Abstract

The spatial impulse response of antenna-coupled infrared detectors with dimensions comparable with the wavelength is obtained from a two-dimensional scan of a tightly focused CO2-laser beam. The method uses an experimental setup with submicrometer resolution and an iterative deconvolution algorithm. The measured spatial response is compared with numerically computed near-field distributions of a dipole antenna, with good agreement.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Wilke, W. Herrmann, F. K. Kneubühl, “Integrated nanostrip dipole antennas for coherent 30 THz infrared radiation,” Appl. Phys. B 58, 87–95 (1994).
    [CrossRef]
  2. I. Wilke, Y. Oppliger, W. Herrmann, F. K. Kneubühl, “Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation,” Appl. Phys. A 58, 329–341 (1994).
    [CrossRef]
  3. C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothuizen, “Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 38, 123–183 (1998).
    [CrossRef]
  4. E. N. Grossman, J. E. Sauvageau, D. G. McDonald, “Lithographic spiral antennas at short wavelengths,” Appl. Phys. Lett. 59, 3225–3227 (1991).
    [CrossRef]
  5. R. J. Hanisch, R. L. White, R. L. Gilliland, “Deconvolution of Hubble Space Telescope images and spectra,” in Deconvolution of Images and Spectra, P. A. Janson, ed. (Academic, San Diego, Calif., 1997), pp. 310–360.
  6. C. Fumeaux, G. D. Boreman, W. Herrmann, F. K. Kneubühl, H. Rothuizen, “Spatial impulse response of lithographic infrared antennas,” Appl. Opt. 38, 37–46 (1999).
    [CrossRef]
  7. M. B. Schneider, W. W. Webb, “Measurement of submicron laser beam radii,” Appl. Opt. 20, 1382–1388 (1981).
    [CrossRef] [PubMed]
  8. J. A. Arnaud, W. M. Hubbard, G. D. Mandeville, B. de la Clavière, E. A. Franke, J. M. Franke, “Technique for fast measurement of Gaussian laser beam parameters,” Appl. Opt. 10, 2775–2776 (1971).
    [CrossRef] [PubMed]
  9. A. E. Siegman, M. W. Sasnett, T. F. Johnson, “Choice of clip levels for beam width measurements using knife-edge techniques,” IEEE J. Quantum Electron. 27, 1098–1104 (1991).
    [CrossRef]
  10. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Elmsford, NY, 1980), pp. 459–480.
  11. V. N. Mahajan, “Uniform versus Gaussian beams: a comparison of the effects of diffraction, obscuration, and aberrations,” J. Opt. Soc. Am. A. 3, 470–485 (1986).
    [CrossRef]
  12. J. Alda, J. Alonso, E. Bernabeu, “Characterization of aberrated laser beams,” J. Opt. Soc. Am. A 14, 2737–2747 (1997).
    [CrossRef]
  13. W. H. Richardson, “Bayesian-based iterative method of image restoration,” J. Opt. Soc. Am. 62, 55–59 (1972).
    [CrossRef]
  14. L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745–754 (1974).
    [CrossRef]
  15. J. A. Conchello, “Superresolution and convergence properties of the expectation-maximization algorithm for maximum-likelihood deconvolution of incoherent images,” J. Opt. Soc. Am. A 15, 2609–2619 (1998).
    [CrossRef]
  16. M. A. Porras, J. Alda, E. Bernabeu, “Complex beam parameter and ABCD law for non-Gaussian and nonspherical light beams,” Appl. Opt. 31, 6389–6402 (1992).
    [CrossRef] [PubMed]
  17. C. R. Brewitt-Taylor, D. J. Gunton, H. D. Rees, “Planar antennas on a dielectric surface,” Electron. Lett. 17, 729–731 (1981).
    [CrossRef]
  18. M. N. O. Sadiku, Numerical Techniques in Electromagnetism, (CRC Press, Boca Raton, Fla., 1992).

