Abstract

We have developed a laser-pulse mammograph capable of recording optical mammograms within ∼3 min by measuring time-resolved transmittance at each of typically 1500 scan positions, 2.5 mm apart. As a first application two patients who have tumors were investigated successfully. From measured distributions of times of flight of photons corrected for edge effects we derived (1) characteristic quantities, such as photon counts in selected time windows, to generate optical mammograms; (2) effective transport scattering and absorption coefficients of breast tissue at each scan position, assuming the breast to be homogeneous; and (3) optical properties of a selected tumor by applying the theory of diffraction of photon density waves by spherical inhomogeneity. Mammograms recorded at different lateral offsets between source and detector fiber were used to estimate the depth of inhomogeneities.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Light scanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
    [CrossRef] [PubMed]
  2. M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
    [CrossRef] [PubMed]
  3. L. Götz, S. H. Heywang-Köbrunner, O. Schütz, H. Siebold, “Optical mammography on preoperative patients,” Akt. Radiol. 8, 31–33 (1998).
  4. S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
    [CrossRef] [PubMed]
  5. M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
    [CrossRef] [PubMed]
  6. J. C. Hebden, D. J. Hall, M. Firbank, D. T. Delpy, “Time-resolved optical imaging of a solid tissue-equivalent phantom,” Appl. Opt. 34, 8038–8047 (1995).
    [CrossRef] [PubMed]
  7. R. Berg, S. Andersson-Engels, O. Jarlman, S. Svanberg, “Time-gated viewing studies on tissuelike phantoms,” Appl. Opt. 35, 3432–3440 (1996).
    [CrossRef] [PubMed]
  8. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Imaging with diffusing light: an experimental study of the effect of background optical properties,” Appl. Opt. 37, 3564–3573 (1998).
    [CrossRef]
  9. S. Nioka, M. Miwa, S. Orel, M. Schnall, M. Haida, S. Zhao, B. Chance, “Optical imaging of human breast cancer,” Adv. Exp. Med. Biol. 361, 171–179 (1994).
    [CrossRef] [PubMed]
  10. V. Ntziachristos, X. Ma, M. Schnall, B. Chance, “A multichannel single photon counting NIR imager for coregistration with MRI,” in Photon Propagation in Tissues III, D. A. Benaron, B. Chance, M. Ferrari, eds., Proc. SPIE3194, 219–227 (1997).
    [CrossRef]
  11. J. H. Hoogenraad, M. B. van der Mark, S. B. Colak, G. W. ’t Hooft, E. S. van der Linden, “First results from the Philips optical mammoscope,” in Photon Propagation in Tissues III, D. A. Benaron, B. Chance, M. Ferrari, eds., Proc. SPIE3194, 184–190 (1997).
    [CrossRef]
  12. G. Mitic, J. Kölzer, J. Otto, E. Plies, G. Sölkner, W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Appl. Opt. 33, 6699–6710 (1994).
    [CrossRef] [PubMed]
  13. K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, B. Chance, “Quantitative measurement of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
    [CrossRef] [PubMed]
  14. T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
    [CrossRef] [PubMed]
  15. B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Noninvasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
    [CrossRef]
  16. S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998).
    [CrossRef]
  17. H. Heusmann, J. Kölzer, G. Mitic, “Characterization of female breasts in vivo by time-resolved and spectroscopic measurements in near infrared spectroscopy,” J. Biomed. Opt. 1, 425–434 (1996).
    [CrossRef] [PubMed]
  18. V. Quaresima, S. J. Matcher, M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998).
    [CrossRef] [PubMed]
  19. S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis for the determination of optical path lengths in tissues: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992).
    [CrossRef] [PubMed]
  20. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
    [CrossRef]
  21. D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
    [CrossRef] [PubMed]
  22. X. D. Li, M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications,” Appl. Opt. 35, 3746–3758 (1996).
    [CrossRef] [PubMed]
  23. H. Danlewski, “Physikalische Grundlagen der zeitaufgelösten optischen Mammographie einschliesslich Anwendungen,” Ph.D. dissertation (Freie Universität Berlin, Berlin, 1998).
  24. A. H. Gandjbakhche, V. Chernomordik, J. C. Hebden, R. Nossal, “Time-dependent contrast functions for quantitative imaging in time-resolved transillumination experiments,” Appl. Opt. 37, 1973–1981 (1998).
    [CrossRef]
  25. H. Wabnitz, H. Rinneberg, “Imaging in turbid media by photon density waves: spatial resolution and scaling relations,” Appl. Opt. 36, 64–74 (1997).
    [CrossRef] [PubMed]
  26. J. C. Hebden, R. A. Kruger, “Transillumination imaging performance: spatial resolution simulation studies,” Med. Phys. 17, 41–47 (1990).
    [CrossRef] [PubMed]
  27. L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
    [PubMed]
  28. D. A. Boas, M. A. O’Leary, B. Chance, A. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis,” Appl. Opt. 36, 75–92 (1997).
    [CrossRef] [PubMed]

