Abstract

Despite the advantages of being highly sensitive and nondestructive, the digital speckle correlation method (DSCM) may have difficulties in detecting tiny defects such as delaminations in multilayer ceramic capacitors. This is because the presence of background noise always complicates the data processing. We present a new algorithm, which employs the wavelet-packet noise-reduction process together with the improved DSCM, to improve data processing. Both the computational error and the noise are shown to be reduced successfully by this new algorithm. The accuracy (or precision) of the improved DSCM is increased after operation of the wavelet-packet noise-reduction process. The most important feature of this new algorithm is that it can extract a small hillock signal from a large noisy background in a DSCM deformation result. This helps to save time in the detection of tiny defects, such as delamination, in a miniaturized electronic component.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. H. Peters, W. F. Ranson, “Digital imaging techniques in experimental stress analysis,” Opt. Eng. 21, 427–431 (1982).
    [CrossRef]
  2. M. A. Sutton, W. J. Wolters, W. H. Peters, W. F. Ranson, S. R. McNeill, “Computer vision determination of displacement using an improved digital correlation method,” Image Vision Comput. 1, 133–139 (1983).
    [CrossRef]
  3. M. A. Sutton, M. Cheng, W. H. Peters, Y. J. Chao, S. R. McNeill, “Application of an optimised digital correlation method to planar deformation analysis,” Image Vision Comput. 4, 143–150 (1986).
    [CrossRef]
  4. H. A. Bruck, S. R. McNeill, M. A. Sutton, W. H. Peters, “Digital image correlation using Newton–Raphson method of partial differential correlation,” Exp. Mech. 29, 261–267 (1989).
    [CrossRef]
  5. W. H. Peters, M. A. Sutton, W. F. Ranson, W. P. Poplin, S. R. McNeill, “Whole-field experimental displacement analysis of composite cylinders,” Exp. Mech. 29, 58–62 (1989).
    [CrossRef]
  6. Y. C. Chan, F. Yeung, G. C. Gin, N. K. Bao, P. S. Chung, “In situ detection of flaws in multilayer ceramic capacitors using electronic speckle pattern interferometry,” in Nondestructive Characterization of Materials VI, R. E. Green, K. J. Kozaczek, C. O. Ruud, eds. (Plenum, New York, 1994), pp. 445–452.
  7. Y. C. Chan, F. Yeung, G. C. Jin, N. K. Bao, P. S. Chung, “Nondestructive detection of defects in miniaturized multilayer ceramic capacitors using digital speckle correlation techniques,” IEEE Trans. Components Package. Manufact. Technol. Part A 18, 677–684 (1995).
    [CrossRef]
  8. N. Zhu, F. P. Chiang, “Vibrational mode shape identification by digital speckle correlation (DISC),” Exp. Tech. 20, 17–19 (1997).
    [CrossRef]
  9. G. C. Jin, J. B. Rui, B. Y. Xu, “A new digital speckle correlation method and its application,” Acta Mech. Sinica 26, 599–607 (1994).
  10. Y. C. Chan, X. Dai, G. C. Jin, N. K. Bao, P. S. Chung, “Nondestructive detection of delaminations in multilayer ceramic capacitors using improved digital speckle correlation method,” Microwave Opt. Technol. Lett. 16, 80–85 (1997).
    [CrossRef]
  11. G. S. Spagnolo, D. Paoletti, “Digital speckle correlation for on-line real-time measurement,” Opt. Commun. 132, 24–28 (1996).
    [CrossRef]
  12. D. Coburn, J. Slevin, “Digital correlation system for nondestructive testing of thermally stressed ceramics,” Appl. Opt. 34, 5977–5986 (1995).
    [CrossRef] [PubMed]
  13. D. L. Donoho, “De-noising by soft thresholding,” IEEE Trans. Inform. Theory 41, 613–627 (1995).
    [CrossRef]
  14. D. L. Donoho, I. M. Johnstone, “Ideal spatial adaptation via wavelet shrinkage,” Biometrika 81, 425–455 (1994).
    [CrossRef]
  15. D. L. Donoho, I. M. Johnstone, G. Kerkyacharian, D. Picard, “Wavelet Shrinkage: asymptopia?” J. R. Stat. Soc. B 57, 301–337 (1995).
  16. A. Quinquis, S. Rossignol, “Noise reduction, with a noise reference, of underwater magnetic signals,” Digital Signal Processing 6, 240–248 (1996).
    [CrossRef]
  17. I. Yamaguchi, “Fringe formation in speckle photography,” J. Opt. Soc. Am. A 1, 81–86 (1984).
    [CrossRef]
  18. S. G. Mallat, “Multiresolution approximations and wavelet orthonormal bases of L2®,” Trans. Am. Math. Soc. 315, 69–87 (1989).
  19. R. R. Coifman, M. V. Wickerhauser, “Entropy based algorithms for best basis selection,” IEEE Trans. Inform. Theory 38, 713–718 (1992).
    [CrossRef]
  20. I. Daubechies, “Orthonormal bases of compactly supported wavelets,” Commun. Pure Appl. Math. 41, 909–996 (1998).
    [CrossRef]
  21. M. Frisch, H. Messer, “The use of the wavelet transform in the detection of an unknown transient signal,” IEEE Trans. Inform. Theory 38, 892–897 (1992).
    [CrossRef]

1998 (1)

I. Daubechies, “Orthonormal bases of compactly supported wavelets,” Commun. Pure Appl. Math. 41, 909–996 (1998).
[CrossRef]

1997 (2)

N. Zhu, F. P. Chiang, “Vibrational mode shape identification by digital speckle correlation (DISC),” Exp. Tech. 20, 17–19 (1997).
[CrossRef]

Y. C. Chan, X. Dai, G. C. Jin, N. K. Bao, P. S. Chung, “Nondestructive detection of delaminations in multilayer ceramic capacitors using improved digital speckle correlation method,” Microwave Opt. Technol. Lett. 16, 80–85 (1997).
[CrossRef]

1996 (2)

G. S. Spagnolo, D. Paoletti, “Digital speckle correlation for on-line real-time measurement,” Opt. Commun. 132, 24–28 (1996).
[CrossRef]

A. Quinquis, S. Rossignol, “Noise reduction, with a noise reference, of underwater magnetic signals,” Digital Signal Processing 6, 240–248 (1996).
[CrossRef]

1995 (4)

D. L. Donoho, I. M. Johnstone, G. Kerkyacharian, D. Picard, “Wavelet Shrinkage: asymptopia?” J. R. Stat. Soc. B 57, 301–337 (1995).

D. L. Donoho, “De-noising by soft thresholding,” IEEE Trans. Inform. Theory 41, 613–627 (1995).
[CrossRef]

Y. C. Chan, F. Yeung, G. C. Jin, N. K. Bao, P. S. Chung, “Nondestructive detection of defects in miniaturized multilayer ceramic capacitors using digital speckle correlation techniques,” IEEE Trans. Components Package. Manufact. Technol. Part A 18, 677–684 (1995).
[CrossRef]

D. Coburn, J. Slevin, “Digital correlation system for nondestructive testing of thermally stressed ceramics,” Appl. Opt. 34, 5977–5986 (1995).
[CrossRef] [PubMed]

1994 (2)

G. C. Jin, J. B. Rui, B. Y. Xu, “A new digital speckle correlation method and its application,” Acta Mech. Sinica 26, 599–607 (1994).

