Abstract

The utility of the one-beam cross-correlation dynamic light-scattering system for sizing small particles in suspension was previously limited by its small-intensity signal-to-baseline ratio for strongly turbid suspensions. We describe three improvements in the optical system and sample cell that raise the ratio to a value comparable with that of other cross-correlation dynamic light-scattering systems. These improvements are (i) using a square cross-sectional sample cell to minimize the attenuation of the incident beam and singly scattered light, (ii) placing a 200-µm-wide slit between the sample cell and the detector fibers to mask off the region of weak single scattering and strong multiple scattering from the detectors’ field of view, and (iii) aligning the center of the detectors’ field of view with the region of strongest single scattering. We analyze a number of suspensions of polystyrene latex spheres with a diameter between 65 and 562 nm in water using this improved one-beam instrument and find that the measured radius is determined in a 2-min data collection time to better than ±10% for volume fractions of the suspended polystyrene latex spheres up to a few percent.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Berne, R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976), pp. 83–86.
  2. P. Štěpánek, “Static and dynamic properties of multiple light scattering,” J. Chem. Phys. 99, 6384–6393 (1993).
    [CrossRef]
  3. T. Gisler, H. Rüger, S. U. Egelhaaf, J. Tschumi, P. Schurtenberger, J. Rička, “Mode-selective light scattering: theory versus experimental realization,” Appl. Opt. 34, 3546–3553 (1995).
    [CrossRef] [PubMed]
  4. H. Wiese, D. Horn, “Single-mode fibers in fiber-optic quasielastic light scattering: a study of the dynamics of concentrated latex dispersions,” J. Chem. Phys. 94, 6429–6443 (1991).
    [CrossRef]
  5. H. S. Dhadwal, R. R. Ansari, W. V. Meyer, “A fiber optic probe for particle sizing in concentrated suspensions,” Rev. Sci. Instrum. 62, 2963–2968 (1991).
    [CrossRef]
  6. R. R. Ansari, K. I. Suh, “Dynamic light scattering particle size measurements in turbid media,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications II, V. V. Tuchin, J. A. Izatt, eds., Proc. SPIE3251, 146–156 (1998).
    [CrossRef]
  7. G. D. J. Phillies, “Suppression of multiple scattering effects in quasielastic light scattering by homodyne cross-correlation techniques,” J. Chem. Phys. 74, 260–262 (1981).
    [CrossRef]
  8. G. D. J. Phillies, “Experimental demonstration of multiple scattering suppression in quasielastic light scattering spectroscopy by homodyne coincidence techniques,” Phys. Rev. A 24, 1939–1943 (1981).
    [CrossRef]
  9. J. K. G. Dhont, C. G. de Kruif, “Scattered light intensity cross-correlation. I. Theory,” J. Chem. Phys. 79, 1658–1663 (1983).
    [CrossRef]
  10. H. J. Mos, C. Pathmamanoharan, J. K. G. Dhont, C. G. de Kruif, “Scattered light intensity cross-correlation. II. Experimental,” J. Chem. Phys. 84, 45–49 (1986).
    [CrossRef]
  11. M. Drewel, J. Ahrens, U. Podschus, “Decorrelation of multiple scattering for an arbitrary scattering angle,” J. Opt. Soc. Am. A 7, 206–210 (1990).
    [CrossRef]
  12. K. Schätzel, M. Drewel, J. Ahrens, “Suppression of multiple scattering in photon correlation spectroscopy,” J. Phys. Condens. Matter 2, SA393–SA398 (1990).
    [CrossRef]
  13. K. Schätzel, “Suppression of multiple scattering by photon cross-correlation techniques,” J. Mod. Opt. 38, 1849–1865 (1991).
    [CrossRef]
  14. L. B. Aberle, P. Hülstede, S. Wiegand, W. Schröer, W. Staude, “Effective suppression of multiply scattered light in static and dynamic light scattering,” Appl. Opt. 37, 6511–6524 (1998).
    [CrossRef]
  15. C. Urban, P. Schurtenberger, “Characterization of turbid colloidal suspensions using light scattering techniques combined with cross-correlation methods,” J. Colloid Interface Sci. 207, 150–158 (1998).
    [CrossRef] [PubMed]
  16. U. Nobbmann, S. W. Jones, B. J. Ackerson, “Multiple scattering suppression: cross correlation with tilted single-mode fibers,” Appl. Opt. 36, 7571–7576 (1997).
    [CrossRef]
  17. W. V. Meyer, D. S. Cannell, A. E. Smart, T. W. Taylor, P. Tin, “Multiple-scattering suppression by cross correlation,” Appl. Opt. 36, 7551–7558 (1997).
    [CrossRef]
  18. J. A. Lock, “Role of multiple scattering in cross-correlated light scattering with a single laser beam,” Appl. Opt. 36, 7559–7570 (1997).
    [CrossRef]
  19. E. Hecht, Optics, 2nd ed. (Addison-Wesley, Reading, Mass., 1987), p. 532.
  20. J. Rička, “Dynamic light scattering with single-mode and multimode receivers,” Appl. Opt. 32, 2860–2875 (1993).
    [CrossRef] [PubMed]
  21. C. W. J. Beenakker, P. Mazur, “Diffusion of spheres in concentrated suspension: resummation of many-body hydrodynamic interactions,” Phys. Lett. A 98, 22–24 (1983).
    [CrossRef]
  22. C. W. J. Beenakker, P. Mazur, “Diffusion of spheres in a concentrated suspension II,” Physica A 126, 349–370 (1984).
    [CrossRef]
  23. P. N. Pusey, R. J. A. Tough, “Particle interactions,” in Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy, R. Pecora, ed. (Plenum, New York, 1985), pp. 85–179.
    [CrossRef]
  24. N. W. Ashcroft, J. Lekner, “Structure and resistivity of liquid metals,” Phys. Rev. 145, 83–90 (1966).
    [CrossRef]
  25. W. V. Meyer, A. E. Smart, D. S. Cannell, R. G. Brown, J. A. Lock, T. W. Taylor, “Multiple scattering suppression with cross-correlation and flare rejection with fiber optic homodyning,” paper AIAA 99-0962, presented at the Thirty-Seventh Aerospace Sciences Meeting and Exhibit, Reno, Nev., 11–14 January 1999 (American Institute of Aeronautics and Astronautics, New York, 1999).
  26. J. A. Lock, “Contribution of high-order rainbows to the scattering of a Gaussian laser beam by a spherical particle,” J. Opt. Soc. Am. A 10, 693–706 (1993).
    [CrossRef]

