Abstract

We propose what we believe is a new type of dielectric anisotropic coating of arbitrary thickness that can protect Brewster angle windows without degrading their optical quality. Such a coating may be fabricated as a multilayer two-component structure. The parameters of the structure, i.e., the dielectric permittivities of the components and their concentrations, are calculated. For ZnSe windows two examples of anisotropic coatings are presented. The optical quality of the multilayer films does not depend on their precise thickness, which makes them less sensitive to surface damage.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Saillard, D. Maystre, “Scattering from metallic and dielectric rough surfaces,” J. Opt. Soc. Am. A 7, 982–990 (1990).
    [CrossRef]
  2. J. J. Greffet, “Theoretical model of the shift of the Brewster angle on a rough surface,” Opt. Lett. 17, 238–240 (1992).
    [CrossRef] [PubMed]
  3. A. A. Maradudin, R. E. Luna, E. R. Méndez, “The Brewster effect for a one-dimensional random surface,” Waves Random Media 3, 51–60 (1993).
    [CrossRef]
  4. G. I. Surdutovich, R. Z. Vitlina, A. V. Ghiner, S. Durrant, V. Baranauskas, “Three polarization reflectometry methods for determination of the optical anisotropy,” Appl. Opt. 37, 65–78 (1998).
    [CrossRef]
  5. P. Basmaji, V. S. Bagnato, V. Griviskas, G. I. Surdutovich, R. Z. Vitlina, “Determination of porous silicon film parameters by polarized light reflectance measurement,” Thin Solid Films 233, 131–136 (1993).
    [CrossRef]
  6. R. M. Azzam, N. M. Bashara, “Ellipsometry and polarized light,” (North-Holland, New York, 1977).
  7. K. Robbie, M. F. Brett, “Sculptured thin films and glancing angle deposition: growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997).
    [CrossRef]
  8. I. Hodgkinson, Q. H. Wu, J. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide,” Appl. Opt. 37, 2653–2659 (1998); I. J. Hodgkinson, Q. H. Wu, Birefringent Thin Films and Polarizing Elements (Word Scientific, Singapore, 1997).
    [CrossRef]
  9. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).
  10. B. Djafari Rouhani, J. Sapriel, “Effective dielectric and photoelastic tensors of superlattices in the long-wavelength regime,” Phys. Rev. B 34, 7114–7120 (1986).
    [CrossRef]
  11. R. Z. Vitlina, “Light reflection from a fine-layer inhomogeneous structure,” Sov. Phys. Opt. Spectrosc. 66, 939–941 (1989).
  12. H. A. Macleod, “Monitoring of optical coatings,” Appl. Opt. 20, 82–89 (1981).
    [CrossRef] [PubMed]
  13. R. Z. Vitlina, A. M. Dykhne, “Reflection of electromagnetic waves from a surface with a low relief,” Sov. Phys. JETP 72, 983–990 (1991).

1998

1997

K. Robbie, M. F. Brett, “Sculptured thin films and glancing angle deposition: growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997).
[CrossRef]

1993

A. A. Maradudin, R. E. Luna, E. R. Méndez, “The Brewster effect for a one-dimensional random surface,” Waves Random Media 3, 51–60 (1993).
[CrossRef]

P. Basmaji, V. S. Bagnato, V. Griviskas, G. I. Surdutovich, R. Z. Vitlina, “Determination of porous silicon film parameters by polarized light reflectance measurement,” Thin Solid Films 233, 131–136 (1993).
[CrossRef]

1992

1991

R. Z. Vitlina, A. M. Dykhne, “Reflection of electromagnetic waves from a surface with a low relief,” Sov. Phys. JETP 72, 983–990 (1991).

1990

1989

R. Z. Vitlina, “Light reflection from a fine-layer inhomogeneous structure,” Sov. Phys. Opt. Spectrosc. 66, 939–941 (1989).

1986

B. Djafari Rouhani, J. Sapriel, “Effective dielectric and photoelastic tensors of superlattices in the long-wavelength regime,” Phys. Rev. B 34, 7114–7120 (1986).
[CrossRef]

1981

1956

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Azzam, R. M.