D. L. Donoho, I. M. Johnstone, “Ideal spatial adaptation via wavelet shrinkage,” Biometrika 81, 425–455 (1994).
[CrossRef]

1992 (2)

R. R. Coifman, M. V. Wickerhauser, “Entropy based algorithms for best basis selection,” IEEE Trans. Inform. Theory 38, 713–718 (1992).
[CrossRef]

M. Frisch, H. Messer, “The use of the wavelet transform in the detection of an unknown transient signal,” IEEE Trans. Inform. Theory 38, 892–897 (1992).
[CrossRef]

1989 (3)

S. G. Mallat, “Multiresolution approximations and wavelet orthonormal bases of L2®,” Trans. Am. Math. Soc. 315, 69–87 (1989).

H. A. Bruck, S. R. McNeill, M. A. Sutton, W. H. Peters, “Digital image correlation using Newton–Raphson method of partial differential correlation,” Exp. Mech. 29, 261–267 (1989).
[CrossRef]

W. H. Peters, M. A. Sutton, W. F. Ranson, W. P. Poplin, S. R. McNeill, “Whole-field experimental displacement analysis of composite cylinders,” Exp. Mech. 29, 58–62 (1989).
[CrossRef]

1986 (1)

M. A. Sutton, M. Cheng, W. H. Peters, Y. J. Chao, S. R. McNeill, “Application of an optimised digital correlation method to planar deformation analysis,” Image Vision Comput. 4, 143–150 (1986).
[CrossRef]

1984 (1)

1983 (1)

M. A. Sutton, W. J. Wolters, W. H. Peters, W. F. Ranson, S. R. McNeill, “Computer vision determination of displacement using an improved digital correlation method,” Image Vision Comput. 1, 133–139 (1983).
[CrossRef]

1982 (1)

W. H. Peters, W. F. Ranson, “Digital imaging techniques in experimental stress analysis,” Opt. Eng. 21, 427–431 (1982).
[CrossRef]

Bao, N. K.

Y. C. Chan, X. Dai, G. C. Jin, N. K. Bao, P. S. Chung, “Nondestructive detection of delaminations in multilayer ceramic capacitors using improved digital speckle correlation method,” Microwave Opt. Technol. Lett. 16, 80–85 (1997).
[CrossRef]

Y. C. Chan, F. Yeung, G. C. Jin, N. K. Bao, P. S. Chung, “Nondestructive detection of defects in miniaturized multilayer ceramic capacitors using digital speckle correlation techniques,” IEEE Trans. Components Package. Manufact. Technol. Part A 18, 677–684 (1995).
[CrossRef]

Y. C. Chan, F. Yeung, G. C. Gin, N. K. Bao, P. S. Chung, “In situ detection of flaws in multilayer ceramic capacitors using electronic speckle pattern interferometry,” in Nondestructive Characterization of Materials VI, R. E. Green, K. J. Kozaczek, C. O. Ruud, eds. (Plenum, New York, 1994), pp. 445–452.

Bruck, H. A.

H. A. Bruck, S. R. McNeill, M. A. Sutton, W. H. Peters, “Digital image correlation using Newton–Raphson method of partial differential correlation,” Exp. Mech. 29, 261–267 (1989).
[CrossRef]

Chan, Y. C.

Y. C. Chan, X. Dai, G. C. Jin, N. K. Bao, P. S. Chung, “Nondestructive detection of delaminations in multilayer ceramic capacitors using improved digital speckle correlation method,” Microwave Opt. Technol. Lett. 16, 80–85 (1997).
[CrossRef]

Y. C. Chan, F. Yeung, G. C. Jin, N. K. Bao, P. S. Chung, “Nondestructive detection of defects in miniaturized multilayer ceramic capacitors using digital speckle correlation techniques,” IEEE Trans. Components Package. Manufact. Technol. Part A 18, 677–684 (1995).
[CrossRef]

Y. C. Chan, F. Yeung, G. C. Gin, N. K. Bao, P. S. Chung, “In situ detection of flaws in multilayer ceramic capacitors using electronic speckle pattern interferometry,” in Nondestructive Characterization of Materials VI, R. E. Green, K. J. Kozaczek, C. O. Ruud, eds. (Plenum, New York, 1994), pp. 445–452.