1998

C. Urban, P. Schurtenberger, “Characterization of turbid colloidal suspensions using light scattering techniques combined with cross-correlation methods,” J. Colloid Interface Sci. 207, 150–158 (1998).
[CrossRef] [PubMed]

L. B. Aberle, P. Hülstede, S. Wiegand, W. Schröer, W. Staude, “Effective suppression of multiply scattered light in static and dynamic light scattering,” Appl. Opt. 37, 6511–6524 (1998).
[CrossRef]

1997

1995

1993

1991

H. Wiese, D. Horn, “Single-mode fibers in fiber-optic quasielastic light scattering: a study of the dynamics of concentrated latex dispersions,” J. Chem. Phys. 94, 6429–6443 (1991).
[CrossRef]

H. S. Dhadwal, R. R. Ansari, W. V. Meyer, “A fiber optic probe for particle sizing in concentrated suspensions,” Rev. Sci. Instrum. 62, 2963–2968 (1991).
[CrossRef]

K. Schätzel, “Suppression of multiple scattering by photon cross-correlation techniques,” J. Mod. Opt. 38, 1849–1865 (1991).
[CrossRef]

1990

M. Drewel, J. Ahrens, U. Podschus, “Decorrelation of multiple scattering for an arbitrary scattering angle,” J. Opt. Soc. Am. A 7, 206–210 (1990).
[CrossRef]