1999 (1)

1998 (2)

C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothuizen, “Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 38, 123–183 (1998).
[CrossRef]

J. A. Conchello, “Superresolution and convergence properties of the expectation-maximization algorithm for maximum-likelihood deconvolution of incoherent images,” J. Opt. Soc. Am. A 15, 2609–2619 (1998).
[CrossRef]

1997 (1)

1994 (2)

I. Wilke, W. Herrmann, F. K. Kneubühl, “Integrated nanostrip dipole antennas for coherent 30 THz infrared radiation,” Appl. Phys. B 58, 87–95 (1994).
[CrossRef]

I. Wilke, Y. Oppliger, W. Herrmann, F. K. Kneubühl, “Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation,” Appl. Phys. A 58, 329–341 (1994).
[CrossRef]

1992 (1)

1991 (2)

E. N. Grossman, J. E. Sauvageau, D. G. McDonald, “Lithographic spiral antennas at short wavelengths,” Appl. Phys. Lett. 59, 3225–3227 (1991).
[CrossRef]

A. E. Siegman, M. W. Sasnett, T. F. Johnson, “Choice of clip levels for beam width measurements using knife-edge techniques,” IEEE J. Quantum Electron. 27, 1098–1104 (1991).
[CrossRef]

1986 (1)

V. N. Mahajan, “Uniform versus Gaussian beams: a comparison of the effects of diffraction, obscuration, and aberrations,” J. Opt. Soc. Am. A. 3, 470–485 (1986).
[CrossRef]

1981 (2)

M. B. Schneider, W. W. Webb, “Measurement of submicron laser beam radii,” Appl. Opt. 20, 1382–1388 (1981).
[CrossRef] [PubMed]

C. R. Brewitt-Taylor, D. J. Gunton, H. D. Rees, “Planar antennas on a dielectric surface,” Electron. Lett. 17, 729–731 (1981).
[CrossRef]

1974 (1)

L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745–754 (1974).
[CrossRef]

1972 (1)

1971 (1)

Alda, J.

Alonso, J.

Arnaud, J. A.

Bernabeu, E.

Boreman, G. D.

Born, M.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Elmsford, NY, 1980), pp. 459–480.

Brewitt-Taylor, C. R.

C. R. Brewitt-Taylor, D. J. Gunton, H. D. Rees, “Planar antennas on a dielectric surface,” Electron. Lett. 17, 729–731 (1981).
[CrossRef]

Conchello, J. A.

de la Clavière, B.

Franke, E. A.

Franke, J. M.

Fumeaux, C.

C. Fumeaux, G. D. Boreman, W. Herrmann, F. K. Kneubühl, H. Rothuizen, “Spatial impulse response of lithographic infrared antennas,” Appl. Opt. 38, 37–46 (1999).
[CrossRef]

C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothuizen, “Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 38, 123–183 (1998).
[CrossRef]

Gilliland, R. L.

R. J. Hanisch, R. L. White, R. L. Gilliland, “Deconvolution of Hubble Space Telescope images and spectra,” in Deconvolution of Images and Spectra, P. A. Janson, ed. (Academic, San Diego, Calif., 1997), pp. 310–360.

Grossman, E. N.

E. N. Grossman, J. E. Sauvageau, D. G. McDonald, “Lithographic spiral antennas at short wavelengths,” Appl. Phys. Lett. 59, 3225–3227 (1991).
[CrossRef]

Gunton, D. J.

C. R. Brewitt-Taylor, D. J. Gunton, H. D. Rees, “Planar antennas on a dielectric surface,” Electron. Lett. 17, 729–731 (1981).
[CrossRef]

Hanisch, R. J.

R. J. Hanisch, R. L. White, R. L. Gilliland, “Deconvolution of Hubble Space Telescope images and spectra,” in Deconvolution of Images and Spectra, P. A. Janson, ed. (Academic, San Diego, Calif., 1997), pp. 310–360.

Herrmann, W.

C. Fumeaux, G. D. Boreman, W. Herrmann, F. K. Kneubühl, H. Rothuizen, “Spatial impulse response of lithographic infrared antennas,” Appl. Opt. 38, 37–46 (1999).
[CrossRef]

C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothuizen, “Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 38, 123–183 (1998).
[CrossRef]

I. Wilke, W. Herrmann, F. K. Kneubühl, “Integrated nanostrip dipole antennas for coherent 30 THz infrared radiation,” Appl. Phys. B 58, 87–95 (1994).
[CrossRef]

I. Wilke, Y. Oppliger, W. Herrmann, F. K. Kneubühl, “Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation,” Appl. Phys. A 58, 329–341 (1994).
[CrossRef]

Hubbard, W. M.

Johnson, T. F.

A. E. Siegman, M. W. Sasnett, T. F. Johnson, “Choice of clip levels for beam width measurements using knife-edge techniques,” IEEE J. Quantum Electron. 27, 1098–1104 (1991).
[CrossRef]

Kneubühl, F. K.