Chao, Y. J.

M. A. Sutton, M. Cheng, W. H. Peters, Y. J. Chao, S. R. McNeill, “Application of an optimised digital correlation method to planar deformation analysis,” Image Vision Comput. 4, 143–150 (1986).
[CrossRef]

Cheng, M.

M. A. Sutton, M. Cheng, W. H. Peters, Y. J. Chao, S. R. McNeill, “Application of an optimised digital correlation method to planar deformation analysis,” Image Vision Comput. 4, 143–150 (1986).
[CrossRef]

Chiang, F. P.

N. Zhu, F. P. Chiang, “Vibrational mode shape identification by digital speckle correlation (DISC),” Exp. Tech. 20, 17–19 (1997).
[CrossRef]

Chung, P. S.

Y. C. Chan, X. Dai, G. C. Jin, N. K. Bao, P. S. Chung, “Nondestructive detection of delaminations in multilayer ceramic capacitors using improved digital speckle correlation method,” Microwave Opt. Technol. Lett. 16, 80–85 (1997).
[CrossRef]

Y. C. Chan, F. Yeung, G. C. Jin, N. K. Bao, P. S. Chung, “Nondestructive detection of defects in miniaturized multilayer ceramic capacitors using digital speckle correlation techniques,” IEEE Trans. Components Package. Manufact. Technol. Part A 18, 677–684 (1995).
[CrossRef]

Y. C. Chan, F. Yeung, G. C. Gin, N. K. Bao, P. S. Chung, “In situ detection of flaws in multilayer ceramic capacitors using electronic speckle pattern interferometry,” in Nondestructive Characterization of Materials VI, R. E. Green, K. J. Kozaczek, C. O. Ruud, eds. (Plenum, New York, 1994), pp. 445–452.

Coburn, D.

Coifman, R. R.

R. R. Coifman, M. V. Wickerhauser, “Entropy based algorithms for best basis selection,” IEEE Trans. Inform. Theory 38, 713–718 (1992).
[CrossRef]

Dai, X.

Y. C. Chan, X. Dai, G. C. Jin, N. K. Bao, P. S. Chung, “Nondestructive detection of delaminations in multilayer ceramic capacitors using improved digital speckle correlation method,” Microwave Opt. Technol. Lett. 16, 80–85 (1997).
[CrossRef]

Daubechies, I.

I. Daubechies, “Orthonormal bases of compactly supported wavelets,” Commun. Pure Appl. Math. 41, 909–996 (1998).
[CrossRef]

Donoho, D. L.

D. L. Donoho, I. M. Johnstone, G. Kerkyacharian, D. Picard, “Wavelet Shrinkage: asymptopia?” J. R. Stat. Soc. B 57, 301–337 (1995).

D. L. Donoho, “De-noising by soft thresholding,” IEEE Trans. Inform. Theory 41, 613–627 (1995).
[CrossRef]

D. L. Donoho, I. M. Johnstone, “Ideal spatial adaptation via wavelet shrinkage,” Biometrika 81, 425–455 (1994).
[CrossRef]

Frisch, M.

M. Frisch, H. Messer, “The use of the wavelet transform in the detection of an unknown transient signal,” IEEE Trans. Inform. Theory 38, 892–897 (1992).
[CrossRef]

Gin, G. C.

Y. C. Chan, F. Yeung, G. C. Gin, N. K. Bao, P. S. Chung, “In situ detection of flaws in multilayer ceramic capacitors using electronic speckle pattern interferometry,” in Nondestructive Characterization of Materials VI, R. E. Green, K. J. Kozaczek, C. O. Ruud, eds. (Plenum, New York, 1994), pp. 445–452.

Jin, G. C.

