, “WINDII/UARS observation of twilight behavior of hydroxyl airglow at mid-latitude equinox,” J. Atmos. Terr. Phys. 58, 1863–1869 (1996).
[CrossRef]

C. S. Gardner, M. Coble, G. C. Papen, G. R. Swenson, “Observations of the unambiguous two-dimensional horizontal wave number spectrum of OH intensity perturbations,” Geophys. Res. Lett. 23, 3739–3742 (1996).
[CrossRef]

1995

C. S. Gardner, “Introduction to ALOHA/ANLC-93: the 1993 airborne lidar and observations of the Hawaiian airglow/airborne noctilucent cloud campaigns,” Geophys. Res. Lett. 22, 2789–2793 (1995).
[CrossRef]

1994

M. T. Orchard, G. J. Sullivan, “Overlapped block motion compensation: an estimation-theoretic approach,” IEEE Trans. Image Process. 3, 693–699 (1994).
[CrossRef] [PubMed]

G. R. Swenson, S. B. Mende, “OH emission and gravity waves (including a breaking wave) in all-sky imagery from Bear Lake, UT,” Geophys. Res. Lett. 21, 2239–2242 (1994).
[CrossRef]

1993

J. H. Hecht, T. J. Kane, R. L. Walterscheid, C. S. Gardner, C. A. Tepley, “Simultaneous nightglow and Na lidar observations at Arecibo during the AIDA-89 campaign,” J. Atmos. Terr. Phys. 55, 409–423 (1993).
[CrossRef]

1988

C. Sidi, J. Lefrere, F. Dalaudier, J. Barat, “An improved atmospheric buoyancy wave spectrum model,” J. Geophys. Res. 93, 774–790 (1988).
[CrossRef]

1987

M. J. Taylor, M. A. Hapgood, P. Rothwell, “Observations of gravity wave propagation in the OI (557.7 nm), Na (589.2 nm) and the near infrared OH nightglow emission,” Planet. Space Sci. 35, 413–427 (1987).
[CrossRef]

H. H. Nagel, “On the estimation of optical flow: relations between different approaches and some new results,” Artif. Intell. 33, 299–324 (1987).
[CrossRef]

1984

A. Rosenfeld, “Image analysis: problems, progress, and prospects,” Pattern Recog. 17, 3–12 (1984).
[CrossRef]

1981

B. K. P. Horn, B. G. Schunck, “Determining optical flow,” Artif. Intell. 17, 185–203 (1981).
[CrossRef]

1977

1975

1972

V. I. Krassovsky, “Infrasonic variations of the OH emission in the upper atmosphere,” Ann. Geophys. 28, 739–746 (1972).

Aamodt, E. K.

Barat, J.

C. Sidi, J. Lefrere, F. Dalaudier, J. Barat, “An improved atmospheric buoyancy wave spectrum model,” J. Geophys. Res. 93, 774–790 (1988).
[CrossRef]

Coble, M.

C. S. Gardner, M. Coble, G. C. Papen, G. R. Swenson, “Observations of the unambiguous two-dimensional horizontal wave number spectrum of OH intensity perturbations,” Geophys. Res. Lett. 23, 3739–3742 (1996).
[CrossRef]

Dalaudier, F.

C. Sidi, J. Lefrere, F. Dalaudier, J. Barat, “An improved atmospheric buoyancy wave spectrum model,” J. Geophys. Res. 93, 774–790 (1988).
[CrossRef]

Duda, R. O.

R. O. Duda, P. E. Hart, Pattern Classification and Scene Analysis (Wiley, New York, 1973).

Eather, R. H.

Ferreira, C.

Franke, S. J.

C. S. Gardner, S. J. Franke, W. Yang, X. Tao, J. R. Yu, “Interpretation of gravity waves observed in the mesopause region at Starfire optical range, New Mexico: strong evidence for nonseparable intrinsic (m, w) spectra,” J. Geophys. Res. 103, 8699–8713 (1998).
[CrossRef]

Garcia, J.

Garcia-Martinez, P.

Gardner, C. S.

