Abstract

The optical characterization of solar absorbers for thermal solar collectors is usually performed by measurement of the spectral reflectance at near-normal angle of incidence and calculation of the solar absorptance from the measured reflectance. The solar absorptance is, however, a function of the angle of incidence of the light impinging on the absorber. The total reflectance of two types of commercial solar-selective absorbers, nickel-pigmented anodized aluminum, and sputtered nickel/nickel oxide coated aluminum are measured at angles of incidence from 5° to 80° in the wavelength range 300–2500 nm by use of an integrating sphere. From these measurements the angular integrated solar absorptance is determined. Experimental data are compared with theoretical calculations, and it is found that optical thin-film interference effects can explain the significant difference in solar absorptance at higher angles for the two types of absorbers.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Tabor, “Selective radiation II. Wavelength discrimination,” Bull. Res. Counc. Isr. Sect. A. Chem. 5, 129–134 (1956).
  2. H. Tabor, “Selective radiation I. Wavelength discrimination,” Bull. Res. Counc. Isr. Sect. A. Chem. 5, 119–128 (1956).
  3. J. T. Gier, R. V. Dunkle, “Selective spectral characteristics as an important factor in the efficiency of solar collectors,” in Transactions of the Conference on the Use of Solar Energy (University of Arizona, Tucson, Ariz., 1955), Vol. 2, pp. 41–56.
  4. C. M. Lampert, “Coatings for enhanced photothermal energy collection,” Solar Energy Mater. 2, 1–17 (1979).
    [CrossRef]
  5. Å. Andersson, O. Hunderi, C. G. Granqvist, “Nickel pigmented anodic aluminum oxide for selective absorption of solar energy,” J. Appl. Phys. 51, 754–764 (1980).
    [CrossRef]
  6. G. A. Niklasson, C. G. Granqvist, O. Hunderi, “Effective medium models for the optical properties of inhomogeneous materials,” Appl. Opt. 20, 26–30 (1981).
    [CrossRef] [PubMed]
  7. T. Tesfamichael, S. Andersson, T. Chibuye, E. Wäckelgård, “Study of oxidation kinetics for metal-dielectric films using IR optical measurements,” in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XV, C. M. Lampert, C. G. Granqvist, M. Graetze, S. K. Deb, eds., Proc. SPIE3138, 197–204 (1997).
  8. R. Gatt, G. A. Niklasson, C. G. Granqvist, “Degradation modes of Cermet based selective solar absorber coatings,” in Optical Material Technology for Energy Efficiency and Solar Energy Conversion XI: Selective Solar Absorbers, A. H. Goff, C. G. Granqvist, C. M. Lampert eds., Proc. SPIE1727, 87–101 (1992).
  9. G. A. Niklasson, “Theoretical model for the durability of the solar selective absorber coatings at elevated temperatures,” in Energy and the Environment into the 1990s, A. A. M. Sayigh, ed. (Pergamon, Oxford, 1990), Vol. 3, pp. 1372–1376.
  10. E. Wäckelgård, “A comparative study of the optical properties of nickel pigmented alumina films of different thicknesses exposed to elevated temperature and humidity,” Solar Energy Mater. Solar Cells 54, 171–179 (1998).
    [CrossRef]
  11. J. A. Duffie, W. A. Beckman, Solar Engineering of Thermal Processes, 2nd ed. (Wiley-Interscience, New York, 1991), pp. 209–210.
  12. R. B. Pettit, R. R. Sowell, “Solar absorptance and emittance properties of several solar coatings,” J. Vac. Sci. Technol. 13, 596–602 (1976).
    [CrossRef]
  13. E. Wäckelgård, “A study of the optical properties of nickel-pigmented anodic aluminum in the infrared region,” J. Phys. Condens. Matter 8, 5125–5138 (1996).
    [CrossRef]
  14. G. H. Pontifex, P. Zhang, Z. Wang, T. L. Haslett, D. AIMawlawi, M. Moskovits, “STM imaging of the surface of small metal particles formed in anodic oxide pores,” J. Phys. Chem. 95, 9989–9993 (1991).
    [CrossRef]
  15. S. Nakamura, M. Saito, L.-F. Hunga, M. Miyagi, K. Wada, “Infrared optical constants of anodic alumina films with micropore arrays,” Jpn. J. Appl. Phys. 31, 3589–3593 (1992).
    [CrossRef]
  16. E. Wäckelgård, G. Hultmark, “Industrially sputtered solar absorber surface,” Solar Energy Mater. Solar Cells 54, 165–170 (1998).
    [CrossRef]
  17. P. Nostell, A. Roos, D. Rönnow, “Single beam integrating sphere spectrophotometer for R- and T-measurements versus angle of incidence in the solar wavelength range on diffuse and specular samples,” Rev. Sci. Instrum. 70, 2481–2494 (1999).
    [CrossRef]
  18. 9845-1 ISO, “Solar energy—reference solar spectral irradiance at the ground at different receiving conditions-” (International Organisation for Standardization, Geneva, Switzerland, 1992).
  19. M. A. Lind, R. B. Pettit, K. D. Masterson, “The sensitivity of solar transmittance reflectance and absorptance to selected averaging procedures and solar irradiance distributions,” Trans. Am. Soc. Mech. Eng. 102, 34–40 (1980).
  20. E. Wäckelgård, T. Chibuye, B. Karlsson, “Improved solar optical properties of a nickel pigmented anodized aluminum selective surface,” in Energy Conservation in Buildings, Proceedings of NORTHSUN 90, A. A. M. Sayigh ed. (Pergamon, Oxford, 1990), pp. 177–182.
  21. A. Thelen, Design of Optical Interference Coatings (McGraw-Hill, New York, 1989), Chap. 2, pp. 23–24 and Chap. 9, pp. 177–178.
  22. A. Roos, “Use of an integrating sphere in solar energy research,” Solar Energy Mater. Solar Cells 30, 77–94 (1993).
    [CrossRef]
  23. G. B. Smith, “Theory of angular selective transmittance in oblique columnar thin films containing metal and voids,” Appl. Opt. 29, 3685–3693 (1990).
    [CrossRef] [PubMed]
  24. A. P. Lenham, D. M. Treherne, Optical Properties and Electronic Structure of Metals and Alloys (North-Holland, Amsterdam, 1966).
  25. P. J. Gielisse, J. N. Plendl, L. C. Mansur, G. R. Marshall, S. S. Mitra, R. Mykolajewycz, S. Smakula, “Infrared properties of NiO and CoO and their mixed crystals,” J. Appl. Phys. 36, 2446–2450 (1965).
    [CrossRef]
  26. T. S. Eriksson, A. Hjortsberg, G. A. Niklasson, C. G. Granqvist, “Infrared optical properties of evaporated alumina films,” Appl. Opt. 20, 2742–2746 (1981).
    [CrossRef] [PubMed]
  27. J. H. Weaver, “Handbook of chemistry and physics,” in Optical Properties of Metals, D. R. Lide, ed. (CRC Press, Boca Raton, Fla., 1993), Sect. 12, pp. 111–126.