Y. C. Chan, X. Dai, G. C. Jin, N. K. Bao, P. S. Chung, “Nondestructive detection of delaminations in multilayer ceramic capacitors using improved digital speckle correlation method,” Microwave Opt. Technol. Lett. 16, 80–85 (1997).
[CrossRef]

Y. C. Chan, F. Yeung, G. C. Jin, N. K. Bao, P. S. Chung, “Nondestructive detection of defects in miniaturized multilayer ceramic capacitors using digital speckle correlation techniques,” IEEE Trans. Components Package. Manufact. Technol. Part A 18, 677–684 (1995).
[CrossRef]

G. C. Jin, J. B. Rui, B. Y. Xu, “A new digital speckle correlation method and its application,” Acta Mech. Sinica 26, 599–607 (1994).

Johnstone, I. M.

D. L. Donoho, I. M. Johnstone, G. Kerkyacharian, D. Picard, “Wavelet Shrinkage: asymptopia?” J. R. Stat. Soc. B 57, 301–337 (1995).

D. L. Donoho, I. M. Johnstone, “Ideal spatial adaptation via wavelet shrinkage,” Biometrika 81, 425–455 (1994).
[CrossRef]

Kerkyacharian, G.

D. L. Donoho, I. M. Johnstone, G. Kerkyacharian, D. Picard, “Wavelet Shrinkage: asymptopia?” J. R. Stat. Soc. B 57, 301–337 (1995).

Mallat, S. G.

S. G. Mallat, “Multiresolution approximations and wavelet orthonormal bases of L2®,” Trans. Am. Math. Soc. 315, 69–87 (1989).

McNeill, S. R.

W. H. Peters, M. A. Sutton, W. F. Ranson, W. P. Poplin, S. R. McNeill, “Whole-field experimental displacement analysis of composite cylinders,” Exp. Mech. 29, 58–62 (1989).
[CrossRef]

H. A. Bruck, S. R. McNeill, M. A. Sutton, W. H. Peters, “Digital image correlation using Newton–Raphson method of partial differential correlation,” Exp. Mech. 29, 261–267 (1989).
[CrossRef]

M. A. Sutton, M. Cheng, W. H. Peters, Y. J. Chao, S. R. McNeill, “Application of an optimised digital correlation method to planar deformation analysis,” Image Vision Comput. 4, 143–150 (1986).
[CrossRef]

M. A. Sutton, W. J. Wolters, W. H. Peters, W. F. Ranson, S. R. McNeill, “Computer vision determination of displacement using an improved digital correlation method,” Image Vision Comput. 1, 133–139 (1983).
[CrossRef]

Messer, H.

M. Frisch, H. Messer, “The use of the wavelet transform in the detection of an unknown transient signal,” IEEE Trans. Inform. Theory 38, 892–897 (1992).
[CrossRef]

Paoletti, D.

G. S. Spagnolo, D. Paoletti, “Digital speckle correlation for on-line real-time measurement,” Opt. Commun. 132, 24–28 (1996).
[CrossRef]

Peters, W. H.

H. A. Bruck, S. R. McNeill, M. A. Sutton, W. H. Peters, “Digital image correlation using Newton–Raphson method of partial differential correlation,” Exp. Mech. 29, 261–267 (1989).
[CrossRef]

W. H. Peters, M. A. Sutton, W. F. Ranson, W. P. Poplin, S. R. McNeill, “Whole-field experimental displacement analysis of composite cylinders,” Exp. Mech. 29, 58–62 (1989).
[CrossRef]

M. A. Sutton, M. Cheng, W. H. Peters, Y. J. Chao, S. R. McNeill, “Application of an optimised digital correlation method to planar deformation analysis,” Image Vision Comput. 4, 143–150 (1986).
[CrossRef]

M. A. Sutton, W. J. Wolters, W. H. Peters, W. F. Ranson, S. R. McNeill, “Computer vision determination of displacement using an improved digital correlation method,” Image Vision Comput. 1, 133–139 (1983).
[CrossRef]

W. H. Peters, W. F. Ranson, “Digital imaging techniques in experimental stress analysis,” Opt. Eng. 21, 427–431 (1982).
[CrossRef]

Picard, D.

