Abstract

Nonexponential decay of the 4 F 3/2 upper laser state in Nd:YLF was observed with time-resolved fluorescence spectroscopy and small-signal gain probes in low-doped (1.16-at. %) samples when intensely pumped to high population inversions. A rapid initial decay is observed after Q-switched laser pumping, followed by a longer nonexponential decay that is clearly identified as a phase of migration-assisted energy-transfer upconversion (ETU) in the hopping regime. During this phase, a rate-equation treatment is valid and the macroscopic ETU coefficient, α2 = (0.98 ± 0.03) × 10-16 cm3/s, is directly evaluated from the decay kinetics. The ETU and the migration microparameters are also estimated to be C da* ≈ 200 × 10-40 cm6/s and C dd ≈ 1000 × 10-40 cm6/s, respectively, and are compared with theoretical values found in the literature. On the basis of these values, rate-equation treatments of intensely pumped Nd:YLF are not strictly valid.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Ryan, R. Beach, “Optical absorption and stimulated emission of neodymium in yttrium lithium fluoride,” J. Opt. Soc. Am. B 9, 1883–1887 (1992).
    [CrossRef]
  2. K. Otsuka, K. Kubodera, “Effects of Auger recombination process on laser dynamics,” IEEE J. Quantum Electron. QE16, 538–541 (1980).
    [CrossRef]
  3. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
    [CrossRef]
  4. L. A. Riseberg, M. J. Weber, “Relaxation phenomena in rare-earth luminescence,” in Progress in Optics, E. Wolf, ed. (North-Holland, New York, 1976), Vol. XIV, pp. 91–159.
  5. Th. Förster, “Intermolecular energy migration and fluorescence,” in Biological Physics, E. V. Mielczarek, E. Greenbaum, R. S. Knox, eds. (American Institute of Physics, New York, 1993), pp. 148–160.
  6. P. Xie, S. C. Rand, “Continuous-wave trio upconversion laser,” Appl. Phys. Lett. 57, 1182–1184 (1990).
    [CrossRef]
  7. S. A. Pollack, D. B. Chang, M. Birnbaum, “Threefold upconversion laser at 0.85, 1.23, and 1.73 µm in Er:YLF pumped with a 1.53 µm Er glass laser,” Appl. Phys. Lett. 54, 869–871 (1989).
    [CrossRef]
  8. P. Xie, S. C. Rand, “Continuous-wave, fourfold upconversion laser,” Appl. Phys. Lett. 63, 3125–3127 (1993).
    [CrossRef]
  9. K. M. Dinndorf, “Energy transfer between thulium and holmium in laser hosts,” Ph.D. dissertation (MIT, Cambridge, Mass., 1993).
  10. N. P. Barnes, E. D. Filer, C. A. Morrison, C. J. Lee, “Ho:Tm lasers I: theoretical,” IEEE J. Quantum Electron. 32, 92–103 (1996).
    [CrossRef]
  11. V. M. Agranovich, N. A. Efremov, A. A. Zakhidor, “Excitation luminescence of molecular crystals at high excitation levels,” Bull. Acad. Sci. USSR Phys. Ser. 44, 63–67 (1980).
  12. D. A. Zubenko, M. A. Noginov, V. A. Smirnov, I. A. Shcherbakov, “Different mechanisms of nonlinear quenching of luminesence,” Phys. Rev. B 55, 8881–8886 (1997).
    [CrossRef]
  13. A. A. S. da Gama, Gilberto F. de Sa, P. Porcher, P. Caro, “Energy levels of Nd3+, in LiYF4,” J. Chem. Phys. 75, 2583–2587 (1981).
    [CrossRef]
  14. N. P. Barnes, E. D. Filer, C. A. Morrison, “Self-quenching of the Nd 4F3/2 manifold,” in Advanced Solid-State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 526–529.
  15. A. L. Harmer, A. Linz, D. R. Gabbe, “Fluorescence of Nd3+ in lithium yttrium fluoride,” J. Phys. Chem. Solids 30, 1483–1491 (1969).
    [CrossRef]
  16. C. Bibeau, “Evaluation of the 4I11/2 terminal level lifetime for several neodymium-doped laser crystals and glasses,” Ph.D. dissertation (University of California, Davis, Davis, Calif., 1995; Lawrence Livermore National Laboratory, Livermore, Calif., UCRL-LR-120895, 1995).
  17. H. W. Moos, “Spectroscopic relaxation processes of rare earth ions in crystals,” J. Lumin. 1,2106–121 (1970).
  18. J. D. Zuegel, W. Seka, “Direct measurements of 4I11/2 terminal-level lifetime in Nd:YLF,” IEEE J. Quantum Electron. 31, 1742–1746 (1995).
    [CrossRef]
  19. G. Quarles, VLOC, 7826 Photonics Drive, New Port Richey, Fla. 34655 (personal communication).
  20. E. P. Maldonado, N. D. Viera, “A simple method to determine the effective stimulated emission cross-section of laser media,” Opt. Commun. 117, 102–106 (1995).
    [CrossRef]
  21. Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, P. Laporte, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl111O19,” Phys. Rev. B 51, 784–799 (1995).
    [CrossRef]
  22. M. Pollnau, P. J. Hardman, W. A. Clarkson, D. C. Hanna, “Upconversion, lifetime quenching and ground-state bleaching in Nd3+:LiYF4,” Opt. Commun. 147, 203–211 (1998).
    [CrossRef]
  23. A. M. Tkachuk, “Self-quenching and up-conversion processes in LiYF4(YLF):RE+3 crystals,” Opt. Spectrosc. (USSR) 68, 775–783 (1990).
  24. T. T. Basiev, Yu. V. Orlovskii, V. G. Ostroumov, Yu. S. Privis, I. A. Shcherbakov, “Nature of the transfer of the electronic excitation energy from Cr3+ to rare-earth ions in garnet crystals,” Quantum Electron. 25, 729–734 (1995).
    [CrossRef]
  25. A. L. Denisov, V. G. Ostroumov, Z. S. Saidov, V. A. Smirnov, I. A. Shcherbakov, “Spectral and luminescence properties of Cr3+ and Nd3+ ions in gallium garnet crystals,” J. Opt. Soc. Am. B 3, 95–101 (1986).
    [CrossRef]
  26. A. I. Burshtein, “Concentration quenching of noncoherent excitations in solutions,” Sov. Phys. Usp. 27, 579–606 (1984).
    [CrossRef]