1998 (5)

1997 (5)

D. A. Boas, M. A. O’Leary, B. Chance, A. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis,” Appl. Opt. 36, 75–92 (1997).
[CrossRef] [PubMed]

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
[PubMed]

H. Wabnitz, H. Rinneberg, “Imaging in turbid media by photon density waves: spatial resolution and scaling relations,” Appl. Opt. 36, 64–74 (1997).
[CrossRef] [PubMed]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Noninvasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

1996 (6)

H. Heusmann, J. Kölzer, G. Mitic, “Characterization of female breasts in vivo by time-resolved and spectroscopic measurements in near infrared spectroscopy,” J. Biomed. Opt. 1, 425–434 (1996).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, B. Chance, “Quantitative measurement of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
[CrossRef] [PubMed]

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

R. Berg, S. Andersson-Engels, O. Jarlman, S. Svanberg, “Time-gated viewing studies on tissuelike phantoms,” Appl. Opt. 35, 3432–3440 (1996).
[CrossRef] [PubMed]

X. D. Li, M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications,” Appl. Opt. 35, 3746–3758 (1996).
[CrossRef] [PubMed]

1995 (1)

1994 (4)

G. Mitic, J. Kölzer, J. Otto, E. Plies, G. Sölkner, W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Appl. Opt. 33, 6699–6710 (1994).
[CrossRef] [PubMed]

R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
[CrossRef]

S. Nioka, M. Miwa, S. Orel, M. Schnall, M. Haida, S. Zhao, B. Chance, “Optical imaging of human breast cancer,” Adv. Exp. Med. Biol. 361, 171–179 (1994).
[CrossRef] [PubMed]

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
[CrossRef] [PubMed]

1992 (1)

S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis for the determination of optical path lengths in tissues: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992).
[CrossRef] [PubMed]

1990 (2)

J. C. Hebden, R. A. Kruger, “Transillumination imaging performance: spatial resolution simulation studies,” Med. Phys. 17, 41–47 (1990).
[CrossRef] [PubMed]

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Light scanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

1989 (1)

’t Hooft, G. W.

J. H. Hoogenraad, M. B. van der Mark, S. B. Colak, G. W. ’t Hooft, E. S. van der Linden, “First results from the Philips optical mammoscope,” in Photon Propagation in Tissues III, D. A. Benaron, B. Chance, M. Ferrari, eds., Proc. SPIE3194, 184–190 (1997).
[CrossRef]

Åkesson, P.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Light scanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Albagli, D.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
[PubMed]

Alveryd, A.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Light scanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Anderson, E. R.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Noninvasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Andersson, I.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Light scanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Andersson-Engels, S.

Arridge, S. R.

S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis for the determination of optical path lengths in tissues: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992).
[CrossRef] [PubMed]

Aspegren, K.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Light scanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Balldin, G.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Light scanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Berg, R.

Bjurstam, N.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Light scanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Boas, D. A.

Butler, J.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Noninvasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Cahn, M.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Noninvasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Castleberry, D. E.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
[PubMed]

Chance, B.

D. A. Boas, M. A. O’Leary, B. Chance, A. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis,” Appl. Opt. 36, 75–92 (1997).
[CrossRef] [PubMed]

K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, B. Chance, “Quantitative measurement of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
[CrossRef] [PubMed]

X. D. Li, M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications,” Appl. Opt. 35, 3746–3758 (1996).
[CrossRef] [PubMed]

S. Nioka, M. Miwa, S. Orel, M. Schnall, M. Haida, S. Zhao, B. Chance, “Optical imaging of human breast cancer,” Adv. Exp. Med. Biol. 361, 171–179 (1994).
[CrossRef] [PubMed]

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

V. Ntziachristos, X. Ma, M. Schnall, B. Chance, “A multichannel single photon counting NIR imager for coregistration with MRI,” in Photon Propagation in Tissues III, D. A. Benaron, B. Chance, M. Ferrari, eds., Proc. SPIE3194, 219–227 (1997).
[CrossRef]

Chernomordik, V.