D. L. Donoho, I. M. Johnstone, G. Kerkyacharian, D. Picard, “Wavelet Shrinkage: asymptopia?” J. R. Stat. Soc. B 57, 301–337 (1995).

Poplin, W. P.

W. H. Peters, M. A. Sutton, W. F. Ranson, W. P. Poplin, S. R. McNeill, “Whole-field experimental displacement analysis of composite cylinders,” Exp. Mech. 29, 58–62 (1989).
[CrossRef]

Quinquis, A.

A. Quinquis, S. Rossignol, “Noise reduction, with a noise reference, of underwater magnetic signals,” Digital Signal Processing 6, 240–248 (1996).
[CrossRef]

Ranson, W. F.

W. H. Peters, M. A. Sutton, W. F. Ranson, W. P. Poplin, S. R. McNeill, “Whole-field experimental displacement analysis of composite cylinders,” Exp. Mech. 29, 58–62 (1989).
[CrossRef]

M. A. Sutton, W. J. Wolters, W. H. Peters, W. F. Ranson, S. R. McNeill, “Computer vision determination of displacement using an improved digital correlation method,” Image Vision Comput. 1, 133–139 (1983).
[CrossRef]

W. H. Peters, W. F. Ranson, “Digital imaging techniques in experimental stress analysis,” Opt. Eng. 21, 427–431 (1982).
[CrossRef]

Rossignol, S.

A. Quinquis, S. Rossignol, “Noise reduction, with a noise reference, of underwater magnetic signals,” Digital Signal Processing 6, 240–248 (1996).
[CrossRef]

Rui, J. B.

G. C. Jin, J. B. Rui, B. Y. Xu, “A new digital speckle correlation method and its application,” Acta Mech. Sinica 26, 599–607 (1994).

Slevin, J.

Spagnolo, G. S.

G. S. Spagnolo, D. Paoletti, “Digital speckle correlation for on-line real-time measurement,” Opt. Commun. 132, 24–28 (1996).
[CrossRef]

Sutton, M. A.

W. H. Peters, M. A. Sutton, W. F. Ranson, W. P. Poplin, S. R. McNeill, “Whole-field experimental displacement analysis of composite cylinders,” Exp. Mech. 29, 58–62 (1989).
[CrossRef]

H. A. Bruck, S. R. McNeill, M. A. Sutton, W. H. Peters, “Digital image correlation using Newton–Raphson method of partial differential correlation,” Exp. Mech. 29, 261–267 (1989).
[CrossRef]

M. A. Sutton, M. Cheng, W. H. Peters, Y. J. Chao, S. R. McNeill, “Application of an optimised digital correlation method to planar deformation analysis,” Image Vision Comput. 4, 143–150 (1986).
[CrossRef]

M. A. Sutton, W. J. Wolters, W. H. Peters, W. F. Ranson, S. R. McNeill, “Computer vision determination of displacement using an improved digital correlation method,” Image Vision Comput. 1, 133–139 (1983).
[CrossRef]

Wickerhauser, M. V.

R. R. Coifman, M. V. Wickerhauser, “Entropy based algorithms for best basis selection,” IEEE Trans. Inform. Theory 38, 713–718 (1992).
[CrossRef]

Wolters, W. J.

M. A. Sutton, W. J. Wolters, W. H. Peters, W. F. Ranson, S. R. McNeill, “Computer vision determination of displacement using an improved digital correlation method,” Image Vision Comput. 1, 133–139 (1983).
[CrossRef]

Xu, B. Y.

G. C. Jin, J. B. Rui, B. Y. Xu, “A new digital speckle correlation method and its application,” Acta Mech. Sinica 26, 599–607 (1994).