1999 (1)

P. Nostell, A. Roos, D. Rönnow, “Single beam integrating sphere spectrophotometer for R- and T-measurements versus angle of incidence in the solar wavelength range on diffuse and specular samples,” Rev. Sci. Instrum. 70, 2481–2494 (1999).
[CrossRef]

1998 (2)

E. Wäckelgård, G. Hultmark, “Industrially sputtered solar absorber surface,” Solar Energy Mater. Solar Cells 54, 165–170 (1998).
[CrossRef]

E. Wäckelgård, “A comparative study of the optical properties of nickel pigmented alumina films of different thicknesses exposed to elevated temperature and humidity,” Solar Energy Mater. Solar Cells 54, 171–179 (1998).
[CrossRef]

1996 (1)

E. Wäckelgård, “A study of the optical properties of nickel-pigmented anodic aluminum in the infrared region,” J. Phys. Condens. Matter 8, 5125–5138 (1996).
[CrossRef]

1993 (1)

A. Roos, “Use of an integrating sphere in solar energy research,” Solar Energy Mater. Solar Cells 30, 77–94 (1993).
[CrossRef]

1992 (1)

S. Nakamura, M. Saito, L.-F. Hunga, M. Miyagi, K. Wada, “Infrared optical constants of anodic alumina films with micropore arrays,” Jpn. J. Appl. Phys. 31, 3589–3593 (1992).
[CrossRef]

1991 (1)

G. H. Pontifex, P. Zhang, Z. Wang, T. L. Haslett, D. AIMawlawi, M. Moskovits, “STM imaging of the surface of small metal particles formed in anodic oxide pores,” J. Phys. Chem. 95, 9989–9993 (1991).
[CrossRef]

1990 (1)

1981 (2)

1980 (2)

M. A. Lind, R. B. Pettit, K. D. Masterson, “The sensitivity of solar transmittance reflectance and absorptance to selected averaging procedures and solar irradiance distributions,” Trans. Am. Soc. Mech. Eng. 102, 34–40 (1980).