Christian, B. T.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
[PubMed]

Colak, S. B.

J. H. Hoogenraad, M. B. van der Mark, S. B. Colak, G. W. ’t Hooft, E. S. van der Linden, “First results from the Philips optical mammoscope,” in Photon Propagation in Tissues III, D. A. Benaron, B. Chance, M. Ferrari, eds., Proc. SPIE3194, 184–190 (1997).
[CrossRef]

Cope, M.

S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis for the determination of optical path lengths in tissues: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992).
[CrossRef] [PubMed]

Coquoz, O.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Noninvasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Cubeddu, R.

Danlewski, H.

H. Danlewski, “Physikalische Grundlagen der zeitaufgelösten optischen Mammographie einschliesslich Anwendungen,” Ph.D. dissertation (Freie Universität Berlin, Berlin, 1998).

DeJule, M. C.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
[PubMed]

Delpy, D. T.

J. C. Hebden, D. J. Hall, M. Firbank, D. T. Delpy, “Time-resolved optical imaging of a solid tissue-equivalent phantom,” Appl. Opt. 34, 8038–8047 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis for the determination of optical path lengths in tissues: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992).
[CrossRef] [PubMed]

Edström, G.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Light scanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Fagerberg, G.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Light scanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Fantini, S.

S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998).
[CrossRef]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

Feng, T.-C.

Ferrari, M.

V. Quaresima, S. J. Matcher, M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998).
[CrossRef] [PubMed]

Firbank, M.

Fishkin, J. B.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Noninvasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Fitzgerald, P. F.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
[PubMed]

Fobare, D. F.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
[PubMed]

Franceschini, M. A.

S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998).
[CrossRef]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

Gaida, G.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

Gandjbakhche, A. H.

Giambattista, B. W.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
[PubMed]

Giardino, A. A.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
[PubMed]

Glas, U.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Light scanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Götz, L.

L. Götz, S. H. Heywang-Köbrunner, O. Schütz, H. Siebold, “Optical mammography on preoperative patients,” Akt. Radiol. 8, 31–33 (1998).

Gratton, E.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

Gross, J. D.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Noninvasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Haida, M.

S. Nioka, M. Miwa, S. Orel, M. Schnall, M. Haida, S. Zhao, B. Chance, “Optical imaging of human breast cancer,” Adv. Exp. Med. Biol. 361, 171–179 (1994).
[CrossRef] [PubMed]

Hall, D. J.

Hallberg, D.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Light scanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Haskell, R. C.

Hebden, J. C.

Heusmann, H.

H. Heusmann, J. Kölzer, G. Mitic, “Characterization of female breasts in vivo by time-resolved and spectroscopic measurements in near infrared spectroscopy,” J. Biomed. Opt. 1, 425–434 (1996).
[CrossRef] [PubMed]

Heywang-Köbrunner, S. H.

L. Götz, S. H. Heywang-Köbrunner, O. Schütz, H. Siebold, “Optical mammography on preoperative patients,” Akt. Radiol. 8, 31–33 (1998).

Hoogenraad, J. H.

J. H. Hoogenraad, M. B. van der Mark, S. B. Colak, G. W. ’t Hooft, E. S. van der Linden, “First results from the Philips optical mammoscope,” in Photon Propagation in Tissues III, D. A. Benaron, B. Chance, M. Ferrari, eds., Proc. SPIE3194, 184–190 (1997).
[CrossRef]

Jarlman, O.

R. Berg, S. Andersson-Engels, O. Jarlman, S. Svanberg, “Time-gated viewing studies on tissuelike phantoms,” Appl. Opt. 35, 3432–3440 (1996).
[CrossRef] [PubMed]

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Light scanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Jess, H.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

Kaneko, M.

K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, B. Chance, “Quantitative measurement of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
[CrossRef] [PubMed]

Kaschke, M.

S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998).
[CrossRef]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

Kölzer, J.

H. Heusmann, J. Kölzer, G. Mitic, “Characterization of female breasts in vivo by time-resolved and spectroscopic measurements in near infrared spectroscopy,” J. Biomed. Opt. 1, 425–434 (1996).
[CrossRef] [PubMed]

G. Mitic, J. Kölzer, J. Otto, E. Plies, G. Sölkner, W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Appl. Opt. 33, 6699–6710 (1994).
[CrossRef] [PubMed]

Kopans, D. B.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
[PubMed]

Kruger, R. A.