K. Schätzel, M. Drewel, J. Ahrens, “Suppression of multiple scattering in photon correlation spectroscopy,” J. Phys. Condens. Matter 2, SA393–SA398 (1990).
[CrossRef]

1986

H. J. Mos, C. Pathmamanoharan, J. K. G. Dhont, C. G. de Kruif, “Scattered light intensity cross-correlation. II. Experimental,” J. Chem. Phys. 84, 45–49 (1986).
[CrossRef]

1984

C. W. J. Beenakker, P. Mazur, “Diffusion of spheres in a concentrated suspension II,” Physica A 126, 349–370 (1984).
[CrossRef]

1983

C. W. J. Beenakker, P. Mazur, “Diffusion of spheres in concentrated suspension: resummation of many-body hydrodynamic interactions,” Phys. Lett. A 98, 22–24 (1983).
[CrossRef]

J. K. G. Dhont, C. G. de Kruif, “Scattered light intensity cross-correlation. I. Theory,” J. Chem. Phys. 79, 1658–1663 (1983).
[CrossRef]

1981

G. D. J. Phillies, “Suppression of multiple scattering effects in quasielastic light scattering by homodyne cross-correlation techniques,” J. Chem. Phys. 74, 260–262 (1981).
[CrossRef]

G. D. J. Phillies, “Experimental demonstration of multiple scattering suppression in quasielastic light scattering spectroscopy by homodyne coincidence techniques,” Phys. Rev. A 24, 1939–1943 (1981).
[CrossRef]

1966

N. W. Ashcroft, J. Lekner, “Structure and resistivity of liquid metals,” Phys. Rev. 145, 83–90 (1966).
[CrossRef]

Aberle, L. B.

Ackerson, B. J.

Ahrens, J.

K. Schätzel, M. Drewel, J. Ahrens, “Suppression of multiple scattering in photon correlation spectroscopy,” J. Phys. Condens. Matter 2, SA393–SA398 (1990).
[CrossRef]

M. Drewel, J. Ahrens, U. Podschus, “Decorrelation of multiple scattering for an arbitrary scattering angle,” J. Opt. Soc. Am. A 7, 206–210 (1990).
[CrossRef]

Ansari, R. R.

H. S. Dhadwal, R. R. Ansari, W. V. Meyer, “A fiber optic probe for particle sizing in concentrated suspensions,” Rev. Sci. Instrum. 62, 2963–2968 (1991).
[CrossRef]

R. R. Ansari, K. I. Suh, “Dynamic light scattering particle size measurements in turbid media,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications II, V. V. Tuchin, J. A. Izatt, eds., Proc. SPIE3251, 146–156 (1998).
[CrossRef]

Ashcroft, N. W.

N. W. Ashcroft, J. Lekner, “Structure and resistivity of liquid metals,” Phys. Rev. 145, 83–90 (1966).
[CrossRef]

Beenakker, C. W. J.

C. W. J. Beenakker, P. Mazur, “Diffusion of spheres in a concentrated suspension II,” Physica A 126, 349–370 (1984).
[CrossRef]

C. W. J. Beenakker, P. Mazur, “Diffusion of spheres in concentrated suspension: resummation of many-body hydrodynamic interactions,” Phys. Lett. A 98, 22–24 (1983).
[CrossRef]

Berne, B. J.

B. J. Berne, R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976), pp. 83–86.

Brown, R. G.

W. V. Meyer, A. E. Smart, D. S. Cannell, R. G. Brown, J. A. Lock, T. W. Taylor, “Multiple scattering suppression with cross-correlation and flare rejection with fiber optic homodyning,” paper AIAA 99-0962, presented at the Thirty-Seventh Aerospace Sciences Meeting and Exhibit, Reno, Nev., 11–14 January 1999 (American Institute of Aeronautics and Astronautics, New York, 1999).

Cannell, D. S.