R. M. Azzam, N. M. Bashara, “Ellipsometry and polarized light,” (North-Holland, New York, 1977).

Bagnato, V. S.

P. Basmaji, V. S. Bagnato, V. Griviskas, G. I. Surdutovich, R. Z. Vitlina, “Determination of porous silicon film parameters by polarized light reflectance measurement,” Thin Solid Films 233, 131–136 (1993).
[CrossRef]

Baranauskas, V.

Bashara, N. M.

R. M. Azzam, N. M. Bashara, “Ellipsometry and polarized light,” (North-Holland, New York, 1977).

Basmaji, P.

P. Basmaji, V. S. Bagnato, V. Griviskas, G. I. Surdutovich, R. Z. Vitlina, “Determination of porous silicon film parameters by polarized light reflectance measurement,” Thin Solid Films 233, 131–136 (1993).
[CrossRef]

Brett, M. F.

K. Robbie, M. F. Brett, “Sculptured thin films and glancing angle deposition: growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997).
[CrossRef]

Djafari Rouhani, B.

B. Djafari Rouhani, J. Sapriel, “Effective dielectric and photoelastic tensors of superlattices in the long-wavelength regime,” Phys. Rev. B 34, 7114–7120 (1986).
[CrossRef]

Durrant, S.

Dykhne, A. M.

R. Z. Vitlina, A. M. Dykhne, “Reflection of electromagnetic waves from a surface with a low relief,” Sov. Phys. JETP 72, 983–990 (1991).

Ghiner, A. V.

Greffet, J. J.

Griviskas, V.

P. Basmaji, V. S. Bagnato, V. Griviskas, G. I. Surdutovich, R. Z. Vitlina, “Determination of porous silicon film parameters by polarized light reflectance measurement,” Thin Solid Films 233, 131–136 (1993).
[CrossRef]

Hazel, J.

Hodgkinson, I.

Luna, R. E.

A. A. Maradudin, R. E. Luna, E. R. Méndez, “The Brewster effect for a one-dimensional random surface,” Waves Random Media 3, 51–60 (1993).
[CrossRef]

Macleod, H. A.

Maradudin, A. A.

A. A. Maradudin, R. E. Luna, E. R. Méndez, “The Brewster effect for a one-dimensional random surface,” Waves Random Media 3, 51–60 (1993).
[CrossRef]

Maystre, D.

Méndez, E. R.

A. A. Maradudin, R. E. Luna, E. R. Méndez, “The Brewster effect for a one-dimensional random surface,” Waves Random Media 3, 51–60 (1993).
[CrossRef]

Robbie, K.

K. Robbie, M. F. Brett, “Sculptured thin films and glancing angle deposition: growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997).
[CrossRef]

Rytov, S. M.

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Saillard, M.

Sapriel, J.

B. Djafari Rouhani, J. Sapriel, “Effective dielectric and photoelastic tensors of superlattices in the long-wavelength regime,” Phys. Rev. B 34, 7114–7120 (1986).
[CrossRef]

Surdutovich, G. I.

G. I. Surdutovich, R. Z. Vitlina, A. V. Ghiner, S. Durrant, V. Baranauskas, “Three polarization reflectometry methods for determination of the optical anisotropy,” Appl. Opt. 37, 65–78 (1998).
[CrossRef]

P. Basmaji, V. S. Bagnato, V. Griviskas, G. I. Surdutovich, R. Z. Vitlina, “Determination of porous silicon film parameters by polarized light reflectance measurement,” Thin Solid Films 233, 131–136 (1993).
[CrossRef]

Vitlina, R. Z.

G. I. Surdutovich, R. Z. Vitlina, A. V. Ghiner, S. Durrant, V. Baranauskas, “Three polarization reflectometry methods for determination of the optical anisotropy,” Appl. Opt. 37, 65–78 (1998).
[CrossRef]

P. Basmaji, V. S. Bagnato, V. Griviskas, G. I. Surdutovich, R. Z. Vitlina, “Determination of porous silicon film parameters by polarized light reflectance measurement,” Thin Solid Films 233, 131–136 (1993).
[CrossRef]

R. Z. Vitlina, A. M. Dykhne, “Reflection of electromagnetic waves from a surface with a low relief,” Sov. Phys. JETP 72, 983–990 (1991).