Å. Andersson, O. Hunderi, C. G. Granqvist, “Nickel pigmented anodic aluminum oxide for selective absorption of solar energy,” J. Appl. Phys. 51, 754–764 (1980).
[CrossRef]

1979 (1)

C. M. Lampert, “Coatings for enhanced photothermal energy collection,” Solar Energy Mater. 2, 1–17 (1979).
[CrossRef]

1976 (1)

R. B. Pettit, R. R. Sowell, “Solar absorptance and emittance properties of several solar coatings,” J. Vac. Sci. Technol. 13, 596–602 (1976).
[CrossRef]

1965 (1)

P. J. Gielisse, J. N. Plendl, L. C. Mansur, G. R. Marshall, S. S. Mitra, R. Mykolajewycz, S. Smakula, “Infrared properties of NiO and CoO and their mixed crystals,” J. Appl. Phys. 36, 2446–2450 (1965).
[CrossRef]

1956 (2)

H. Tabor, “Selective radiation II. Wavelength discrimination,” Bull. Res. Counc. Isr. Sect. A. Chem. 5, 129–134 (1956).

H. Tabor, “Selective radiation I. Wavelength discrimination,” Bull. Res. Counc. Isr. Sect. A. Chem. 5, 119–128 (1956).

AIMawlawi, D.

G. H. Pontifex, P. Zhang, Z. Wang, T. L. Haslett, D. AIMawlawi, M. Moskovits, “STM imaging of the surface of small metal particles formed in anodic oxide pores,” J. Phys. Chem. 95, 9989–9993 (1991).
[CrossRef]

Andersson, Å.

Å. Andersson, O. Hunderi, C. G. Granqvist, “Nickel pigmented anodic aluminum oxide for selective absorption of solar energy,” J. Appl. Phys. 51, 754–764 (1980).
[CrossRef]

Andersson, S.

T. Tesfamichael, S. Andersson, T. Chibuye, E. Wäckelgård, “Study of oxidation kinetics for metal-dielectric films using IR optical measurements,” in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XV, C. M. Lampert, C. G. Granqvist, M. Graetze, S. K. Deb, eds., Proc. SPIE3138, 197–204 (1997).

Beckman, W. A.

J. A. Duffie, W. A. Beckman, Solar Engineering of Thermal Processes, 2nd ed. (Wiley-Interscience, New York, 1991), pp. 209–210.

Chibuye, T.

T. Tesfamichael, S. Andersson, T. Chibuye, E. Wäckelgård, “Study of oxidation kinetics for metal-dielectric films using IR optical measurements,” in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XV, C. M. Lampert, C. G. Granqvist, M. Graetze, S. K. Deb, eds., Proc. SPIE3138, 197–204 (1997).

E. Wäckelgård, T. Chibuye, B. Karlsson, “Improved solar optical properties of a nickel pigmented anodized aluminum selective surface,” in Energy Conservation in Buildings, Proceedings of NORTHSUN 90, A. A. M. Sayigh ed. (Pergamon, Oxford, 1990), pp. 177–182.

Duffie, J. A.

J. A. Duffie, W. A. Beckman, Solar Engineering of Thermal Processes, 2nd ed. (Wiley-Interscience, New York, 1991), pp. 209–210.

Dunkle, R. V.

J. T. Gier, R. V. Dunkle, “Selective spectral characteristics as an important factor in the efficiency of solar collectors,” in Transactions of the Conference on the Use of Solar Energy (University of Arizona, Tucson, Ariz., 1955), Vol. 2, pp. 41–56.

Eriksson, T. S.

Gatt, R.

R. Gatt, G. A. Niklasson, C. G. Granqvist, “Degradation modes of Cermet based selective solar absorber coatings,” in Optical Material Technology for Energy Efficiency and Solar Energy Conversion XI: Selective Solar Absorbers, A. H. Goff, C. G. Granqvist, C. M. Lampert eds., Proc. SPIE1727, 87–101 (1992).

Gielisse, P. J.

P. J. Gielisse, J. N. Plendl, L. C. Mansur, G. R. Marshall, S. S. Mitra, R. Mykolajewycz, S. Smakula, “Infrared properties of NiO and CoO and their mixed crystals,” J. Appl. Phys. 36, 2446–2450 (1965).
[CrossRef]

Gier, J. T.

J. T. Gier, R. V. Dunkle, “Selective spectral characteristics as an important factor in the efficiency of solar collectors,” in Transactions of the Conference on the Use of Solar Energy (University of Arizona, Tucson, Ariz., 1955), Vol. 2, pp. 41–56.