W. V. Meyer, D. S. Cannell, A. E. Smart, T. W. Taylor, P. Tin, “Multiple-scattering suppression by cross correlation,” Appl. Opt. 36, 7551–7558 (1997).
[CrossRef]

W. V. Meyer, A. E. Smart, D. S. Cannell, R. G. Brown, J. A. Lock, T. W. Taylor, “Multiple scattering suppression with cross-correlation and flare rejection with fiber optic homodyning,” paper AIAA 99-0962, presented at the Thirty-Seventh Aerospace Sciences Meeting and Exhibit, Reno, Nev., 11–14 January 1999 (American Institute of Aeronautics and Astronautics, New York, 1999).

de Kruif, C. G.

H. J. Mos, C. Pathmamanoharan, J. K. G. Dhont, C. G. de Kruif, “Scattered light intensity cross-correlation. II. Experimental,” J. Chem. Phys. 84, 45–49 (1986).
[CrossRef]

J. K. G. Dhont, C. G. de Kruif, “Scattered light intensity cross-correlation. I. Theory,” J. Chem. Phys. 79, 1658–1663 (1983).
[CrossRef]

Dhadwal, H. S.

H. S. Dhadwal, R. R. Ansari, W. V. Meyer, “A fiber optic probe for particle sizing in concentrated suspensions,” Rev. Sci. Instrum. 62, 2963–2968 (1991).
[CrossRef]

Dhont, J. K. G.

H. J. Mos, C. Pathmamanoharan, J. K. G. Dhont, C. G. de Kruif, “Scattered light intensity cross-correlation. II. Experimental,” J. Chem. Phys. 84, 45–49 (1986).
[CrossRef]

J. K. G. Dhont, C. G. de Kruif, “Scattered light intensity cross-correlation. I. Theory,” J. Chem. Phys. 79, 1658–1663 (1983).
[CrossRef]

Drewel, M.

K. Schätzel, M. Drewel, J. Ahrens, “Suppression of multiple scattering in photon correlation spectroscopy,” J. Phys. Condens. Matter 2, SA393–SA398 (1990).
[CrossRef]

M. Drewel, J. Ahrens, U. Podschus, “Decorrelation of multiple scattering for an arbitrary scattering angle,” J. Opt. Soc. Am. A 7, 206–210 (1990).
[CrossRef]

Egelhaaf, S. U.

Gisler, T.

Hecht, E.

E. Hecht, Optics, 2nd ed. (Addison-Wesley, Reading, Mass., 1987), p. 532.

Horn, D.

H. Wiese, D. Horn, “Single-mode fibers in fiber-optic quasielastic light scattering: a study of the dynamics of concentrated latex dispersions,” J. Chem. Phys. 94, 6429–6443 (1991).
[CrossRef]

Hülstede, P.

Jones, S. W.

Lekner, J.

N. W. Ashcroft, J. Lekner, “Structure and resistivity of liquid metals,” Phys. Rev. 145, 83–90 (1966).
[CrossRef]

Lock, J. A.

J. A. Lock, “Role of multiple scattering in cross-correlated light scattering with a single laser beam,” Appl. Opt. 36, 7559–7570 (1997).
[CrossRef]

J. A. Lock, “Contribution of high-order rainbows to the scattering of a Gaussian laser beam by a spherical particle,” J. Opt. Soc. Am. A 10, 693–706 (1993).
[CrossRef]

W. V. Meyer, A. E. Smart, D. S. Cannell, R. G. Brown, J. A. Lock, T. W. Taylor, “Multiple scattering suppression with cross-correlation and flare rejection with fiber optic homodyning,” paper AIAA 99-0962, presented at the Thirty-Seventh Aerospace Sciences Meeting and Exhibit, Reno, Nev., 11–14 January 1999 (American Institute of Aeronautics and Astronautics, New York, 1999).

Mazur, P.

