Abstract

Arrangements are described for the recording of volume holograms with two sections that, when stacked together, work as uniaxial centered lenses and allow one to solve the problem of angular selectivity in the imaging of wide objects. The performance of such systems is examined qualitatively, and suggestions aimed at improving these designs are proposed.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. A. Syms, Practical Volume Holography (Clarendon, Oxford, 1990).
  2. J. N. Latta, “Analysis of multiple hologram optical elements with low dispersion and low aberrations,” Appl. Opt. 11, 1686–1696 (1972).
    [CrossRef] [PubMed]
  3. T. Stone, N. George, “Hybrid diffractive–refractive lenses and achromats,” Appl. Opt. 27, 2960–2971 (1988).
    [CrossRef] [PubMed]
  4. M. Quintanilla, I. Arias, “Holographic imaging lenses. Composite lens with high efficiency,” J. Opt. 21, 67–72 (1990).
    [CrossRef]
  5. J. Atencia, “Desarrollo de sistemas y lentes holográficas,” Ph.D. dissertation (Departamento de Física Aplicada, University of Zaragoza, Zaragoza, Spain, 1997).
  6. R. R. A. Syms, L. Solymar, “The effect of angular selectivity on the monochromatic imaging performance of volume holographic lenses,” Opt. Acta 30, 1303–1318 (1983).
    [CrossRef]
  7. A. M. De Frutos, M. Quintanilla, “Holographic lenses aberration balancing by angular selectivity,” Opt. Pur. Apli. 20, 21–26 (1987).
  8. A. Fimia, A. Beléndez, I. Pascual, “Silver halide (sensitized) gelatin in Agfa-Gevaert plates: the optimized procedure,” J. Mod. Opt. 38, 2043–2051 (1991).
    [CrossRef]

1991 (1)

A. Fimia, A. Beléndez, I. Pascual, “Silver halide (sensitized) gelatin in Agfa-Gevaert plates: the optimized procedure,” J. Mod. Opt. 38, 2043–2051 (1991).
[CrossRef]

1990 (1)

M. Quintanilla, I. Arias, “Holographic imaging lenses. Composite lens with high efficiency,” J. Opt. 21, 67–72 (1990).
[CrossRef]

1988 (1)

1987 (1)

A. M. De Frutos, M. Quintanilla, “Holographic lenses aberration balancing by angular selectivity,” Opt. Pur. Apli. 20, 21–26 (1987).

1983 (1)

R. R. A. Syms, L. Solymar, “The effect of angular selectivity on the monochromatic imaging performance of volume holographic lenses,” Opt. Acta 30, 1303–1318 (1983).
[CrossRef]

1972 (1)

Arias, I.

M. Quintanilla, I. Arias, “Holographic imaging lenses. Composite lens with high efficiency,” J. Opt. 21, 67–72 (1990).
[CrossRef]

Atencia, J.

J. Atencia, “Desarrollo de sistemas y lentes holográficas,” Ph.D. dissertation (Departamento de Física Aplicada, University of Zaragoza, Zaragoza, Spain, 1997).

Beléndez, A.

A. Fimia, A. Beléndez, I. Pascual, “Silver halide (sensitized) gelatin in Agfa-Gevaert plates: the optimized procedure,” J. Mod. Opt. 38, 2043–2051 (1991).
[CrossRef]

De Frutos, A. M.

A. M. De Frutos, M. Quintanilla, “Holographic lenses aberration balancing by angular selectivity,” Opt. Pur. Apli. 20, 21–26 (1987).

Fimia, A.

A. Fimia, A. Beléndez, I. Pascual, “Silver halide (sensitized) gelatin in Agfa-Gevaert plates: the optimized procedure,” J. Mod. Opt. 38, 2043–2051 (1991).
[CrossRef]

George, N.

Latta, J. N.

Pascual, I.

A. Fimia, A. Beléndez, I. Pascual, “Silver halide (sensitized) gelatin in Agfa-Gevaert plates: the optimized procedure,” J. Mod. Opt. 38, 2043–2051 (1991).
[CrossRef]

Quintanilla, M.