Granqvist, C. G.

G. A. Niklasson, C. G. Granqvist, O. Hunderi, “Effective medium models for the optical properties of inhomogeneous materials,” Appl. Opt. 20, 26–30 (1981).
[CrossRef] [PubMed]

T. S. Eriksson, A. Hjortsberg, G. A. Niklasson, C. G. Granqvist, “Infrared optical properties of evaporated alumina films,” Appl. Opt. 20, 2742–2746 (1981).
[CrossRef] [PubMed]

Å. Andersson, O. Hunderi, C. G. Granqvist, “Nickel pigmented anodic aluminum oxide for selective absorption of solar energy,” J. Appl. Phys. 51, 754–764 (1980).
[CrossRef]

R. Gatt, G. A. Niklasson, C. G. Granqvist, “Degradation modes of Cermet based selective solar absorber coatings,” in Optical Material Technology for Energy Efficiency and Solar Energy Conversion XI: Selective Solar Absorbers, A. H. Goff, C. G. Granqvist, C. M. Lampert eds., Proc. SPIE1727, 87–101 (1992).

Haslett, T. L.

G. H. Pontifex, P. Zhang, Z. Wang, T. L. Haslett, D. AIMawlawi, M. Moskovits, “STM imaging of the surface of small metal particles formed in anodic oxide pores,” J. Phys. Chem. 95, 9989–9993 (1991).
[CrossRef]

Hjortsberg, A.

Hultmark, G.

E. Wäckelgård, G. Hultmark, “Industrially sputtered solar absorber surface,” Solar Energy Mater. Solar Cells 54, 165–170 (1998).
[CrossRef]

Hunderi, O.

G. A. Niklasson, C. G. Granqvist, O. Hunderi, “Effective medium models for the optical properties of inhomogeneous materials,” Appl. Opt. 20, 26–30 (1981).
[CrossRef] [PubMed]

Å. Andersson, O. Hunderi, C. G. Granqvist, “Nickel pigmented anodic aluminum oxide for selective absorption of solar energy,” J. Appl. Phys. 51, 754–764 (1980).
[CrossRef]

Hunga, L.-F.

S. Nakamura, M. Saito, L.-F. Hunga, M. Miyagi, K. Wada, “Infrared optical constants of anodic alumina films with micropore arrays,” Jpn. J. Appl. Phys. 31, 3589–3593 (1992).
[CrossRef]

Karlsson, B.

E. Wäckelgård, T. Chibuye, B. Karlsson, “Improved solar optical properties of a nickel pigmented anodized aluminum selective surface,” in Energy Conservation in Buildings, Proceedings of NORTHSUN 90, A. A. M. Sayigh ed. (Pergamon, Oxford, 1990), pp. 177–182.

Lampert, C. M.

C. M. Lampert, “Coatings for enhanced photothermal energy collection,” Solar Energy Mater. 2, 1–17 (1979).
[CrossRef]

Lenham, A. P.

A. P. Lenham, D. M. Treherne, Optical Properties and Electronic Structure of Metals and Alloys (North-Holland, Amsterdam, 1966).

Lind, M. A.

M. A. Lind, R. B. Pettit, K. D. Masterson, “The sensitivity of solar transmittance reflectance and absorptance to selected averaging procedures and solar irradiance distributions,” Trans. Am. Soc. Mech. Eng. 102, 34–40 (1980).

Mansur, L. C.

P. J. Gielisse, J. N. Plendl, L. C. Mansur, G. R. Marshall, S. S. Mitra, R. Mykolajewycz, S. Smakula, “Infrared properties of NiO and CoO and their mixed crystals,” J. Appl. Phys. 36, 2446–2450 (1965).
[CrossRef]

Marshall, G. R.

P. J. Gielisse, J. N. Plendl, L. C. Mansur, G. R. Marshall, S. S. Mitra, R. Mykolajewycz, S. Smakula, “Infrared properties of NiO and CoO and their mixed crystals,” J. Appl. Phys. 36, 2446–2450 (1965).
[CrossRef]

Masterson, K. D.

M. A. Lind, R. B. Pettit, K. D. Masterson, “The sensitivity of solar transmittance reflectance and absorptance to selected averaging procedures and solar irradiance distributions,” Trans. Am. Soc. Mech. Eng. 102, 34–40 (1980).

Mitra, S. S.

P. J. Gielisse, J. N. Plendl, L. C. Mansur, G. R. Marshall, S. S. Mitra, R. Mykolajewycz, S. Smakula, “Infrared properties of NiO and CoO and their mixed crystals,” J. Appl. Phys. 36, 2446–2450 (1965).
[CrossRef]

Miyagi, M.