C. W. J. Beenakker, P. Mazur, “Diffusion of spheres in a concentrated suspension II,” Physica A 126, 349–370 (1984).
[CrossRef]

C. W. J. Beenakker, P. Mazur, “Diffusion of spheres in concentrated suspension: resummation of many-body hydrodynamic interactions,” Phys. Lett. A 98, 22–24 (1983).
[CrossRef]

Meyer, W. V.

W. V. Meyer, D. S. Cannell, A. E. Smart, T. W. Taylor, P. Tin, “Multiple-scattering suppression by cross correlation,” Appl. Opt. 36, 7551–7558 (1997).
[CrossRef]

H. S. Dhadwal, R. R. Ansari, W. V. Meyer, “A fiber optic probe for particle sizing in concentrated suspensions,” Rev. Sci. Instrum. 62, 2963–2968 (1991).
[CrossRef]

W. V. Meyer, A. E. Smart, D. S. Cannell, R. G. Brown, J. A. Lock, T. W. Taylor, “Multiple scattering suppression with cross-correlation and flare rejection with fiber optic homodyning,” paper AIAA 99-0962, presented at the Thirty-Seventh Aerospace Sciences Meeting and Exhibit, Reno, Nev., 11–14 January 1999 (American Institute of Aeronautics and Astronautics, New York, 1999).

Mos, H. J.

H. J. Mos, C. Pathmamanoharan, J. K. G. Dhont, C. G. de Kruif, “Scattered light intensity cross-correlation. II. Experimental,” J. Chem. Phys. 84, 45–49 (1986).
[CrossRef]

Nobbmann, U.

Pathmamanoharan, C.

H. J. Mos, C. Pathmamanoharan, J. K. G. Dhont, C. G. de Kruif, “Scattered light intensity cross-correlation. II. Experimental,” J. Chem. Phys. 84, 45–49 (1986).
[CrossRef]

Pecora, R.

B. J. Berne, R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976), pp. 83–86.

Phillies, G. D. J.

G. D. J. Phillies, “Experimental demonstration of multiple scattering suppression in quasielastic light scattering spectroscopy by homodyne coincidence techniques,” Phys. Rev. A 24, 1939–1943 (1981).
[CrossRef]

G. D. J. Phillies, “Suppression of multiple scattering effects in quasielastic light scattering by homodyne cross-correlation techniques,” J. Chem. Phys. 74, 260–262 (1981).
[CrossRef]

Podschus, U.

Pusey, P. N.

P. N. Pusey, R. J. A. Tough, “Particle interactions,” in Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy, R. Pecora, ed. (Plenum, New York, 1985), pp. 85–179.
[CrossRef]

Ricka, J.

Rüger, H.

Schätzel, K.

K. Schätzel, “Suppression of multiple scattering by photon cross-correlation techniques,” J. Mod. Opt. 38, 1849–1865 (1991).
[CrossRef]

K. Schätzel, M. Drewel, J. Ahrens, “Suppression of multiple scattering in photon correlation spectroscopy,” J. Phys. Condens. Matter 2, SA393–SA398 (1990).
[CrossRef]

Schröer, W.

Schurtenberger, P.

C. Urban, P. Schurtenberger, “Characterization of turbid colloidal suspensions using light scattering techniques combined with cross-correlation methods,” J. Colloid Interface Sci. 207, 150–158 (1998).
[CrossRef] [PubMed]

T. Gisler, H. Rüger, S. U. Egelhaaf, J. Tschumi, P. Schurtenberger, J. Rička, “Mode-selective light scattering: theory versus experimental realization,” Appl. Opt. 34, 3546–3553 (1995).
[CrossRef] [PubMed]

Smart, A. E.

W. V. Meyer, D. S. Cannell, A. E. Smart, T. W. Taylor, P. Tin, “Multiple-scattering suppression by cross correlation,” Appl. Opt. 36, 7551–7558 (1997).
[CrossRef]

W. V. Meyer, A. E. Smart, D. S. Cannell, R. G. Brown, J. A. Lock, T. W. Taylor, “Multiple scattering suppression with cross-correlation and flare rejection with fiber optic homodyning,” paper AIAA 99-0962, presented at the Thirty-Seventh Aerospace Sciences Meeting and Exhibit, Reno, Nev., 11–14 January 1999 (American Institute of Aeronautics and Astronautics, New York, 1999).