C. Fumeaux, G. D. Boreman, W. Herrmann, F. K. Kneubühl, H. Rothuizen, “Spatial impulse response of lithographic infrared antennas,” Appl. Opt. 38, 37–46 (1999).
[CrossRef]

C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothuizen, “Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 38, 123–183 (1998).
[CrossRef]

I. Wilke, W. Herrmann, F. K. Kneubühl, “Integrated nanostrip dipole antennas for coherent 30 THz infrared radiation,” Appl. Phys. B 58, 87–95 (1994).
[CrossRef]

I. Wilke, Y. Oppliger, W. Herrmann, F. K. Kneubühl, “Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation,” Appl. Phys. A 58, 329–341 (1994).
[CrossRef]

Lucy, L. B.

L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745–754 (1974).
[CrossRef]

Mahajan, V. N.

V. N. Mahajan, “Uniform versus Gaussian beams: a comparison of the effects of diffraction, obscuration, and aberrations,” J. Opt. Soc. Am. A. 3, 470–485 (1986).
[CrossRef]

Mandeville, G. D.

McDonald, D. G.

E. N. Grossman, J. E. Sauvageau, D. G. McDonald, “Lithographic spiral antennas at short wavelengths,” Appl. Phys. Lett. 59, 3225–3227 (1991).
[CrossRef]

Oppliger, Y.

I. Wilke, Y. Oppliger, W. Herrmann, F. K. Kneubühl, “Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation,” Appl. Phys. A 58, 329–341 (1994).
[CrossRef]

Porras, M. A.

Rees, H. D.

C. R. Brewitt-Taylor, D. J. Gunton, H. D. Rees, “Planar antennas on a dielectric surface,” Electron. Lett. 17, 729–731 (1981).
[CrossRef]

Richardson, W. H.

Rothuizen, H.

C. Fumeaux, G. D. Boreman, W. Herrmann, F. K. Kneubühl, H. Rothuizen, “Spatial impulse response of lithographic infrared antennas,” Appl. Opt. 38, 37–46 (1999).
[CrossRef]

C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothuizen, “Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 38, 123–183 (1998).
[CrossRef]

Sadiku, M. N. O.

M. N. O. Sadiku, Numerical Techniques in Electromagnetism, (CRC Press, Boca Raton, Fla., 1992).

Sasnett, M. W.

A. E. Siegman, M. W. Sasnett, T. F. Johnson, “Choice of clip levels for beam width measurements using knife-edge techniques,” IEEE J. Quantum Electron. 27, 1098–1104 (1991).
[CrossRef]

Sauvageau, J. E.

E. N. Grossman, J. E. Sauvageau, D. G. McDonald, “Lithographic spiral antennas at short wavelengths,” Appl. Phys. Lett. 59, 3225–3227 (1991).
[CrossRef]

Schneider, M. B.

Siegman, A. E.

A. E. Siegman, M. W. Sasnett, T. F. Johnson, “Choice of clip levels for beam width measurements using knife-edge techniques,” IEEE J. Quantum Electron. 27, 1098–1104 (1991).
[CrossRef]

Webb, W. W.

White, R. L.

R. J. Hanisch, R. L. White, R. L. Gilliland, “Deconvolution of Hubble Space Telescope images and spectra,” in Deconvolution of Images and Spectra, P. A. Janson, ed. (Academic, San Diego, Calif., 1997), pp. 310–360.

Wilke, I.

I. Wilke, W. Herrmann, F. K. Kneubühl, “Integrated nanostrip dipole antennas for coherent 30 THz infrared radiation,” Appl. Phys. B 58, 87–95 (1994).
[CrossRef]

I. Wilke, Y. Oppliger, W. Herrmann, F. K. Kneubühl, “Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation,” Appl. Phys. A 58, 329–341 (1994).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Elmsford, NY, 1980), pp. 459–480.