Yamaguchi, I.

Yeung, F.

Y. C. Chan, F. Yeung, G. C. Jin, N. K. Bao, P. S. Chung, “Nondestructive detection of defects in miniaturized multilayer ceramic capacitors using digital speckle correlation techniques,” IEEE Trans. Components Package. Manufact. Technol. Part A 18, 677–684 (1995).
[CrossRef]

Y. C. Chan, F. Yeung, G. C. Gin, N. K. Bao, P. S. Chung, “In situ detection of flaws in multilayer ceramic capacitors using electronic speckle pattern interferometry,” in Nondestructive Characterization of Materials VI, R. E. Green, K. J. Kozaczek, C. O. Ruud, eds. (Plenum, New York, 1994), pp. 445–452.

Zhu, N.

N. Zhu, F. P. Chiang, “Vibrational mode shape identification by digital speckle correlation (DISC),” Exp. Tech. 20, 17–19 (1997).
[CrossRef]

Acta Mech. Sinica (1)

G. C. Jin, J. B. Rui, B. Y. Xu, “A new digital speckle correlation method and its application,” Acta Mech. Sinica 26, 599–607 (1994).

Appl. Opt. (1)

Biometrika (1)

D. L. Donoho, I. M. Johnstone, “Ideal spatial adaptation via wavelet shrinkage,” Biometrika 81, 425–455 (1994).
[CrossRef]

Commun. Pure Appl. Math. (1)

I. Daubechies, “Orthonormal bases of compactly supported wavelets,” Commun. Pure Appl. Math. 41, 909–996 (1998).
[CrossRef]

Digital Signal Processing (1)

A. Quinquis, S. Rossignol, “Noise reduction, with a noise reference, of underwater magnetic signals,” Digital Signal Processing 6, 240–248 (1996).
[CrossRef]

Exp. Mech. (2)

H. A. Bruck, S. R. McNeill, M. A. Sutton, W. H. Peters, “Digital image correlation using Newton–Raphson method of partial differential correlation,” Exp. Mech. 29, 261–267 (1989).
[CrossRef]

W. H. Peters, M. A. Sutton, W. F. Ranson, W. P. Poplin, S. R. McNeill, “Whole-field experimental displacement analysis of composite cylinders,” Exp. Mech. 29, 58–62 (1989).
[CrossRef]

Exp. Tech. (1)

N. Zhu, F. P. Chiang, “Vibrational mode shape identification by digital speckle correlation (DISC),” Exp. Tech. 20, 17–19 (1997).
[CrossRef]

IEEE Trans. Components Package. Manufact. Technol. Part A (1)

Y. C. Chan, F. Yeung, G. C. Jin, N. K. Bao, P. S. Chung, “Nondestructive detection of defects in miniaturized multilayer ceramic capacitors using digital speckle correlation techniques,” IEEE Trans. Components Package. Manufact. Technol. Part A 18, 677–684 (1995).
[CrossRef]

IEEE Trans. Inform. Theory (3)

D. L. Donoho, “De-noising by soft thresholding,” IEEE Trans. Inform. Theory 41, 613–627 (1995).
[CrossRef]

M. Frisch, H. Messer, “The use of the wavelet transform in the detection of an unknown transient signal,” IEEE Trans. Inform. Theory 38, 892–897 (1992).
[CrossRef]

R. R. Coifman, M. V. Wickerhauser, “Entropy based algorithms for best basis selection,” IEEE Trans. Inform. Theory 38, 713–718 (1992).
[CrossRef]

Image Vision Comput. (2)

M. A. Sutton, W. J. Wolters, W. H. Peters, W. F. Ranson, S. R. McNeill, “Computer vision determination of displacement using an improved digital correlation method,” Image Vision Comput. 1, 133–139 (1983).
[CrossRef]

M. A. Sutton, M. Cheng, W. H. Peters, Y. J. Chao, S. R. McNeill, “Application of an optimised digital correlation method to planar deformation analysis,” Image Vision Comput. 4, 143–150 (1986).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. R. Stat. Soc. B (1)

D. L. Donoho, I. M. Johnstone, G. Kerkyacharian, D. Picard, “Wavelet Shrinkage: asymptopia?” J. R. Stat. Soc. B 57, 301–337 (1995).