Staude, W.

Štepánek, P.

P. Štěpánek, “Static and dynamic properties of multiple light scattering,” J. Chem. Phys. 99, 6384–6393 (1993).
[CrossRef]

Suh, K. I.

R. R. Ansari, K. I. Suh, “Dynamic light scattering particle size measurements in turbid media,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications II, V. V. Tuchin, J. A. Izatt, eds., Proc. SPIE3251, 146–156 (1998).
[CrossRef]

Taylor, T. W.

W. V. Meyer, D. S. Cannell, A. E. Smart, T. W. Taylor, P. Tin, “Multiple-scattering suppression by cross correlation,” Appl. Opt. 36, 7551–7558 (1997).
[CrossRef]

W. V. Meyer, A. E. Smart, D. S. Cannell, R. G. Brown, J. A. Lock, T. W. Taylor, “Multiple scattering suppression with cross-correlation and flare rejection with fiber optic homodyning,” paper AIAA 99-0962, presented at the Thirty-Seventh Aerospace Sciences Meeting and Exhibit, Reno, Nev., 11–14 January 1999 (American Institute of Aeronautics and Astronautics, New York, 1999).

Tin, P.

Tough, R. J. A.

P. N. Pusey, R. J. A. Tough, “Particle interactions,” in Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy, R. Pecora, ed. (Plenum, New York, 1985), pp. 85–179.
[CrossRef]

Tschumi, J.

Urban, C.

C. Urban, P. Schurtenberger, “Characterization of turbid colloidal suspensions using light scattering techniques combined with cross-correlation methods,” J. Colloid Interface Sci. 207, 150–158 (1998).
[CrossRef] [PubMed]

Wiegand, S.

Wiese, H.

H. Wiese, D. Horn, “Single-mode fibers in fiber-optic quasielastic light scattering: a study of the dynamics of concentrated latex dispersions,” J. Chem. Phys. 94, 6429–6443 (1991).
[CrossRef]

Appl. Opt.

J. Chem. Phys.

H. Wiese, D. Horn, “Single-mode fibers in fiber-optic quasielastic light scattering: a study of the dynamics of concentrated latex dispersions,” J. Chem. Phys. 94, 6429–6443 (1991).
[CrossRef]

G. D. J. Phillies, “Suppression of multiple scattering effects in quasielastic light scattering by homodyne cross-correlation techniques,” J. Chem. Phys. 74, 260–262 (1981).
[CrossRef]

J. K. G. Dhont, C. G. de Kruif, “Scattered light intensity cross-correlation. I. Theory,” J. Chem. Phys. 79, 1658–1663 (1983).
[CrossRef]

H. J. Mos, C. Pathmamanoharan, J. K. G. Dhont, C. G. de Kruif, “Scattered light intensity cross-correlation. II. Experimental,” J. Chem. Phys. 84, 45–49 (1986).
[CrossRef]

P. Štěpánek, “Static and dynamic properties of multiple light scattering,” J. Chem. Phys. 99, 6384–6393 (1993).
[CrossRef]

J. Colloid Interface Sci.

C. Urban, P. Schurtenberger, “Characterization of turbid colloidal suspensions using light scattering techniques combined with cross-correlation methods,” J. Colloid Interface Sci. 207, 150–158 (1998).
[CrossRef] [PubMed]

J. Mod. Opt.

K. Schätzel, “Suppression of multiple scattering by photon cross-correlation techniques,” J. Mod. Opt. 38, 1849–1865 (1991).
[CrossRef]

J. Opt. Soc. Am. A

J. Phys. Condens. Matter

K. Schätzel, M. Drewel, J. Ahrens, “Suppression of multiple scattering in photon correlation spectroscopy,” J. Phys. Condens. Matter 2, SA393–SA398 (1990).
[CrossRef]

Phys. Lett. A

C. W. J. Beenakker, P. Mazur, “Diffusion of spheres in concentrated suspension: resummation of many-body hydrodynamic interactions,” Phys. Lett. A 98, 22–24 (1983).
[CrossRef]

Phys. Rev.