S. Nakamura, M. Saito, L.-F. Hunga, M. Miyagi, K. Wada, “Infrared optical constants of anodic alumina films with micropore arrays,” Jpn. J. Appl. Phys. 31, 3589–3593 (1992).
[CrossRef]

Moskovits, M.

G. H. Pontifex, P. Zhang, Z. Wang, T. L. Haslett, D. AIMawlawi, M. Moskovits, “STM imaging of the surface of small metal particles formed in anodic oxide pores,” J. Phys. Chem. 95, 9989–9993 (1991).
[CrossRef]

Mykolajewycz, R.

P. J. Gielisse, J. N. Plendl, L. C. Mansur, G. R. Marshall, S. S. Mitra, R. Mykolajewycz, S. Smakula, “Infrared properties of NiO and CoO and their mixed crystals,” J. Appl. Phys. 36, 2446–2450 (1965).
[CrossRef]

Nakamura, S.

S. Nakamura, M. Saito, L.-F. Hunga, M. Miyagi, K. Wada, “Infrared optical constants of anodic alumina films with micropore arrays,” Jpn. J. Appl. Phys. 31, 3589–3593 (1992).
[CrossRef]

Niklasson, G. A.

G. A. Niklasson, C. G. Granqvist, O. Hunderi, “Effective medium models for the optical properties of inhomogeneous materials,” Appl. Opt. 20, 26–30 (1981).
[CrossRef] [PubMed]

T. S. Eriksson, A. Hjortsberg, G. A. Niklasson, C. G. Granqvist, “Infrared optical properties of evaporated alumina films,” Appl. Opt. 20, 2742–2746 (1981).
[CrossRef] [PubMed]

G. A. Niklasson, “Theoretical model for the durability of the solar selective absorber coatings at elevated temperatures,” in Energy and the Environment into the 1990s, A. A. M. Sayigh, ed. (Pergamon, Oxford, 1990), Vol. 3, pp. 1372–1376.

R. Gatt, G. A. Niklasson, C. G. Granqvist, “Degradation modes of Cermet based selective solar absorber coatings,” in Optical Material Technology for Energy Efficiency and Solar Energy Conversion XI: Selective Solar Absorbers, A. H. Goff, C. G. Granqvist, C. M. Lampert eds., Proc. SPIE1727, 87–101 (1992).

Nostell, P.

P. Nostell, A. Roos, D. Rönnow, “Single beam integrating sphere spectrophotometer for R- and T-measurements versus angle of incidence in the solar wavelength range on diffuse and specular samples,” Rev. Sci. Instrum. 70, 2481–2494 (1999).
[CrossRef]

Pettit, R. B.

M. A. Lind, R. B. Pettit, K. D. Masterson, “The sensitivity of solar transmittance reflectance and absorptance to selected averaging procedures and solar irradiance distributions,” Trans. Am. Soc. Mech. Eng. 102, 34–40 (1980).

R. B. Pettit, R. R. Sowell, “Solar absorptance and emittance properties of several solar coatings,” J. Vac. Sci. Technol. 13, 596–602 (1976).
[CrossRef]

Plendl, J. N.

P. J. Gielisse, J. N. Plendl, L. C. Mansur, G. R. Marshall, S. S. Mitra, R. Mykolajewycz, S. Smakula, “Infrared properties of NiO and CoO and their mixed crystals,” J. Appl. Phys. 36, 2446–2450 (1965).
[CrossRef]

Pontifex, G. H.

G. H. Pontifex, P. Zhang, Z. Wang, T. L. Haslett, D. AIMawlawi, M. Moskovits, “STM imaging of the surface of small metal particles formed in anodic oxide pores,” J. Phys. Chem. 95, 9989–9993 (1991).
[CrossRef]

Rönnow, D.

P. Nostell, A. Roos, D. Rönnow, “Single beam integrating sphere spectrophotometer for R- and T-measurements versus angle of incidence in the solar wavelength range on diffuse and specular samples,” Rev. Sci. Instrum. 70, 2481–2494 (1999).
[CrossRef]

Roos, A.

P. Nostell, A. Roos, D. Rönnow, “Single beam integrating sphere spectrophotometer for R- and T-measurements versus angle of incidence in the solar wavelength range on diffuse and specular samples,” Rev. Sci. Instrum. 70, 2481–2494 (1999).
[CrossRef]

A. Roos, “Use of an integrating sphere in solar energy research,” Solar Energy Mater. Solar Cells 30, 77–94 (1993).
[CrossRef]

Saito, M.