G. R. Swenson, R. Haque, W. Yang, C. S. Gardner, “Momentum and energy fluxes of monochromatic gravity waves observed by an OH imager at StarFire optical range, NM,” J. Geophys. Res. 104, 6064–6080 (1999).

G. R. Swenson, C. S. Gardner, “Analytical models for the responses of the mesospheric OH* and Na layers to atmospheric gravity waves,” J. Geophys. Res. [Atmos.] 103, 6271–6294 (1998).
[CrossRef]

C. S. Gardner, S. J. Franke, W. Yang, X. Tao, J. R. Yu, “Interpretation of gravity waves observed in the mesopause region at Starfire optical range, New Mexico: strong evidence for nonseparable intrinsic (m, w) spectra,” J. Geophys. Res. 103, 8699–8713 (1998).
[CrossRef]

C. S. Gardner, M. Coble, G. C. Papen, G. R. Swenson, “Observations of the unambiguous two-dimensional horizontal wave number spectrum of OH intensity perturbations,” Geophys. Res. Lett. 23, 3739–3742 (1996).
[CrossRef]

C. S. Gardner, “Testing theories of atmospheric gravity wave saturation and dissipation,” J. Atmos. Terr. Phys. 58, 1575–1589, 1996.
[CrossRef]

C. S. Gardner, “Introduction to ALOHA/ANLC-93: the 1993 airborne lidar and observations of the Hawaiian airglow/airborne noctilucent cloud campaigns,” Geophys. Res. Lett. 22, 2789–2793 (1995).
[CrossRef]

J. H. Hecht, T. J. Kane, R. L. Walterscheid, C. S. Gardner, C. A. Tepley, “Simultaneous nightglow and Na lidar observations at Arecibo during the AIDA-89 campaign,” J. Atmos. Terr. Phys. 55, 409–423 (1993).
[CrossRef]

Gilbert, K. L.

R. P. Lowe, L. M. LeBlanc, K. L. Gilbert, “WINDII/UARS observation of twilight behavior of hydroxyl airglow at mid-latitude equinox,” J. Atmos. Terr. Phys. 58, 1863–1869 (1996).
[CrossRef]

Hapgood, M. A.

M. J. Taylor, M. A. Hapgood, P. Rothwell, “Observations of gravity wave propagation in the OI (557.7 nm), Na (589.2 nm) and the near infrared OH nightglow emission,” Planet. Space Sci. 35, 413–427 (1987).
[CrossRef]

Haque, R.

G. R. Swenson, R. Haque, W. Yang, C. S. Gardner, “Momentum and energy fluxes of monochromatic gravity waves observed by an OH imager at StarFire optical range, NM,” J. Geophys. Res. 104, 6064–6080 (1999).

Hart, P. E.

R. O. Duda, P. E. Hart, Pattern Classification and Scene Analysis (Wiley, New York, 1973).

Hecht, J. H.

J. H. Hecht, T. J. Kane, R. L. Walterscheid, C. S. Gardner, C. A. Tepley, “Simultaneous nightglow and Na lidar observations at Arecibo during the AIDA-89 campaign,” J. Atmos. Terr. Phys. 55, 409–423 (1993).
[CrossRef]

Horn, B. K. P.

B. K. P. Horn, B. G. Schunck, “Determining optical flow,” Artif. Intell. 17, 185–203 (1981).
[CrossRef]

Kane, T. J.

J. H. Hecht, T. J. Kane, R. L. Walterscheid, C. S. Gardner, C. A. Tepley, “Simultaneous nightglow and Na lidar observations at Arecibo during the AIDA-89 campaign,” J. Atmos. Terr. Phys. 55, 409–423 (1993).
[CrossRef]

Krassovsky, V. I.

V. I. Krassovsky, “Infrasonic variations of the OH emission in the upper atmosphere,” Ann. Geophys. 28, 739–746 (1972).

LeBlanc, L. M.

R. P. Lowe, L. M. LeBlanc, K. L. Gilbert, “WINDII/UARS observation of twilight behavior of hydroxyl airglow at mid-latitude equinox,” J. Atmos. Terr. Phys. 58, 1863–1869 (1996).
[CrossRef]

Lefrere, J.