Microwave Opt. Technol. Lett. (1)

Y. C. Chan, X. Dai, G. C. Jin, N. K. Bao, P. S. Chung, “Nondestructive detection of delaminations in multilayer ceramic capacitors using improved digital speckle correlation method,” Microwave Opt. Technol. Lett. 16, 80–85 (1997).
[CrossRef]

Opt. Commun. (1)

G. S. Spagnolo, D. Paoletti, “Digital speckle correlation for on-line real-time measurement,” Opt. Commun. 132, 24–28 (1996).
[CrossRef]

Opt. Eng. (1)

W. H. Peters, W. F. Ranson, “Digital imaging techniques in experimental stress analysis,” Opt. Eng. 21, 427–431 (1982).
[CrossRef]

Trans. Am. Math. Soc. (1)

S. G. Mallat, “Multiresolution approximations and wavelet orthonormal bases of L2®,” Trans. Am. Math. Soc. 315, 69–87 (1989).

Other (1)

Y. C. Chan, F. Yeung, G. C. Gin, N. K. Bao, P. S. Chung, “In situ detection of flaws in multilayer ceramic capacitors using electronic speckle pattern interferometry,” in Nondestructive Characterization of Materials VI, R. E. Green, K. J. Kozaczek, C. O. Ruud, eds. (Plenum, New York, 1994), pp. 445–452.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Algorithm combining DSCM and wavelet-packet noise-reduction processing.

Fig. 2
Fig. 2

Schematic diagram of the experimental setup.

Fig. 3
Fig. 3

3D mesh displacement graphs for the case without target displacement: (a) computational noise reference, (b) computational and system noise, (c) noise-reduced DSCM result showing system error only.

Fig. 4
Fig. 4

Laser speckle images of X7R-type MLC (a) before displacement, (b) after a downward displacement of 20 µm (5.578 pixels). The lines indicate the displacement.

Fig. 5
Fig. 5

3D mesh displacement graphs for Fig. 4: (a) noise reference, (b) noisy displacement, (c) noise-reduced DSCM result, showing the detected pixel displacement.

Fig. 6
Fig. 6

(a) Ideal simulated hillock DSCM displacement signal, (b) simulated system noise reference, (c) hillock signal embedded in the noisy displacement signal, (d) displacement obtained from DSCM combined with wavelet-packet noise-reduction processing.

Fig. 7
Fig. 7

3D mesh deformation graphs showing the thermal deformation of the X7R-type MLC (a) before the 50V dc bias (noise reference) is applied; (b) after the 50V dc bias is applied for 5 min (noisy deformation), (c) noise reduced DSCM result for (b); (d) after 50-V dc bias is applied for 15 min (noisy deformation).

Fig. 8
Fig. 8

Cross section of the X7R-type MLC showing tiny delamination (circled).

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

CΔx, Δy=i=0mj=0mfxi, yj-f¯*gxi*, yj*-g¯i=0mj=0mfxi, yj-f¯21/2*i=0mj=0mgxi*, yj*-g¯21/2,
k hk=2,
gj=-1jh1-j,
k gk=0,
k hkhk+2m=δ0m  for all m.
W2nt=2k=-+ hkWn2t-k,
W2n+1t=2k=-+ gkWn2t-k,
Cjnk=xt, 12j/2 Wnt2j-k=12j-+ xtWn*t2j-kdt.
ηx=-j pj logpj,
pj=|xj|2/x2
ηx=x-2λx+logx,
λx=-j |xj|2 log|xj|2.

Metrics