J. C. Hebden, R. A. Kruger, “Transillumination imaging performance: spatial resolution simulation studies,” Med. Phys. 17, 41–47 (1990).
[CrossRef] [PubMed]

Kwasnick, R. F.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
[PubMed]

Landberg, C. E.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
[PubMed]

Larsson, S. A.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Light scanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Li, X. D.

Lidbrink, E.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Light scanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Lingaas, H.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Light scanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Liu, J.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
[PubMed]

Löfgren, M.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Light scanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Lubowski, S. J.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
[PubMed]

Ma, X.

V. Ntziachristos, X. Ma, M. Schnall, B. Chance, “A multichannel single photon counting NIR imager for coregistration with MRI,” in Photon Propagation in Tissues III, D. A. Benaron, B. Chance, M. Ferrari, eds., Proc. SPIE3194, 219–227 (1997).
[CrossRef]

Mantulin, W. W.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

Matcher, S. J.

V. Quaresima, S. J. Matcher, M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998).
[CrossRef] [PubMed]

McAdams, M. S.

Mitic, G.

H. Heusmann, J. Kölzer, G. Mitic, “Characterization of female breasts in vivo by time-resolved and spectroscopic measurements in near infrared spectroscopy,” J. Biomed. Opt. 1, 425–434 (1996).
[CrossRef] [PubMed]

G. Mitic, J. Kölzer, J. Otto, E. Plies, G. Sölkner, W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Appl. Opt. 33, 6699–6710 (1994).
[CrossRef] [PubMed]

Miwa, M.

S. Nioka, M. Miwa, S. Orel, M. Schnall, M. Haida, S. Zhao, B. Chance, “Optical imaging of human breast cancer,” Adv. Exp. Med. Biol. 361, 171–179 (1994).
[CrossRef] [PubMed]

Moesta, K. T.

S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998).
[CrossRef]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

Moore, R.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
[PubMed]

Niklason, L. E.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
[PubMed]

Niklason, L. T.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
[PubMed]

Nioka, S.

S. Nioka, M. Miwa, S. Orel, M. Schnall, M. Haida, S. Zhao, B. Chance, “Optical imaging of human breast cancer,” Adv. Exp. Med. Biol. 361, 171–179 (1994).
[CrossRef] [PubMed]

Nossal, R.

Ntziachristos, V.

V. Ntziachristos, X. Ma, M. Schnall, B. Chance, “A multichannel single photon counting NIR imager for coregistration with MRI,” in Photon Propagation in Tissues III, D. A. Benaron, B. Chance, M. Ferrari, eds., Proc. SPIE3194, 219–227 (1997).
[CrossRef]

O’Leary, M. A.

Ohta, K.

K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, B. Chance, “Quantitative measurement of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
[CrossRef] [PubMed]

Opsahl-Ong, B. H.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
[PubMed]

Orel, S.

S. Nioka, M. Miwa, S. Orel, M. Schnall, M. Haida, S. Zhao, B. Chance, “Optical imaging of human breast cancer,” Adv. Exp. Med. Biol. 361, 171–179 (1994).
[CrossRef] [PubMed]

Otto, J.

Page, D. L.

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

Patterson, M. S.

Pham, D.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Noninvasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Pham, T.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Noninvasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Pifferi, A.

Plies, E.

Possin, G. E.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
[PubMed]

Quaresima, V.

V. Quaresima, S. J. Matcher, M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998).
[CrossRef] [PubMed]

Richotte, J. F.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
[PubMed]

Rinneberg, H.

Rudenstam, C.-M.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Light scanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Samuelsson, L.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Light scanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Schlag, P. M.

S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998).
[CrossRef]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

Schnall, M.

S. Nioka, M. Miwa, S. Orel, M. Schnall, M. Haida, S. Zhao, B. Chance, “Optical imaging of human breast cancer,” Adv. Exp. Med. Biol. 361, 171–179 (1994).
[CrossRef] [PubMed]

V. Ntziachristos, X. Ma, M. Schnall, B. Chance, “A multichannel single photon counting NIR imager for coregistration with MRI,” in Photon Propagation in Tissues III, D. A. Benaron, B. Chance, M. Ferrari, eds., Proc. SPIE3194, 219–227 (1997).
[CrossRef]

Schütz, O.