1998 (1)

M. Pollnau, P. J. Hardman, W. A. Clarkson, D. C. Hanna, “Upconversion, lifetime quenching and ground-state bleaching in Nd3+:LiYF4,” Opt. Commun. 147, 203–211 (1998).
[CrossRef]

1997 (1)

D. A. Zubenko, M. A. Noginov, V. A. Smirnov, I. A. Shcherbakov, “Different mechanisms of nonlinear quenching of luminesence,” Phys. Rev. B 55, 8881–8886 (1997).
[CrossRef]

1996 (1)

N. P. Barnes, E. D. Filer, C. A. Morrison, C. J. Lee, “Ho:Tm lasers I: theoretical,” IEEE J. Quantum Electron. 32, 92–103 (1996).
[CrossRef]

1995 (4)

T. T. Basiev, Yu. V. Orlovskii, V. G. Ostroumov, Yu. S. Privis, I. A. Shcherbakov, “Nature of the transfer of the electronic excitation energy from Cr3+ to rare-earth ions in garnet crystals,” Quantum Electron. 25, 729–734 (1995).
[CrossRef]

J. D. Zuegel, W. Seka, “Direct measurements of 4I11/2 terminal-level lifetime in Nd:YLF,” IEEE J. Quantum Electron. 31, 1742–1746 (1995).
[CrossRef]

E. P. Maldonado, N. D. Viera, “A simple method to determine the effective stimulated emission cross-section of laser media,” Opt. Commun. 117, 102–106 (1995).
[CrossRef]