Appl. Opt. (4)

Appl. Phys. A (1)

I. Wilke, Y. Oppliger, W. Herrmann, F. K. Kneubühl, “Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation,” Appl. Phys. A 58, 329–341 (1994).
[CrossRef]

Appl. Phys. B (1)

I. Wilke, W. Herrmann, F. K. Kneubühl, “Integrated nanostrip dipole antennas for coherent 30 THz infrared radiation,” Appl. Phys. B 58, 87–95 (1994).
[CrossRef]

Appl. Phys. Lett. (1)

E. N. Grossman, J. E. Sauvageau, D. G. McDonald, “Lithographic spiral antennas at short wavelengths,” Appl. Phys. Lett. 59, 3225–3227 (1991).
[CrossRef]

Astron. J. (1)

L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745–754 (1974).
[CrossRef]

Electron. Lett. (1)

C. R. Brewitt-Taylor, D. J. Gunton, H. D. Rees, “Planar antennas on a dielectric surface,” Electron. Lett. 17, 729–731 (1981).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. E. Siegman, M. W. Sasnett, T. F. Johnson, “Choice of clip levels for beam width measurements using knife-edge techniques,” IEEE J. Quantum Electron. 27, 1098–1104 (1991).
[CrossRef]

Infrared Phys. Technol. (1)

C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothuizen, “Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 38, 123–183 (1998).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. A. (1)

V. N. Mahajan, “Uniform versus Gaussian beams: a comparison of the effects of diffraction, obscuration, and aberrations,” J. Opt. Soc. Am. A. 3, 470–485 (1986).
[CrossRef]

Other (3)

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Elmsford, NY, 1980), pp. 459–480.

R. J. Hanisch, R. L. White, R. L. Gilliland, “Deconvolution of Hubble Space Telescope images and spectra,” in Deconvolution of Images and Spectra, P. A. Janson, ed. (Academic, San Diego, Calif., 1997), pp. 310–360.

M. N. O. Sadiku, Numerical Techniques in Electromagnetism, (CRC Press, Boca Raton, Fla., 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Evolution of the MSE between the actual measured data and the image obtained for every step. The MSE decreases sharply during the first steps of the algorithm and then becomes stable.

Fig. 2
Fig. 2

Schematic experimental setup used for measuring the spatial response of the detectors.

Fig. 3
Fig. 3

Comparison of the simulated knife edge obtained with the modeled beam (solid curve) and the experimental data for the beam-waist position (dotted curve). The knife edge is along the x direction.

Fig. 4
Fig. 4

(a) Measured image obtained from the experimental setup. (b) Beam used for deconvolving the data. (c) Spatial response obtained after 300 iterations of the deconvolution algorithm.

Fig. 5
Fig. 5

Average spatial response obtained after deconvolution of the experimental data. The direction of the electric field is (a) parallel and (b) perpendicular to the dipole antenna. The antenna response is obtained by substraction of both responses and is represented in (c). The scale on the top shows the relative value of the maximum for each of the spatial responses: parallel (Par = 1.00), perpendicular (Perp = 0.73), and the antenna (Ant = 0.34). The spatial dimensions are given in micrometers.

Fig. 6
Fig. 6

Geometric structure of the antenna-coupled detector is represented along with the contours of the areas containing 50% and 90% of the volume of the spatial response. The lobes corresponding to the arms of the antenna are clearly distinguished.

Fig. 7
Fig. 7

Dipole antenna modeled in vacuum and having the same relation between length and wavelength as in our case. (a) Calculated near-field distribution. The location of the maximum is the same as in the experimental results. (b) Result of convolving the simulated near-field pattern with a constant function with diameter one λSi. After this step the distribution can be succesfully compared with the experimental results. (c) Result of a simulated 6.7-µm-long, 0.3-µm-wide dipole onto a 1.5-µm-thick layer of SiO2, ∊ = 4.94, on a semi-infinite substrate of Si, ∊ = 11.7. The scales are the same as those used in Fig. 5.

Tables (1)

Tables Icon

Table 1 Characteristic Parameters of the Spatial Response of the Antennaa

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

S=- IrDrdr,
Sx, y=Ix, y*Dx, y=- Ix, yDx-x, y-ydxdy.
Kx, z=-x- Ix, y, zdxdy,
Ky, z=--y Ix, y, zdxdy.
Dk+1x, y=Dkx, y×--Sx, ySkx, y Ix-x, y-ydxdy-- Ix, ydxdy,
Skx, y=Dkx, y*Ix, y.
Ex, y=exp-x2+y2ω02*2J1vv-α cos ϕ 2J4vv-α212v×J1v4-J3v20+J5v4-9J7v20-cos 2ϕ2J3v5+3J7v5,
v=2πλazx2+y21/2,

Metrics