L. Götz, S. H. Heywang-Köbrunner, O. Schütz, H. Siebold, “Optical mammography on preoperative patients,” Akt. Radiol. 8, 31–33 (1998).

Seeber, M.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Sevick-Muraca, E. M.

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

Siebold, H.

L. Götz, S. H. Heywang-Köbrunner, O. Schütz, H. Siebold, “Optical mammography on preoperative patients,” Akt. Radiol. 8, 31–33 (1998).

Slanetz, P. J.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
[PubMed]

Sölkner, G.

Strender, L.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Light scanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Suzuki, K.

K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, B. Chance, “Quantitative measurement of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
[CrossRef] [PubMed]

Svaasand, L. O.

Svanberg, S.

Tabàr, L.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Light scanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Taroni, P.

Taube, A.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Light scanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Torricelli, A.

Tromberg, B. J.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Noninvasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
[CrossRef]

Troy, T. L.

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

Tsay, T.-T.

Valentini, G.

van der Linden, E. S.

J. H. Hoogenraad, M. B. van der Mark, S. B. Colak, G. W. ’t Hooft, E. S. van der Linden, “First results from the Philips optical mammoscope,” in Photon Propagation in Tissues III, D. A. Benaron, B. Chance, M. Ferrari, eds., Proc. SPIE3194, 184–190 (1997).
[CrossRef]

van der Mark, M. B.

J. H. Hoogenraad, M. B. van der Mark, S. B. Colak, G. W. ’t Hooft, E. S. van der Linden, “First results from the Philips optical mammoscope,” in Photon Propagation in Tissues III, D. A. Benaron, B. Chance, M. Ferrari, eds., Proc. SPIE3194, 184–190 (1997).
[CrossRef]

Venugopalan, V.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Noninvasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Wabnitz, H.

Walker, S. A.

Wallberg, H.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Light scanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Wei, C.-Y.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
[PubMed]

Wilson, B. C.

Wirth, R. F.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
[PubMed]

Yamashita, Y.

K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, B. Chance, “Quantitative measurement of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
[CrossRef] [PubMed]

Yodh, A.

Yodh, A. G.

X. D. Li, M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications,” Appl. Opt. 35, 3746–3758 (1996).
[CrossRef] [PubMed]

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
[CrossRef] [PubMed]

Yoshida, M.

K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, B. Chance, “Quantitative measurement of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
[CrossRef] [PubMed]

Zhao, S.

S. Nioka, M. Miwa, S. Orel, M. Schnall, M. Haida, S. Zhao, B. Chance, “Optical imaging of human breast cancer,” Adv. Exp. Med. Biol. 361, 171–179 (1994).
[CrossRef] [PubMed]

Zinth, W.

Adv. Exp. Med. Biol. (1)

S. Nioka, M. Miwa, S. Orel, M. Schnall, M. Haida, S. Zhao, B. Chance, “Optical imaging of human breast cancer,” Adv. Exp. Med. Biol. 361, 171–179 (1994).
[CrossRef] [PubMed]

Akt. Radiol. (1)

L. Götz, S. H. Heywang-Köbrunner, O. Schütz, H. Siebold, “Optical mammography on preoperative patients,” Akt. Radiol. 8, 31–33 (1998).

Appl. Opt. (10)

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

G. Mitic, J. Kölzer, J. Otto, E. Plies, G. Sölkner, W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Appl. Opt. 33, 6699–6710 (1994).
[CrossRef] [PubMed]

H. Wabnitz, H. Rinneberg, “Imaging in turbid media by photon density waves: spatial resolution and scaling relations,” Appl. Opt. 36, 64–74 (1997).
[CrossRef] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Imaging with diffusing light: an experimental study of the effect of background optical properties,” Appl. Opt. 37, 3564–3573 (1998).
[CrossRef]

J. C. Hebden, D. J. Hall, M. Firbank, D. T. Delpy, “Time-resolved optical imaging of a solid tissue-equivalent phantom,” Appl. Opt. 34, 8038–8047 (1995).
[CrossRef] [PubMed]

R. Berg, S. Andersson-Engels, O. Jarlman, S. Svanberg, “Time-gated viewing studies on tissuelike phantoms,” Appl. Opt. 35, 3432–3440 (1996).
[CrossRef] [PubMed]

X. D. Li, M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications,” Appl. Opt. 35, 3746–3758 (1996).
[CrossRef] [PubMed]

D. A. Boas, M. A. O’Leary, B. Chance, A. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis,” Appl. Opt. 36, 75–92 (1997).
[CrossRef] [PubMed]