C. Sidi, J. Lefrere, F. Dalaudier, J. Barat, “An improved atmospheric buoyancy wave spectrum model,” J. Geophys. Res. 93, 774–790 (1988).
[CrossRef]

Liu, A. Z.

G. R. Swenson, A. Z. Liu, “A model for calculating acoustic gravity wave energy and momentum flux in the mesosphere from OH airglow,” Geophys. Res. Lett. 25, 477–480 (1998).
[CrossRef]

Lowe, R. P.

R. P. Lowe, L. M. LeBlanc, K. L. Gilbert, “WINDII/UARS observation of twilight behavior of hydroxyl airglow at mid-latitude equinox,” J. Atmos. Terr. Phys. 58, 1863–1869 (1996).
[CrossRef]

Mas, D.

McLandress, C.

C. McLandress, “On the importance of gravity waves in the middle atmosphere and their parameterization in general circulation models,” J. Atmos. Solar-Terr. Phys. 60, 1357–1383 (1998).
[CrossRef]

Mende, S. B.

G. R. Swenson, S. B. Mende, “OH emission and gravity waves (including a breaking wave) in all-sky imagery from Bear Lake, UT,” Geophys. Res. Lett. 21, 2239–2242 (1994).
[CrossRef]

S. B. Mende, R. H. Eather, E. K. Aamodt, “Instrument for the monochromatic observation of all sky auroral images,” Appl. Opt. 16, 1691–1700 (1977).
[CrossRef] [PubMed]

G. R. Swenson, S. B. Mende, “Atmospheric airglow imaging with CCDs,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, P. B. Hays, J. Wang, eds., Proc. SPIE2266, 109–121 (1994).
[CrossRef]

Nagel, H. H.

H. H. Nagel, “On the estimation of optical flow: relations between different approaches and some new results,” Artif. Intell. 33, 299–324 (1987).
[CrossRef]

Orchard, M. T.

M. T. Orchard, G. J. Sullivan, “Overlapped block motion compensation: an estimation-theoretic approach,” IEEE Trans. Image Process. 3, 693–699 (1994).
[CrossRef] [PubMed]

Papen, G. C.

C. S. Gardner, M. Coble, G. C. Papen, G. R. Swenson, “Observations of the unambiguous two-dimensional horizontal wave number spectrum of OH intensity perturbations,” Geophys. Res. Lett. 23, 3739–3742 (1996).
[CrossRef]

Peterson, A. W.

Rosenfeld, A.

A. Rosenfeld, “Image analysis: problems, progress, and prospects,” Pattern Recog. 17, 3–12 (1984).
[CrossRef]

Rothwell, P.

M. J. Taylor, M. A. Hapgood, P. Rothwell, “Observations of gravity wave propagation in the OI (557.7 nm), Na (589.2 nm) and the near infrared OH nightglow emission,” Planet. Space Sci. 35, 413–427 (1987).
[CrossRef]

Schunck, B. G.

B. K. P. Horn, B. G. Schunck, “Determining optical flow,” Artif. Intell. 17, 185–203 (1981).
[CrossRef]

Sidi, C.

C. Sidi, J. Lefrere, F. Dalaudier, J. Barat, “An improved atmospheric buoyancy wave spectrum model,” J. Geophys. Res. 93, 774–790 (1988).
[CrossRef]

Sullivan, G. J.

M. T. Orchard, G. J. Sullivan, “Overlapped block motion compensation: an estimation-theoretic approach,” IEEE Trans. Image Process. 3, 693–699 (1994).
[CrossRef] [PubMed]

Swenson, G. R.

G. R. Swenson, R. Haque, W. Yang, C. S. Gardner, “Momentum and energy fluxes of monochromatic gravity waves observed by an OH imager at StarFire optical range, NM,” J. Geophys. Res. 104, 6064–6080 (1999).