N. W. Ashcroft, J. Lekner, “Structure and resistivity of liquid metals,” Phys. Rev. 145, 83–90 (1966).
[CrossRef]

Phys. Rev. A

G. D. J. Phillies, “Experimental demonstration of multiple scattering suppression in quasielastic light scattering spectroscopy by homodyne coincidence techniques,” Phys. Rev. A 24, 1939–1943 (1981).
[CrossRef]

Physica A

C. W. J. Beenakker, P. Mazur, “Diffusion of spheres in a concentrated suspension II,” Physica A 126, 349–370 (1984).
[CrossRef]

Rev. Sci. Instrum.

H. S. Dhadwal, R. R. Ansari, W. V. Meyer, “A fiber optic probe for particle sizing in concentrated suspensions,” Rev. Sci. Instrum. 62, 2963–2968 (1991).
[CrossRef]

Other

R. R. Ansari, K. I. Suh, “Dynamic light scattering particle size measurements in turbid media,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications II, V. V. Tuchin, J. A. Izatt, eds., Proc. SPIE3251, 146–156 (1998).
[CrossRef]

B. J. Berne, R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976), pp. 83–86.

P. N. Pusey, R. J. A. Tough, “Particle interactions,” in Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy, R. Pecora, ed. (Plenum, New York, 1985), pp. 85–179.
[CrossRef]

E. Hecht, Optics, 2nd ed. (Addison-Wesley, Reading, Mass., 1987), p. 532.

W. V. Meyer, A. E. Smart, D. S. Cannell, R. G. Brown, J. A. Lock, T. W. Taylor, “Multiple scattering suppression with cross-correlation and flare rejection with fiber optic homodyning,” paper AIAA 99-0962, presented at the Thirty-Seventh Aerospace Sciences Meeting and Exhibit, Reno, Nev., 11–14 January 1999 (American Institute of Aeronautics and Astronautics, New York, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

One-beam cross-correlation dynamic light-scattering apparatus as seen from above. Light from an Ar+ laser is focused by a f = 10-cm lens, enters an index-matching vat filled with water, and is incident on a square cross-sectional sample cell. The light scattered at θ = 90° passes through a 200-µm-wide blocking slit and is coupled into two detector fibers that are separated vertically by 750 µm. Two Glan–Thompson prisms ensure that only the VV polarization state of the incident and scattered light is detected. fl, focal length.

Fig. 2
Fig. 2

Measured particle diameter (open circles) and intensity signal-to-baseline ratio β (solid circles) as a function of the position of the blocking slit along the beam path in the sample cell. The front of the sample cell corresponds to the slit position 0.3 mm. Only one 2-min measurement of the cross-correlation function was made at each slit position.

Fig. 3
Fig. 3

(a) Measured particle diameter, corrected for hard-sphere particle interaction effects, as a function of the concentration of the suspended particles. The nominal particle diameter is 65 nm (solid circles), 120 nm (open circles), and 246 nm (triangles). Only one 2-min measurement of the cross-correlation function was made at each concentration. (b) Measured intensity signal-to-baseline ratio β as a function of the concentration of the suspended particles. The particle nominal diameter is 65 nm (solid circles), 120 nm (open circles), and 246 nm (triangles). Only one 2-min measurement of the cross-correlation function was made at each concentration.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Cτ=Itotal21+β exp-kBTq2τ/3πηa,
β=βgeometricβbeamsIsingle/Itotal2,
Ls=4a/3ϕscatt,
σscatt=πa2scatt.

Metrics