A. H. Gandjbakhche, V. Chernomordik, J. C. Hebden, R. Nossal, “Time-dependent contrast functions for quantitative imaging in time-resolved transillumination experiments,” Appl. Opt. 37, 1973–1981 (1998).
[CrossRef]

S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998).
[CrossRef]

Cancer (1)

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Light scanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

J. Biomed. Opt. (3)

K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, B. Chance, “Quantitative measurement of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
[CrossRef] [PubMed]

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

H. Heusmann, J. Kölzer, G. Mitic, “Characterization of female breasts in vivo by time-resolved and spectroscopic measurements in near infrared spectroscopy,” J. Biomed. Opt. 1, 425–434 (1996).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Med. Phys. (2)

J. C. Hebden, R. A. Kruger, “Transillumination imaging performance: spatial resolution simulation studies,” Med. Phys. 17, 41–47 (1990).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

Philos. Trans. R. Soc. London Ser. B (1)

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Noninvasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Photochem. Photobiol. (1)

V. Quaresima, S. J. Matcher, M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis for the determination of optical path lengths in tissues: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (2)

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
[CrossRef] [PubMed]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Radiology (1)

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
[PubMed]

Other (3)

H. Danlewski, “Physikalische Grundlagen der zeitaufgelösten optischen Mammographie einschliesslich Anwendungen,” Ph.D. dissertation (Freie Universität Berlin, Berlin, 1998).

V. Ntziachristos, X. Ma, M. Schnall, B. Chance, “A multichannel single photon counting NIR imager for coregistration with MRI,” in Photon Propagation in Tissues III, D. A. Benaron, B. Chance, M. Ferrari, eds., Proc. SPIE3194, 219–227 (1997).
[CrossRef]

J. H. Hoogenraad, M. B. van der Mark, S. B. Colak, G. W. ’t Hooft, E. S. van der Linden, “First results from the Philips optical mammoscope,” in Photon Propagation in Tissues III, D. A. Benaron, B. Chance, M. Ferrari, eds., Proc. SPIE3194, 184–190 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Block diagram of the laser-pulse mammograph. The x axis of the (left-hand) coordinate system points out of the plane of paper.

Fig. 2
Fig. 2

Distribution N meas(t) of times of flight of scattered photons measured through a breast (patient, 43 years old) slightly compressed to a thickness of 7.5 cm. The distribution was recorded at a resolution of 16.3 ps/channel, subsequently binned by a factor of 4 to reduce statistical noise. The narrow pulse on the right-hand side represents the response function of the experimental setup without tissue between both glass plates.

Fig. 3
Fig. 3

(a) Increase in normalized photon numbers N ab meas(x)/N ab meas(x ref = 7 cm) within selected time windows [Eqs. (8) and (9)] of measured distributions of times of flight and of their Fourier amplitudes | 300 MHz meas(x)/ 300 MHz meas(x ref)| in the vicinity of the rounded edge of the phantom (inset). Symbols are connected by solid curves to guide the eye. (b) Estimates d (1)(x) [Eq. (10), open squares] and true geometric thickness (solid curve) of the phantom.

Fig. 4
Fig. 4

Total photon numbers N tot meas(x)/N tot meas(x ref) (solid squares) calculated from measured distributions of times of flight, normalized to the corresponding value at the reference position versus estimates d (1)(x) [Fig. 3(b)] of the thickness of the phantom. The solid curve corresponds to the fit [N tot(x)/N tot meas(x ref)] of Eq. (13) to the experimental data (α = 5.2).

Fig. 5
Fig. 5

(a) Photon numbers N 0…0.1,n meas(x), N 0…1.0,n meas(x) (solid symbols) derived from measured distributions of times of flight and corresponding photon numbers N 0…0.1,n corr(x), N 0…1.0,n corr(x) (open symbols) calculated from distributions corrected for edge effects versus position x from the rounded edge of the phantom [Fig. 3(a)]. Photon numbers are normalized to corresponding values at the reference position (x ref = 7 cm). (b) Mean time of flight (x) of photons through the phantom, FWHM of measured distributions of times of flight (solid symbols), and corresponding values calculated from distributions of times of flight corrected for edge effects (open symbols).