S. Nakamura, M. Saito, L.-F. Hunga, M. Miyagi, K. Wada, “Infrared optical constants of anodic alumina films with micropore arrays,” Jpn. J. Appl. Phys. 31, 3589–3593 (1992).
[CrossRef]

Smakula, S.

P. J. Gielisse, J. N. Plendl, L. C. Mansur, G. R. Marshall, S. S. Mitra, R. Mykolajewycz, S. Smakula, “Infrared properties of NiO and CoO and their mixed crystals,” J. Appl. Phys. 36, 2446–2450 (1965).
[CrossRef]

Smith, G. B.

Sowell, R. R.

R. B. Pettit, R. R. Sowell, “Solar absorptance and emittance properties of several solar coatings,” J. Vac. Sci. Technol. 13, 596–602 (1976).
[CrossRef]

Tabor, H.

H. Tabor, “Selective radiation II. Wavelength discrimination,” Bull. Res. Counc. Isr. Sect. A. Chem. 5, 129–134 (1956).

H. Tabor, “Selective radiation I. Wavelength discrimination,” Bull. Res. Counc. Isr. Sect. A. Chem. 5, 119–128 (1956).

Tesfamichael, T.

T. Tesfamichael, S. Andersson, T. Chibuye, E. Wäckelgård, “Study of oxidation kinetics for metal-dielectric films using IR optical measurements,” in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XV, C. M. Lampert, C. G. Granqvist, M. Graetze, S. K. Deb, eds., Proc. SPIE3138, 197–204 (1997).

Thelen, A.

A. Thelen, Design of Optical Interference Coatings (McGraw-Hill, New York, 1989), Chap. 2, pp. 23–24 and Chap. 9, pp. 177–178.

Treherne, D. M.

A. P. Lenham, D. M. Treherne, Optical Properties and Electronic Structure of Metals and Alloys (North-Holland, Amsterdam, 1966).

Wäckelgård, E.

E. Wäckelgård, G. Hultmark, “Industrially sputtered solar absorber surface,” Solar Energy Mater. Solar Cells 54, 165–170 (1998).
[CrossRef]

E. Wäckelgård, “A comparative study of the optical properties of nickel pigmented alumina films of different thicknesses exposed to elevated temperature and humidity,” Solar Energy Mater. Solar Cells 54, 171–179 (1998).
[CrossRef]

E. Wäckelgård, “A study of the optical properties of nickel-pigmented anodic aluminum in the infrared region,” J. Phys. Condens. Matter 8, 5125–5138 (1996).
[CrossRef]

T. Tesfamichael, S. Andersson, T. Chibuye, E. Wäckelgård, “Study of oxidation kinetics for metal-dielectric films using IR optical measurements,” in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XV, C. M. Lampert, C. G. Granqvist, M. Graetze, S. K. Deb, eds., Proc. SPIE3138, 197–204 (1997).

E. Wäckelgård, T. Chibuye, B. Karlsson, “Improved solar optical properties of a nickel pigmented anodized aluminum selective surface,” in Energy Conservation in Buildings, Proceedings of NORTHSUN 90, A. A. M. Sayigh ed. (Pergamon, Oxford, 1990), pp. 177–182.

Wada, K.

S. Nakamura, M. Saito, L.-F. Hunga, M. Miyagi, K. Wada, “Infrared optical constants of anodic alumina films with micropore arrays,” Jpn. J. Appl. Phys. 31, 3589–3593 (1992).
[CrossRef]

Wang, Z.

G. H. Pontifex, P. Zhang, Z. Wang, T. L. Haslett, D. AIMawlawi, M. Moskovits, “STM imaging of the surface of small metal particles formed in anodic oxide pores,” J. Phys. Chem. 95, 9989–9993 (1991).
[CrossRef]

Weaver, J. H.

J. H. Weaver, “Handbook of chemistry and physics,” in Optical Properties of Metals, D. R. Lide, ed. (CRC Press, Boca Raton, Fla., 1993), Sect. 12, pp. 111–126.

Zhang, P.