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, P. Laporte, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl111O19,” Phys. Rev. B 51, 784–799 (1995).
[CrossRef]

1993 (1)

P. Xie, S. C. Rand, “Continuous-wave, fourfold upconversion laser,” Appl. Phys. Lett. 63, 3125–3127 (1993).
[CrossRef]

1992 (1)

1990 (2)

P. Xie, S. C. Rand, “Continuous-wave trio upconversion laser,” Appl. Phys. Lett. 57, 1182–1184 (1990).
[CrossRef]

A. M. Tkachuk, “Self-quenching and up-conversion processes in LiYF4(YLF):RE+3 crystals,” Opt. Spectrosc. (USSR) 68, 775–783 (1990).

1989 (1)

S. A. Pollack, D. B. Chang, M. Birnbaum, “Threefold upconversion laser at 0.85, 1.23, and 1.73 µm in Er:YLF pumped with a 1.53 µm Er glass laser,” Appl. Phys. Lett. 54, 869–871 (1989).
[CrossRef]

1986 (1)

1984 (1)

A. I. Burshtein, “Concentration quenching of noncoherent excitations in solutions,” Sov. Phys. Usp. 27, 579–606 (1984).
[CrossRef]

1981 (1)

A. A. S. da Gama, Gilberto F. de Sa, P. Porcher, P. Caro, “Energy levels of Nd3+, in LiYF4,” J. Chem. Phys. 75, 2583–2587 (1981).
[CrossRef]

1980 (2)

V. M. Agranovich, N. A. Efremov, A. A. Zakhidor, “Excitation luminescence of molecular crystals at high excitation levels,” Bull. Acad. Sci. USSR Phys. Ser. 44, 63–67 (1980).

K. Otsuka, K. Kubodera, “Effects of Auger recombination process on laser dynamics,” IEEE J. Quantum Electron. QE16, 538–541 (1980).
[CrossRef]

1970 (1)

H. W. Moos, “Spectroscopic relaxation processes of rare earth ions in crystals,” J. Lumin. 1,2106–121 (1970).

1969 (1)

A. L. Harmer, A. Linz, D. R. Gabbe, “Fluorescence of Nd3+ in lithium yttrium fluoride,” J. Phys. Chem. Solids 30, 1483–1491 (1969).
[CrossRef]

1953 (1)

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
[CrossRef]

Agranovich, V. M.

V. M. Agranovich, N. A. Efremov, A. A. Zakhidor, “Excitation luminescence of molecular crystals at high excitation levels,” Bull. Acad. Sci. USSR Phys. Ser. 44, 63–67 (1980).

Barnes, N. P.

N. P. Barnes, E. D. Filer, C. A. Morrison, C. J. Lee, “Ho:Tm lasers I: theoretical,” IEEE J. Quantum Electron. 32, 92–103 (1996).
[CrossRef]

N. P. Barnes, E. D. Filer, C. A. Morrison, “Self-quenching of the Nd 4F3/2 manifold,” in Advanced Solid-State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 526–529.

Basiev, T. T.

T. T. Basiev, Yu. V. Orlovskii, V. G. Ostroumov, Yu. S. Privis, I. A. Shcherbakov, “Nature of the transfer of the electronic excitation energy from Cr3+ to rare-earth ions in garnet crystals,” Quantum Electron. 25, 729–734 (1995).
[CrossRef]

Beach, R.

Bibeau, C.

C. Bibeau, “Evaluation of the 4I11/2 terminal level lifetime for several neodymium-doped laser crystals and glasses,” Ph.D. dissertation (University of California, Davis, Davis, Calif., 1995; Lawrence Livermore National Laboratory, Livermore, Calif., UCRL-LR-120895, 1995).

Birnbaum, M.

S. A. Pollack, D. B. Chang, M. Birnbaum, “Threefold upconversion laser at 0.85, 1.23, and 1.73 µm in Er:YLF pumped with a 1.53 µm Er glass laser,” Appl. Phys. Lett. 54, 869–871 (1989).
[CrossRef]

Bon, M.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, P. Laporte, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl111O19,” Phys. Rev. B 51, 784–799 (1995).
[CrossRef]

Burshtein, A. I.

A. I. Burshtein, “Concentration quenching of noncoherent excitations in solutions,” Sov. Phys. Usp. 27, 579–606 (1984).
[CrossRef]

Caro, P.

A. A. S. da Gama, Gilberto F. de Sa, P. Porcher, P. Caro, “Energy levels of Nd3+, in LiYF4,” J. Chem. Phys. 75, 2583–2587 (1981).
[CrossRef]

Chang, D. B.

S. A. Pollack, D. B. Chang, M. Birnbaum, “Threefold upconversion laser at 0.85, 1.23, and 1.73 µm in Er:YLF pumped with a 1.53 µm Er glass laser,” Appl. Phys. Lett. 54, 869–871 (1989).
[CrossRef]

Clarkson, W. A.

M. Pollnau, P. J. Hardman, W. A. Clarkson, D. C. Hanna, “Upconversion, lifetime quenching and ground-state bleaching in Nd3+:LiYF4,” Opt. Commun. 147, 203–211 (1998).
[CrossRef]

da Gama, A. A. S.

A. A. S. da Gama, Gilberto F. de Sa, P. Porcher, P. Caro, “Energy levels of Nd3+, in LiYF4,” J. Chem. Phys. 75, 2583–2587 (1981).
[CrossRef]

de Sa, Gilberto F.

A. A. S. da Gama, Gilberto F. de Sa, P. Porcher, P. Caro, “Energy levels of Nd3+, in LiYF4,” J. Chem. Phys. 75, 2583–2587 (1981).
[CrossRef]

Denisov, A. L.

Descroix, E.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, P. Laporte, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl111O19,” Phys. Rev. B 51, 784–799 (1995).
[CrossRef]

Dexter, D. L.

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
[CrossRef]

Dinndorf, K. M.

K. M. Dinndorf, “Energy transfer between thulium and holmium in laser hosts,” Ph.D. dissertation (MIT, Cambridge, Mass., 1993).

Efremov, N. A.

V. M. Agranovich, N. A. Efremov, A. A. Zakhidor, “Excitation luminescence of molecular crystals at high excitation levels,” Bull. Acad. Sci. USSR Phys. Ser. 44, 63–67 (1980).

Filer, E. D.

N. P. Barnes, E. D. Filer, C. A. Morrison, C. J. Lee, “Ho:Tm lasers I: theoretical,” IEEE J. Quantum Electron. 32, 92–103 (1996).
[CrossRef]

N. P. Barnes, E. D. Filer, C. A. Morrison, “Self-quenching of the Nd 4F3/2 manifold,” in Advanced Solid-State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 526–529.

Förster, Th.

Th. Förster, “Intermolecular energy migration and fluorescence,” in Biological Physics, E. V. Mielczarek, E. Greenbaum, R. S. Knox, eds. (American Institute of Physics, New York, 1993), pp. 148–160.

Gabbe, D. R.

A. L. Harmer, A. Linz, D. R. Gabbe, “Fluorescence of Nd3+ in lithium yttrium fluoride,” J. Phys. Chem. Solids 30, 1483–1491 (1969).
[CrossRef]

Garnier, N.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, P. Laporte, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl111O19,” Phys. Rev. B 51, 784–799 (1995).
[CrossRef]

Guyot, Y.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, P. Laporte, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl111O19,” Phys. Rev. B 51, 784–799 (1995).
[CrossRef]

Hanna, D. C.

M. Pollnau, P. J. Hardman, W. A. Clarkson, D. C. Hanna, “Upconversion, lifetime quenching and ground-state bleaching in Nd3+:LiYF4,” Opt. Commun. 147, 203–211 (1998).
[CrossRef]

Hardman, P. J.