Fig. 6
Fig. 6

Optical mammograms and associated linear gray scales displaying reciprocal photon numbers 1/N 0.7…0.8,n meas(x, y), normalized to corresponding photon number at reference position x ref, y ref. Craniocaudal projection of (a) the right and (b) the left breast of a patient 43 years old with a tumor in the right breast located at x T = -1.6 cm, y T = 6.5 cm. Craniocaudal projection of (c) the left and (d) the right breast of a patient 84 years of age with a tumor in the left breast at x T = -7.5 cm, y T = 0.25 cm. Mediolateral projection of (e) the left and (f) the right breast of the same patient. The tumor in the left breast is visible (e) at x T = 0.5 cm, y T = -5 cm. A fold of dermal tissue appears in the lower left corner of (f).

Fig. 7
Fig. 7

Correction of distributions of times of flight of photons for edge effects through the right breast of the patient 43 years old: (a) Distributions of times of flight N meas(x, y, t) measured at x = y = 0 cm (reference position, curve 1); x = -4.5 cm, y = 0 (curve 2); x = -6.5 cm, y = 0 cm (curve 3); x = 3 cm, y = 8.25 cm (curve 4). (b) Corresponding distributions N corr(x, y, t) corrected for edge effects [Eq. (14)]. (c) Total photon numbers N tot meas(x, y)/N tot meas(x ref, y ref) (open symbols), normalized to reference position versus (smoothed) estimates d fit (1)(x, y) of the thickness of the breast. The solid curve corresponds to a fit [N tot(x, y)/N tot meas(x ref, y ref)] of Eq. (13) to the experimental data when d fit (1)(x, y) and α = 2.7 are used.

Fig. 8
Fig. 8

Optical mammograms (craniocaudal projection) of the right breast of the patient 43 years old and associated linear gray scales (a) before and (b) after correction for edge effects. Mammograms represent reciprocals [1/N 0…0.1,n (x, y)] of photon counts in the first of 10 consecutive time windows of (a) measured [N meas(x, y, t)] and (b) corrected [N corr(x, y, t)] distributions of times of flight. The tumor is located at x T = -1.6 cm, y T = 6.5 cm.

Fig. 9
Fig. 9

Line scans across the tumor (x T = -1.6 cm, y T = 6.5 cm) of a patient 43 years of age [Fig. 6(a)] (a) before and (b) after correction for edge effects. The plots show photon counts N ab (x, y T )/N ab (x ref, y ref) in selected time windows of measured [N meas(x, y T , t)] and corrected [N corr(x, y T , t)] distributions of times of flight normalized to corresponding photon counts at the reference position (x ref = 0, y ref = 0) as well as normalized Fourier amplitudes | 300 MHz(x, y T )/ 300 MHz(x ref, y ref)|.

Fig. 10
Fig. 10

(a) First moments of measured distributions N meas(x, y, t) of times of flight through the slightly compressed right breast of a patient 43 years of age. The chest wall runs parallel to the rear plane (y = 0). (b) First moments of related distributions N corr(x, y, t) corrected for edge effects. The lower figure corresponds to a constant breast thickness. The instrument response function was taken into account in each case.

Fig. 11
Fig. 11

First moments (x, y = const) corresponding to cross sections along y = 3 cm and y = y T = 6.5 cm of Fig. 10 before (open circles) and after (solid squares) correction for edge effects.

Fig. 12
Fig. 12

Depth-resolved mammograms (and associated linear gray scale) of a volunteer’s left breast compressed to a thickness of 5 cm. Five separate mammograms N tot corr(x, y)/N tot corr(x ref = 0, y ref = 0) recorded at displacements Δx/cm = -2, -1, 0, 1, 2 between the transmitting and the receiving optical fibers and representing normalized total photon counts were superimposed according to the digital-tomosynthesis method to yield images corresponding to a depth of (a) z P = 0 cm, (b) z P = 2.5 cm, and (c) z P = 5 cm, below the upper surface of the breast. Superimposed images were normalized to the number of initial mammograms and reciprocal values were plotted.

Fig. 13
Fig. 13

(a) Effective absorption coefficient μ a,0(x, y) and (b) scaled transport scattering coefficient [ ref/(x, y)]μs,0(x, y) of the tumor-bearing breast [Fig. 6(a)] of a patient 43 years of age together with linear gray scales. Optical properties were obtained when the analytical expression [Eq. (1)] for the photon flux density of a homogeneous slab was fit to measured distributions N meas(x, y, t) of times of flight, varying μ a,0(x, y) and μs,0(x, y) but keeping fixed time zero and the amplitude factor A.