G. R. Swenson, C. S. Gardner, “Analytical models for the responses of the mesospheric OH* and Na layers to atmospheric gravity waves,” J. Geophys. Res. [Atmos.] 103, 6271–6294 (1998).
[CrossRef]

G. R. Swenson, A. Z. Liu, “A model for calculating acoustic gravity wave energy and momentum flux in the mesosphere from OH airglow,” Geophys. Res. Lett. 25, 477–480 (1998).
[CrossRef]

C. S. Gardner, M. Coble, G. C. Papen, G. R. Swenson, “Observations of the unambiguous two-dimensional horizontal wave number spectrum of OH intensity perturbations,” Geophys. Res. Lett. 23, 3739–3742 (1996).
[CrossRef]

G. R. Swenson, S. B. Mende, “OH emission and gravity waves (including a breaking wave) in all-sky imagery from Bear Lake, UT,” Geophys. Res. Lett. 21, 2239–2242 (1994).
[CrossRef]

G. R. Swenson, S. B. Mende, “Atmospheric airglow imaging with CCDs,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, P. B. Hays, J. Wang, eds., Proc. SPIE2266, 109–121 (1994).
[CrossRef]

Tao, X.

C. S. Gardner, S. J. Franke, W. Yang, X. Tao, J. R. Yu, “Interpretation of gravity waves observed in the mesopause region at Starfire optical range, New Mexico: strong evidence for nonseparable intrinsic (m, w) spectra,” J. Geophys. Res. 103, 8699–8713 (1998).
[CrossRef]

Taylor, M. J.

M. J. Taylor, M. A. Hapgood, P. Rothwell, “Observations of gravity wave propagation in the OI (557.7 nm), Na (589.2 nm) and the near infrared OH nightglow emission,” Planet. Space Sci. 35, 413–427 (1987).
[CrossRef]

Tekalp, A. M.

A. M. Tekalp, Digital Video Processing (Prentice-Hall, Englewood Cliffs, N.J., 1995).

Tepley, C. A.

J. H. Hecht, T. J. Kane, R. L. Walterscheid, C. S. Gardner, C. A. Tepley, “Simultaneous nightglow and Na lidar observations at Arecibo during the AIDA-89 campaign,” J. Atmos. Terr. Phys. 55, 409–423 (1993).
[CrossRef]

Walterscheid, R. L.

J. H. Hecht, T. J. Kane, R. L. Walterscheid, C. S. Gardner, C. A. Tepley, “Simultaneous nightglow and Na lidar observations at Arecibo during the AIDA-89 campaign,” J. Atmos. Terr. Phys. 55, 409–423 (1993).
[CrossRef]

Yang, W.

G. R. Swenson, R. Haque, W. Yang, C. S. Gardner, “Momentum and energy fluxes of monochromatic gravity waves observed by an OH imager at StarFire optical range, NM,” J. Geophys. Res. 104, 6064–6080 (1999).

C. S. Gardner, S. J. Franke, W. Yang, X. Tao, J. R. Yu, “Interpretation of gravity waves observed in the mesopause region at Starfire optical range, New Mexico: strong evidence for nonseparable intrinsic (m, w) spectra,” J. Geophys. Res. 103, 8699–8713 (1998).
[CrossRef]

Yu, J. R.

C. S. Gardner, S. J. Franke, W. Yang, X. Tao, J. R. Yu, “Interpretation of gravity waves observed in the mesopause region at Starfire optical range, New Mexico: strong evidence for nonseparable intrinsic (m, w) spectra,” J. Geophys. Res. 103, 8699–8713 (1998).
[CrossRef]

Ann. Geophys.

V. I. Krassovsky, “Infrasonic variations of the OH emission in the upper atmosphere,” Ann. Geophys. 28, 739–746 (1972).

Appl. Opt.

Artif. Intell.

H. H. Nagel, “On the estimation of optical flow: relations between different approaches and some new results,” Artif. Intell. 33, 299–324 (1987).
[CrossRef]

B. K. P. Horn, B. G. Schunck, “Determining optical flow,” Artif. Intell. 17, 185–203 (1981).
[CrossRef]

Geophys. Res. Lett.

