Abstract

We present a comprehensive study of the optimum operating regime in gain-switched Cr:forsterite lasers pumped at kilohertz repetition rates, comparing five crystals of similar quality but different dopant levels. The optimization of the cavity design includes selection of the proper pump fluence to account for excited-state absorption, optimum matching of the pump and laser modes, and consideration of thermal effects. As a result >1-W average output power is demonstrated at 2 kHz. The maximum conversion efficiencies achieved at 1 kHz are 24.2% (slope) and 20% (absolute). Narrow-band operation of this laser is possible with a birefringent filter, which is a prerequisite for efficient frequency doubling to cover the 585–660-nm part of the visible spectral range. Tunable second-harmonic generation in a temperature-tuned noncritical scheme that employs LiB3O5 produces 60 mW of average power near 619 nm with 13.5% conversion efficiency.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription