Abstract

We propose and demonstrate a novel sensor by using a single-fiber Bragg grating that can simultaneously measure strain and temperature with the aid of an erbium-doped fiber amplifier. By using a linear variation in the amplified spontaneous emission power of the erbium-doped fiber amplifier with temperature, we determine the temperature. By subtracting the temperature effect from the fiber Bragg grating Bragg wavelength shift, we determine the strain. Experiments show rms deviations of 18.2 µε and 0.7 °C for strain and temperature, respectively.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. O. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
    [CrossRef]
  2. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
    [CrossRef]
  3. M. G. Xu, J. L. Archambault, L. Reekie, J. P. Dakin, “Discrimination between strain and temperature effects using dual-wavelength fiber grating sensors,” Electron. Lett. 30, 1085–1087 (1994).
    [CrossRef]
  4. M. Song, S. B. Lee, S. S. Choi, B. Lee, “Simultaneous measurement of temperature and strain using two fiber Bragg gratings embedded in a glass tube,” Opt. Fiber Technol. 3, 194–196 (1997).
    [CrossRef]
  5. H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 1223–1225 (1996).
    [CrossRef]
  6. V. Bhatia, D. Campbell, R. O. Claus, A. M. Vengsarkar, “Simultaneous strain and temperature measurement with long-period gratings,” Opt. Lett. 22, 648–650 (1997).
    [CrossRef] [PubMed]
  7. J. H. Lee, W. J. Lee, N. Park, “Comparative study on temperature dependent multichannel gain and noise figure distortion for 1.48 µm and 0.98 µm pumped EDFAs,” IEEE Photon. Technol. Lett. 10, 1721–1723 (1998).
    [CrossRef]

1998 (1)

J. H. Lee, W. J. Lee, N. Park, “Comparative study on temperature dependent multichannel gain and noise figure distortion for 1.48 µm and 0.98 µm pumped EDFAs,” IEEE Photon. Technol. Lett. 10, 1721–1723 (1998).
[CrossRef]

1997 (4)

V. Bhatia, D. Campbell, R. O. Claus, A. M. Vengsarkar, “Simultaneous strain and temperature measurement with long-period gratings,” Opt. Lett. 22, 648–650 (1997).
[CrossRef] [PubMed]

K. O. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

M. Song, S. B. Lee, S. S. Choi, B. Lee, “Simultaneous measurement of temperature and strain using two fiber Bragg gratings embedded in a glass tube,” Opt. Fiber Technol. 3, 194–196 (1997).
[CrossRef]

1996 (1)

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 1223–1225 (1996).
[CrossRef]

1994 (1)

M. G. Xu, J. L. Archambault, L. Reekie, J. P. Dakin, “Discrimination between strain and temperature effects using dual-wavelength fiber grating sensors,” Electron. Lett. 30, 1085–1087 (1994).
[CrossRef]

Archambault, J. L.

M. G. Xu, J. L. Archambault, L. Reekie, J. P. Dakin, “Discrimination between strain and temperature effects using dual-wavelength fiber grating sensors,” Electron. Lett. 30, 1085–1087 (1994).
[CrossRef]

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Bhatia, V.

Campbell, D.

Choi, S. S.

M. Song, S. B. Lee, S. S. Choi, B. Lee, “Simultaneous measurement of temperature and strain using two fiber Bragg gratings embedded in a glass tube,” Opt. Fiber Technol. 3, 194–196 (1997).
[CrossRef]

Claus, R. O.

Dakin, J. P.

M. G. Xu, J. L. Archambault, L. Reekie, J. P. Dakin, “Discrimination between strain and temperature effects using dual-wavelength fiber grating sensors,” Electron. Lett. 30, 1085–1087 (1994).
[CrossRef]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Hill, K. O.

K. O. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 1223–1225 (1996).
[CrossRef]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Lee, B.

M. Song, S. B. Lee, S. S. Choi, B. Lee, “Simultaneous measurement of temperature and strain using two fiber Bragg gratings embedded in a glass tube,” Opt. Fiber Technol. 3, 194–196 (1997).
[CrossRef]

Lee, J. H.

J. H. Lee, W. J. Lee, N. Park, “Comparative study on temperature dependent multichannel gain and noise figure distortion for 1.48 µm and 0.98 µm pumped EDFAs,” IEEE Photon. Technol. Lett. 10, 1721–1723 (1998).
[CrossRef]

Lee, S. B.

M. Song, S. B. Lee, S. S. Choi, B. Lee, “Simultaneous measurement of temperature and strain using two fiber Bragg gratings embedded in a glass tube,” Opt. Fiber Technol. 3, 194–196 (1997).
[CrossRef]

Lee, W. J.

J. H. Lee, W. J. Lee, N. Park, “Comparative study on temperature dependent multichannel gain and noise figure distortion for 1.48 µm and 0.98 µm pumped EDFAs,” IEEE Photon. Technol. Lett. 10, 1721–1723 (1998).
[CrossRef]

Meltz, G.

K. O. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

Park, N.

J. H. Lee, W. J. Lee, N. Park, “Comparative study on temperature dependent multichannel gain and noise figure distortion for 1.48 µm and 0.98 µm pumped EDFAs,” IEEE Photon. Technol. Lett. 10, 1721–1723 (1998).
[CrossRef]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 1223–1225 (1996).
[CrossRef]

Pedrazzani, J. R.

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 1223–1225 (1996).
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Reekie, L.

M. G. Xu, J. L. Archambault, L. Reekie, J. P. Dakin, “Discrimination between strain and temperature effects using dual-wavelength fiber grating sensors,” Electron. Lett. 30, 1085–1087 (1994).
[CrossRef]

Song, M.

M. Song, S. B. Lee, S. S. Choi, B. Lee, “Simultaneous measurement of temperature and strain using two fiber Bragg gratings embedded in a glass tube,” Opt. Fiber Technol. 3, 194–196 (1997).
[CrossRef]

Vengsarkar, A. M.

V. Bhatia, D. Campbell, R. O. Claus, A. M. Vengsarkar, “Simultaneous strain and temperature measurement with long-period gratings,” Opt. Lett. 22, 648–650 (1997).
[CrossRef] [PubMed]

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 1223–1225 (1996).
[CrossRef]

Williams, G. M.

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 1223–1225 (1996).
[CrossRef]

Xu, M. G.

M. G. Xu, J. L. Archambault, L. Reekie, J. P. Dakin, “Discrimination between strain and temperature effects using dual-wavelength fiber grating sensors,” Electron. Lett. 30, 1085–1087 (1994).
[CrossRef]

Electron. Lett. (1)

M. G. Xu, J. L. Archambault, L. Reekie, J. P. Dakin, “Discrimination between strain and temperature effects using dual-wavelength fiber grating sensors,” Electron. Lett. 30, 1085–1087 (1994).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 1223–1225 (1996).
[CrossRef]

J. H. Lee, W. J. Lee, N. Park, “Comparative study on temperature dependent multichannel gain and noise figure distortion for 1.48 µm and 0.98 µm pumped EDFAs,” IEEE Photon. Technol. Lett. 10, 1721–1723 (1998).
[CrossRef]

J. Lightwave Technol. (2)

K. O. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Opt. Fiber Technol. (1)

M. Song, S. B. Lee, S. S. Choi, B. Lee, “Simultaneous measurement of temperature and strain using two fiber Bragg gratings embedded in a glass tube,” Opt. Fiber Technol. 3, 194–196 (1997).
[CrossRef]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup for simultaneous measurement of strain and temperature with a single FBG and an EDFA. OSA, optical spectrum analyzer.

Fig. 2
Fig. 2

Temperature dependence of transmission spectrum through the system composed of an EDFA and a FBG with no strain. The slope was -0.04249 dBm/°C in the overall range from 45 to 150 °C. Measurement performance of the sensor was limited by the accuracy of ±0.24 °C and ±2.3 µε because of the power fluctuation of ASE within ±0.01 dB.

Fig. 3
Fig. 3

(a) Comparison between measured temperature and that applied, (b) comparison between measured strain and that applied. In the measurement, we measured strain and temperature simultaneously by measuring transmitted power and wavelength shift as the FBG and the EDF were heated up to 150 °C while the strain was randomly applied to the FBG. The rms deviation of measured strain and temperature were 18.2 µε and 0.7 °C over ranges of 0–1200 µε and 45–150 °C, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ΔP=AΔT,
ΔλB=Bε+CΔT,

Metrics