G. R. Swenson, A. Z. Liu, “A model for calculating acoustic gravity wave energy and momentum flux in the mesosphere from OH airglow,” Geophys. Res. Lett. 25, 477–480 (1998).
[CrossRef]

G. R. Swenson, S. B. Mende, “OH emission and gravity waves (including a breaking wave) in all-sky imagery from Bear Lake, UT,” Geophys. Res. Lett. 21, 2239–2242 (1994).
[CrossRef]

C. S. Gardner, “Introduction to ALOHA/ANLC-93: the 1993 airborne lidar and observations of the Hawaiian airglow/airborne noctilucent cloud campaigns,” Geophys. Res. Lett. 22, 2789–2793 (1995).
[CrossRef]

C. S. Gardner, M. Coble, G. C. Papen, G. R. Swenson, “Observations of the unambiguous two-dimensional horizontal wave number spectrum of OH intensity perturbations,” Geophys. Res. Lett. 23, 3739–3742 (1996).
[CrossRef]

IEEE Trans. Image Process.

M. T. Orchard, G. J. Sullivan, “Overlapped block motion compensation: an estimation-theoretic approach,” IEEE Trans. Image Process. 3, 693–699 (1994).
[CrossRef] [PubMed]

J. Atmos. Solar-Terr. Phys.

C. McLandress, “On the importance of gravity waves in the middle atmosphere and their parameterization in general circulation models,” J. Atmos. Solar-Terr. Phys. 60, 1357–1383 (1998).
[CrossRef]

J. Atmos. Terr. Phys.

R. P. Lowe, L. M. LeBlanc, K. L. Gilbert, “WINDII/UARS observation of twilight behavior of hydroxyl airglow at mid-latitude equinox,” J. Atmos. Terr. Phys. 58, 1863–1869 (1996).
[CrossRef]

J. H. Hecht, T. J. Kane, R. L. Walterscheid, C. S. Gardner, C. A. Tepley, “Simultaneous nightglow and Na lidar observations at Arecibo during the AIDA-89 campaign,” J. Atmos. Terr. Phys. 55, 409–423 (1993).
[CrossRef]

C. S. Gardner, “Testing theories of atmospheric gravity wave saturation and dissipation,” J. Atmos. Terr. Phys. 58, 1575–1589, 1996.
[CrossRef]

J. Geophys. Res.

C. Sidi, J. Lefrere, F. Dalaudier, J. Barat, “An improved atmospheric buoyancy wave spectrum model,” J. Geophys. Res. 93, 774–790 (1988).
[CrossRef]

C. S. Gardner, S. J. Franke, W. Yang, X. Tao, J. R. Yu, “Interpretation of gravity waves observed in the mesopause region at Starfire optical range, New Mexico: strong evidence for nonseparable intrinsic (m, w) spectra,” J. Geophys. Res. 103, 8699–8713 (1998).
[CrossRef]

G. R. Swenson, R. Haque, W. Yang, C. S. Gardner, “Momentum and energy fluxes of monochromatic gravity waves observed by an OH imager at StarFire optical range, NM,” J. Geophys. Res. 104, 6064–6080 (1999).

J. Geophys. Res. [Atmos.]

G. R. Swenson, C. S. Gardner, “Analytical models for the responses of the mesospheric OH* and Na layers to atmospheric gravity waves,” J. Geophys. Res. [Atmos.] 103, 6271–6294 (1998).
[CrossRef]

Pattern Recog.

A. Rosenfeld, “Image analysis: problems, progress, and prospects,” Pattern Recog. 17, 3–12 (1984).
[CrossRef]

Planet. Space Sci.

M. J. Taylor, M. A. Hapgood, P. Rothwell, “Observations of gravity wave propagation in the OI (557.7 nm), Na (589.2 nm) and the near infrared OH nightglow emission,” Planet. Space Sci. 35, 413–427 (1987).
[CrossRef]

Other

G. R. Swenson, S. B. Mende, “Atmospheric airglow imaging with CCDs,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, P. B. Hays, J. Wang, eds., Proc. SPIE2266, 109–121 (1994).
[CrossRef]

A. M. Tekalp, Digital Video Processing (Prentice-Hall, Englewood Cliffs, N.J., 1995).

R. O. Duda, P. E. Hart, Pattern Classification and Scene Analysis (Wiley, New York, 1973).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

(a) Picture of the optical system on an optical rail (right) connected to the operating electronics, which include a Macintosh computer, an optical disk, a camera controller, and a cooler. (b) Optical schematic of the all-sky imager showing the major optical and sensor elements.