M. Quintanilla, I. Arias, “Holographic imaging lenses. Composite lens with high efficiency,” J. Opt. 21, 67–72 (1990).
[CrossRef]

A. M. De Frutos, M. Quintanilla, “Holographic lenses aberration balancing by angular selectivity,” Opt. Pur. Apli. 20, 21–26 (1987).

Solymar, L.

R. R. A. Syms, L. Solymar, “The effect of angular selectivity on the monochromatic imaging performance of volume holographic lenses,” Opt. Acta 30, 1303–1318 (1983).
[CrossRef]

Stone, T.

Syms, R. R. A.

R. R. A. Syms, L. Solymar, “The effect of angular selectivity on the monochromatic imaging performance of volume holographic lenses,” Opt. Acta 30, 1303–1318 (1983).
[CrossRef]

R. R. A. Syms, Practical Volume Holography (Clarendon, Oxford, 1990).

Appl. Opt. (2)

J. Mod. Opt. (1)

A. Fimia, A. Beléndez, I. Pascual, “Silver halide (sensitized) gelatin in Agfa-Gevaert plates: the optimized procedure,” J. Mod. Opt. 38, 2043–2051 (1991).
[CrossRef]

J. Opt. (1)

M. Quintanilla, I. Arias, “Holographic imaging lenses. Composite lens with high efficiency,” J. Opt. 21, 67–72 (1990).
[CrossRef]

Opt. Acta (1)

R. R. A. Syms, L. Solymar, “The effect of angular selectivity on the monochromatic imaging performance of volume holographic lenses,” Opt. Acta 30, 1303–1318 (1983).
[CrossRef]

Opt. Pur. Apli. (1)

A. M. De Frutos, M. Quintanilla, “Holographic lenses aberration balancing by angular selectivity,” Opt. Pur. Apli. 20, 21–26 (1987).

Other (2)

R. R. A. Syms, Practical Volume Holography (Clarendon, Oxford, 1990).

J. Atencia, “Desarrollo de sistemas y lentes holográficas,” Ph.D. dissertation (Departamento de Física Aplicada, University of Zaragoza, Zaragoza, Spain, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic diagrams of (a) the recording of two off-axis holograms H I and H II and (b) the reconstruction of holograms H I and H II in which the H I– H II sandwich behaves as a uniaxial centered lens.

Fig. 2
Fig. 2

Schematic representation of the interference pattern of two beams with symmetry in plane η–z.

Fig. 3
Fig. 3

Masks used in the recording of the different hologram sections. Mask with (a) an annular aperture, (b) a circular aperture, (c) a semicircular aperture.

Fig. 4
Fig. 4

Illustration of the construction and the reconstruction of a holographic lens with two plates. ξhi, ηhi, and Zhi are the reference axes on the hologram i at first exposure and show the rotations in the construction and the reconstruction.

Fig. 5
Fig. 5

Illustration of the construction and the reconstruction of a holographic lens with four plates.

Fig. 6
Fig. 6

Diagram of the experimental setup used to study real image formation by a holographic lens.

Fig. 7
Fig. 7

Real images of a diffusing object as formed with a holographic lens with two concentric sections when (a) the central section, (b) the annular section, and (c) both sections are operating.

Fig. 8
Fig. 8

Profile plots of a vertical line at the centers of the images shown in (a) Fig. 7(a) and (b) Fig. 7(c).

Fig. 9
Fig. 9

Real images of a diffusing object as formed by a holographic lens with two semicircular section when (a) the central section, (b) the annular section, and (c) both sections are operating.

Fig. 10
Fig. 10

Profile plots of a vertical line at the centers of the images shown in (a) Fig. 9(a) and (b) Fig. 9(c).

Fig. 11
Fig. 11

Spot diagrams at the paraxial image plane and at an image plane with a -1.5-mm defocus.

Fig. 12
Fig. 12

Image at the paraxial image plane of a 1951 U.S. Air Force test pattern as obtained with our system operating with unity magnification and a pupil with a diameter of ∅ = 14 mm. The center of the field is at (0, 0).

Fig. 13
Fig. 13

Image with a defocus of -1.5 mm of a 1951 U.S. Air Force test pattern as obtained with our system operating with unity magnification and a pupil with a diameter of ∅ = 14 mm. The center of the field is at (0, 0).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I1I1+I0

Metrics