G. H. Pontifex, P. Zhang, Z. Wang, T. L. Haslett, D. AIMawlawi, M. Moskovits, “STM imaging of the surface of small metal particles formed in anodic oxide pores,” J. Phys. Chem. 95, 9989–9993 (1991).
[CrossRef]

Appl. Opt. (3)

Bull. Res. Counc. Isr. Sect. A. Chem. (2)

H. Tabor, “Selective radiation II. Wavelength discrimination,” Bull. Res. Counc. Isr. Sect. A. Chem. 5, 129–134 (1956).

H. Tabor, “Selective radiation I. Wavelength discrimination,” Bull. Res. Counc. Isr. Sect. A. Chem. 5, 119–128 (1956).

J. Appl. Phys. (2)

Å. Andersson, O. Hunderi, C. G. Granqvist, “Nickel pigmented anodic aluminum oxide for selective absorption of solar energy,” J. Appl. Phys. 51, 754–764 (1980).
[CrossRef]

P. J. Gielisse, J. N. Plendl, L. C. Mansur, G. R. Marshall, S. S. Mitra, R. Mykolajewycz, S. Smakula, “Infrared properties of NiO and CoO and their mixed crystals,” J. Appl. Phys. 36, 2446–2450 (1965).
[CrossRef]

J. Phys. Chem. (1)

G. H. Pontifex, P. Zhang, Z. Wang, T. L. Haslett, D. AIMawlawi, M. Moskovits, “STM imaging of the surface of small metal particles formed in anodic oxide pores,” J. Phys. Chem. 95, 9989–9993 (1991).
[CrossRef]

J. Phys. Condens. Matter (1)

E. Wäckelgård, “A study of the optical properties of nickel-pigmented anodic aluminum in the infrared region,” J. Phys. Condens. Matter 8, 5125–5138 (1996).
[CrossRef]

J. Vac. Sci. Technol. (1)

R. B. Pettit, R. R. Sowell, “Solar absorptance and emittance properties of several solar coatings,” J. Vac. Sci. Technol. 13, 596–602 (1976).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. Nakamura, M. Saito, L.-F. Hunga, M. Miyagi, K. Wada, “Infrared optical constants of anodic alumina films with micropore arrays,” Jpn. J. Appl. Phys. 31, 3589–3593 (1992).
[CrossRef]

Rev. Sci. Instrum. (1)

P. Nostell, A. Roos, D. Rönnow, “Single beam integrating sphere spectrophotometer for R- and T-measurements versus angle of incidence in the solar wavelength range on diffuse and specular samples,” Rev. Sci. Instrum. 70, 2481–2494 (1999).
[CrossRef]

Solar Energy Mater. (1)

C. M. Lampert, “Coatings for enhanced photothermal energy collection,” Solar Energy Mater. 2, 1–17 (1979).
[CrossRef]

Solar Energy Mater. Solar Cells (3)

E. Wäckelgård, G. Hultmark, “Industrially sputtered solar absorber surface,” Solar Energy Mater. Solar Cells 54, 165–170 (1998).
[CrossRef]

E. Wäckelgård, “A comparative study of the optical properties of nickel pigmented alumina films of different thicknesses exposed to elevated temperature and humidity,” Solar Energy Mater. Solar Cells 54, 171–179 (1998).
[CrossRef]

A. Roos, “Use of an integrating sphere in solar energy research,” Solar Energy Mater. Solar Cells 30, 77–94 (1993).
[CrossRef]

Trans. Am. Soc. Mech. Eng. (1)

M. A. Lind, R. B. Pettit, K. D. Masterson, “The sensitivity of solar transmittance reflectance and absorptance to selected averaging procedures and solar irradiance distributions,” Trans. Am. Soc. Mech. Eng. 102, 34–40 (1980).

Other (10)

E. Wäckelgård, T. Chibuye, B. Karlsson, “Improved solar optical properties of a nickel pigmented anodized aluminum selective surface,” in Energy Conservation in Buildings, Proceedings of NORTHSUN 90, A. A. M. Sayigh ed. (Pergamon, Oxford, 1990), pp. 177–182.

A. Thelen, Design of Optical Interference Coatings (McGraw-Hill, New York, 1989), Chap. 2, pp. 23–24 and Chap. 9, pp. 177–178.

A. P. Lenham, D. M. Treherne, Optical Properties and Electronic Structure of Metals and Alloys (North-Holland, Amsterdam, 1966).

J. H. Weaver, “Handbook of chemistry and physics,” in Optical Properties of Metals, D. R. Lide, ed. (CRC Press, Boca Raton, Fla., 1993), Sect. 12, pp. 111–126.

J. A. Duffie, W. A. Beckman, Solar Engineering of Thermal Processes, 2nd ed. (Wiley-Interscience, New York, 1991), pp. 209–210.

9845-1 ISO, “Solar energy—reference solar spectral irradiance at the ground at different receiving conditions-” (International Organisation for Standardization, Geneva, Switzerland, 1992).