Fig. 2
Fig. 2

Raw image from 4 April 1995 during the StarFire campaign.

Fig. 3
Fig. 3

(a) Time difference all-sky image of OH airglow waves taken on 4 April 1995 at 7:08:03 UT at Albuquerque, N.M. Background wind velocity, observed phase speed, and intrinsic phase speeds are labeled. (b) Magnified view of a portion of the image shown in Fig. 5(a) below.

Fig. 4
Fig. 4

Geometric structure illustrating the extraction of wave parameters for AGW’s in CCD images.

Fig. 5
Fig. 5

(a) 150 × 150 pixel block of an image taken at a specific time (t x ) for calculating the motion parameters. (b) 250 × 250 pixel block of another image taken at a later time (t x + Δt) for the purpose mentioned for (a). (c) Movement of the block in (a) over the block in (b) for the best match.

Fig. 6
Fig. 6

Three-step motion vector search, which can be used for wave-speed extraction.

Fig. 7
Fig. 7

(a) Plot of MSE versus pixel number shifted for determining when the MSE hits the minimum. Once the minimum is reached, (b) shows the MSE while the block is again shifted about the point obtained in (a) to reach a perfect match.

Fig. 8
Fig. 8

(a) MSE plotted as a function of angle. As can be seen, the MSE hits a minimum in the northward search. Once the pixel location for this minimum is obtained, (b) shows the MSE for the second round of the search. The minimum is obtained in an eastward search in this case. w.r.t, with respect to.

Fig. 9
Fig. 9

Flow chart of the motion-estimation program used in the analysis.

Fig. 10
Fig. 10

(a) Altitude–time histories of zonal and meridional wind, as measured by the University of Illinois Na wind lidar system from the U.S. Air Force StarFire facility. The data were taken on 3 February 1995. (b) Same as (a) except that data were taken on 1 April 1995. (c) Same as (a) except that data were taken on 4 April 1995.

Fig. 11
Fig. 11

(a) Plot of OH-weighted wind direction and velocity on 3 February 1995 as derived from the measured winds shown in Fig. 9. (b) Same as (a) except that it represents data for 1 April 1995. (c) Same as (a) except that it represents data for 4 April 1995.

Fig. 12
Fig. 12

(a) Intrinsic phase speed (C i ) from the motion model on all three nights (3 February and 1 and 4 April 1995) in a polar plot as a function of angle. (b) Same as (a) except that C i is extracted manually.

Fig. 13
Fig. 13

(a) Observed phase speed (C 0) as deduced from wave structure motion in images by the MSE method (see text) on 3 February 1995. (b) Same as (a) except that it represents data for 1 April 1995. (c) Same as (a) except that it represents data for 4 April 1995.

Fig. 14
Fig. 14

Same as Fig. 12, except that in each case we have manually deduced (see text) the observed phase speed (C 0).

Fig. 15
Fig. 15

(a) Composite plot of observed phase velocity (C 0) measured by the motion model and by manual observation in a polar plot. (b) Composite plot of intrinsic phase velocity (C i ) measured by the motion model and by manual observation in a polar plot.

Tables (2)

Tables Icon

Table 1 Intrinsic Phase Speeds Ci on Three Nights

Tables Icon

Table 2 Observed Phase Speeds C0 on Three Nightsa

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

MSE=n1,n2B|I1n1, n2-I2n1-1, n2-v2|2
MSE=n1,n2B |I12n1, n2+I22n1, n2-2I1n1, n2I2n1, n2|.
MSEI2=0
2n1,n2B I2n1, n2-I1n1, n2=0.
Ci=C0-U.

Metrics