R. Z. Vitlina, “Light reflection from a fine-layer inhomogeneous structure,” Sov. Phys. Opt. Spectrosc. 66, 939–941 (1989).

Wu, Q. H.

Appl. Opt.

J. Opt. Soc. Am. A

J. Vac. Sci. Technol. A

K. Robbie, M. F. Brett, “Sculptured thin films and glancing angle deposition: growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997).
[CrossRef]

Opt. Lett.

Phys. Rev. B

B. Djafari Rouhani, J. Sapriel, “Effective dielectric and photoelastic tensors of superlattices in the long-wavelength regime,” Phys. Rev. B 34, 7114–7120 (1986).
[CrossRef]

Sov. Phys. JETP

R. Z. Vitlina, A. M. Dykhne, “Reflection of electromagnetic waves from a surface with a low relief,” Sov. Phys. JETP 72, 983–990 (1991).

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Sov. Phys. Opt. Spectrosc.

R. Z. Vitlina, “Light reflection from a fine-layer inhomogeneous structure,” Sov. Phys. Opt. Spectrosc. 66, 939–941 (1989).

Thin Solid Films

P. Basmaji, V. S. Bagnato, V. Griviskas, G. I. Surdutovich, R. Z. Vitlina, “Determination of porous silicon film parameters by polarized light reflectance measurement,” Thin Solid Films 233, 131–136 (1993).
[CrossRef]

Waves Random Media

A. A. Maradudin, R. E. Luna, E. R. Méndez, “The Brewster effect for a one-dimensional random surface,” Waves Random Media 3, 51–60 (1993).
[CrossRef]

Other

R. M. Azzam, N. M. Bashara, “Ellipsometry and polarized light,” (North-Holland, New York, 1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Curves ε = const and dashed lines β = βmin for each curve ε. At the curve ε = 5.76 points A, B, and C correspond to films with the anistropy β = -0.024 (A), -0.13 (B), -0.496 (C).

Fig. 2
Fig. 2

Regions (shaded) of the physical solutions of Eq. (10) for (A) a vacuum ambient, ε0 = 1, and (B) an additional region for a general ambient, ε0 > 1.

Fig. 3
Fig. 3

Loci of the concentration c (solid curves) in terms of ε1 and ε2 starting from c = 0.1 through the interval 0.1: (a) ε = 2.25, (b) ε = 5.76. Dashed curves β = const correspond to the greater solution of Eq. (8); their asymptotes ε1 = ε zz equal (A) 5.59, (B) 4.84, and (C) 1.704, respectively. Similar curves for the lesser solution of Eq. (8) are located in a narrow strip on the left-hand side from the line β = βmin and are not shown.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

tan θBe=εxxeεxxe-1βe+1εxxeβe+1-11/2,
θBβeβe=0=-ε2ε2-1
Δθ=κ24ε3/2ε+12˜ε-ε,  κ=4πdλ,
r01θ=εxxεzz1/2 cos θ-εzz-sin2 θ1/2εxxεzz1/2cos θ+εzz-sin2 θ1/2,  r12θ=-εxxεzzε-sin2 θ1/2+εεzz-sin2 θ1/2εxxεzzε-sin2 θ1/2+εεzz-sin2 θ1/2.
r01+r12 exp-iδd1+r01r12 exp-iδd
εzz=εε+1-εxx.
β=-ε-εxxεxx-1εxxε+1-εxx.
βmin=-ε-1/ε+12.
εzzβ=1/2β+1ε+1±β+12ε+12-4εβ+11/2,  εxxβ=εzzβ/β+1,
εxx=cε1+1-cε2,  εzz-1=cε1+1-cε2,
c=ε1ε-ε2ε2-1ε2-ε1ε-ε1ε2.
εxx=ε-ε-ε1ε2-εε1ε2-ε.
ε2=εzzββ+11+βε1ε1-εzzβ,
Rcε1+ε2-ε-1ce-c2

Metrics