J. T. Gier, R. V. Dunkle, “Selective spectral characteristics as an important factor in the efficiency of solar collectors,” in Transactions of the Conference on the Use of Solar Energy (University of Arizona, Tucson, Ariz., 1955), Vol. 2, pp. 41–56.

T. Tesfamichael, S. Andersson, T. Chibuye, E. Wäckelgård, “Study of oxidation kinetics for metal-dielectric films using IR optical measurements,” in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XV, C. M. Lampert, C. G. Granqvist, M. Graetze, S. K. Deb, eds., Proc. SPIE3138, 197–204 (1997).

R. Gatt, G. A. Niklasson, C. G. Granqvist, “Degradation modes of Cermet based selective solar absorber coatings,” in Optical Material Technology for Energy Efficiency and Solar Energy Conversion XI: Selective Solar Absorbers, A. H. Goff, C. G. Granqvist, C. M. Lampert eds., Proc. SPIE1727, 87–101 (1992).

G. A. Niklasson, “Theoretical model for the durability of the solar selective absorber coatings at elevated temperatures,” in Energy and the Environment into the 1990s, A. A. M. Sayigh, ed. (Pergamon, Oxford, 1990), Vol. 3, pp. 1372–1376.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Reflectances (a) R p and (b) R s for a nickel-pigmented aluminum oxide coating as a function of wavelength in the solar spectrum recorded at different angles of incidence from near normal to 80°.

Fig. 2
Fig. 2

Reflectances R p and R s for the nickel-pigmented aluminum oxide coating shown in Fig. 1 versus angles of incidence for two different wavelengths: (a) 500 nm, (b) 1200 nm. The nonpolarized reflectance R = (R p + R s )/2 is also shown.

Fig. 3
Fig. 3

Reflectances (a) R p and (b) R s for a sputtered nickel/nickel oxide coating as functions of wavelength in the solar spectrum measured at different angles of incidence from near normal to 80°.

Fig. 4
Fig. 4

Reflectances R p and R s for the sputtered nickel/nickel oxide coating shown in Fig. 3 versus angles of incidence for two different wavelengths: (a) 500 nm, (b) 1200 nm. The nonpolarized reflectance R = (R p + R s )/2 is also shown.

Fig. 5
Fig. 5

Solar absorptance of nickel-pigmented aluminum oxide and sputtered nickel/nickel oxide commercial absorber coatings determined from Figs. 1 and 3 versus angles of incidence from 5° to 80°.

Fig. 6
Fig. 6

Solar absorptance of nickel-pigmented aluminum oxide coating as a function of angle of incidence from 5° to 80°. Measurements are shown for two different sample rolling orientations (grooves) of the aluminum substrate: perpendicular and parallel to the plane of the incident light.

Fig. 7
Fig. 7

Unpolarized reflectance spectra R = (R p + R s )/2 for (a) calculated and (b) experimental nickel-pigmented aluminum oxide coating as functions of wavelength in the solar spectrum at different angles of incidence from near normal to 80°.

Fig. 8
Fig. 8

Calculated solar absorptance versus angles of incidence of nickel-pigmented aluminum oxide together with the experimental results shown in Fig. 5. The solar absorptance is normalized to the value at near-normal angle of incidence.

Fig. 9
Fig. 9

Calculated normalized solar absorptances (α/α) versus angles of incidence of nickel-pigmented aluminum oxide for two different particle shapes (cylindrical and spherical) and constant film thickness.

Fig. 10
Fig. 10

Calculated normalized solar absorptances (α/α) versus angles of incidence of nickel-pigmented aluminum oxide for cylindrical geometry (a) at varying nickel–alumina thicknesses d 2 and constant air–alumina layer d 1, (b) constant d 2 and different thicknesses of d 1.

Fig. 11
Fig. 11

Calculated normalized solar absorptance (α/α) versus angles of incidence of a graded-index layer of a nickel–alumina mixture on an aluminum substrate. The curve is shown together with the result of the nickel-pigmented aluminum oxide double-layer structure modeled in Fig. 8.

Fig. 12
Fig. 12

Unpolarized reflectance spectra R = (R p + R s )/2 for (a) calculated and (b) measured sputtered nickel/nickel oxide coatings as functions of wavelength in the solar spectrum at different angles of incidence from near normal to 80°.

Fig. 13
Fig. 13

Calculated and experimental normalized solar absorptances versus angles of incidence for sputtered nickel/nickel oxide coating determined from Fig. 12.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

αθ=λ1λ21-0.5Rpθ, λ+Rsθ, λIλdλλ1λ2 Iλdλ,

Metrics