Fig. 14
Fig. 14

Optical mammogram (and linear gray scale) of the (right) tumor-bearing breast of a patient 43 years of age, displaying normalized reciprocal amplitude factors A(x ref, y ref)/A(x, y) [Eq. (16)] obtained by varying μs,0 but keeping μ a,0(x, y) = μ a,0(x ref, y ref) and time zero fixed during the least-squares fit procedure.

Fig. 15
Fig. 15

(a) Total photon counts N tot meas(x, y T = 6.5 cm) and (b) first moments meas(x, y T = 6.5 cm) of measured distributions N meas(x, y T = 6.5 cm, t) of times of flight. Corresponding data (c) N tot corr(x, y T = 6.5 cm) and (d) corr(x, y T = 6.5 cm) derived from distributions N corr(x, y T = 6.5 cm, t) are corrected for edge effects. Data (solid squares) are connected to guide the eye. Solid and dashed curves are results of least-squares fit procedures when data sets A1, A2 and B1, B2 are used. In the vicinity of the tumor (x T = -1.6 cm) total photon counts are reduced, but first moments are unchanged.

Fig. 16
Fig. 16

(a) Average of distributions of times of flight (solid squares) measured at x = 1.5, 1.75, and 2.0 cm (y T = 6.5 cm) and results of the least-squares fit of Eq. (1) to data set B2 (solid curve); (b)–(d) distributions measured at x = -1.5, -0.5, and 1.5 cm and results of the fit of Eq. (5) for the slab with spherical inhomogeneity to data set B2. In each case the differences between experimental data and calculated values (residuals) are given, weighted by uncertainties corresponding to photon statistics.

Tables (1)

Tables Icon

Table 1 Optical Properties of the Tumor and Surrounding Tissue of a Patient 43 Years Old Derived from Different Data Sets (Fig. 15)a

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

jz,0d, t=Spulse24πDc3/2t5/2exp-μa,0ct×n=-z-n exp-z-n24Dct-z+n exp-z+n24Dct,
jz,Tt=1/2π- jˆz,Tωexp-iωtdω
uˆinfν, rD, rS, rT=SpulseDcexpik0|rD-rS|4π|rD-rS|+Spulsel,m Al,mrS, rThl1k0|rD-rT|Yl,mΩTD,
Al,mrS, rT=-ik0Dc hl1k0|rS-rT|Yl,m*ΩTS×Dk0jlk0aTjlkTaT-DTkTjlk0aTjlkTaTDk0hllk0aTjlkTaT-DTkThl1k0aTjlkTaT.
uˆslabν, rD, rS, rT=j=-n=-uˆinfν, rD, rS,+n, rT,+j-uˆinfν, rD, rS,-n, rT,+j+uˆinfν, rD, rS,+n, rT,-j-uˆinfν, rD, rS,-n, rT,-j,
jˆz,Tν, rD, rS, rT=Dc uˆslabν, rD, rS, rTze
uˆinfinsideν, rD, rS, rT=Spulsel,m Cl,mrS, rThl1k0|rD-rT|Yl,mΩTD,
Cl,mrS, rT=jlkT|rS-rT|Yl,m*ΩTSaT2DTckThl1k0aTjlkTaT-Dck0hllk0aTjlkTaT.
Nab,nmeasx, y=τaτb Nmeasx, y, τdττaτb Nmeasxref, yref, τdτ,
0τi Nmeasxref, yref, τdτ=fi0 Nmeasxref, yref, τdτi=a, b.
t¯measx, y=0 τNmeasx, y, τdτ/Ntotmeasx, y
d1x, y=dgapt¯x, y-t¯respt¯xref, yref-t¯resp,
Nshapex, y, t=Nmeasx, y, t×jz,0dgap, t; μs,0xref, yref, μa,0xref, yrefNresptjz,0deffx, y, t; μs,0xref, yref, μa,0xref, yrefNrespt,
deffx, y=dgap-dgap-d1x, yS
Ntotmeasx, y=0 Nmeasx, y, τdτ
Ntotx, y=dgapd1x, yαNtotmeasxref, yref,
Ncorrx, y, t=Nshapex, y, t0 Nshapex, y, τdτ×d1x, ydgapα Ntotmeasx, y.
dfit1r, θi=dgapfor rr0θidgap-γθir-r0θi2for r>r0θi
Ax, y=τfit,0τfit,1 Nmeasx, y, τdτ/τfit,0τfit,1 jz,0dgap, τ; μs,0x, y, μa,0x, ydτ,

Metrics