M. Pollnau, P. J. Hardman, W. A. Clarkson, D. C. Hanna, “Upconversion, lifetime quenching and ground-state bleaching in Nd3+:LiYF4,” Opt. Commun. 147, 203–211 (1998).
[CrossRef]

Harmer, A. L.

A. L. Harmer, A. Linz, D. R. Gabbe, “Fluorescence of Nd3+ in lithium yttrium fluoride,” J. Phys. Chem. Solids 30, 1483–1491 (1969).
[CrossRef]

Kubodera, K.

K. Otsuka, K. Kubodera, “Effects of Auger recombination process on laser dynamics,” IEEE J. Quantum Electron. QE16, 538–541 (1980).
[CrossRef]

Laporte, P.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, P. Laporte, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl111O19,” Phys. Rev. B 51, 784–799 (1995).
[CrossRef]

Lee, C. J.

N. P. Barnes, E. D. Filer, C. A. Morrison, C. J. Lee, “Ho:Tm lasers I: theoretical,” IEEE J. Quantum Electron. 32, 92–103 (1996).
[CrossRef]

Linz, A.

A. L. Harmer, A. Linz, D. R. Gabbe, “Fluorescence of Nd3+ in lithium yttrium fluoride,” J. Phys. Chem. Solids 30, 1483–1491 (1969).
[CrossRef]

Maldonado, E. P.

E. P. Maldonado, N. D. Viera, “A simple method to determine the effective stimulated emission cross-section of laser media,” Opt. Commun. 117, 102–106 (1995).
[CrossRef]

Manaa, H.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, P. Laporte, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl111O19,” Phys. Rev. B 51, 784–799 (1995).
[CrossRef]

Moncorgé, R.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, P. Laporte, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl111O19,” Phys. Rev. B 51, 784–799 (1995).
[CrossRef]

Moos, H. W.

H. W. Moos, “Spectroscopic relaxation processes of rare earth ions in crystals,” J. Lumin. 1,2106–121 (1970).

Morrison, C. A.

N. P. Barnes, E. D. Filer, C. A. Morrison, C. J. Lee, “Ho:Tm lasers I: theoretical,” IEEE J. Quantum Electron. 32, 92–103 (1996).
[CrossRef]

N. P. Barnes, E. D. Filer, C. A. Morrison, “Self-quenching of the Nd 4F3/2 manifold,” in Advanced Solid-State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 526–529.

Noginov, M. A.

D. A. Zubenko, M. A. Noginov, V. A. Smirnov, I. A. Shcherbakov, “Different mechanisms of nonlinear quenching of luminesence,” Phys. Rev. B 55, 8881–8886 (1997).
[CrossRef]

Orlovskii, Yu. V.

T. T. Basiev, Yu. V. Orlovskii, V. G. Ostroumov, Yu. S. Privis, I. A. Shcherbakov, “Nature of the transfer of the electronic excitation energy from Cr3+ to rare-earth ions in garnet crystals,” Quantum Electron. 25, 729–734 (1995).
[CrossRef]

Ostroumov, V. G.

T. T. Basiev, Yu. V. Orlovskii, V. G. Ostroumov, Yu. S. Privis, I. A. Shcherbakov, “Nature of the transfer of the electronic excitation energy from Cr3+ to rare-earth ions in garnet crystals,” Quantum Electron. 25, 729–734 (1995).
[CrossRef]

A. L. Denisov, V. G. Ostroumov, Z. S. Saidov, V. A. Smirnov, I. A. Shcherbakov, “Spectral and luminescence properties of Cr3+ and Nd3+ ions in gallium garnet crystals,” J. Opt. Soc. Am. B 3, 95–101 (1986).
[CrossRef]

Otsuka, K.

K. Otsuka, K. Kubodera, “Effects of Auger recombination process on laser dynamics,” IEEE J. Quantum Electron. QE16, 538–541 (1980).
[CrossRef]

Pollack, S. A.

S. A. Pollack, D. B. Chang, M. Birnbaum, “Threefold upconversion laser at 0.85, 1.23, and 1.73 µm in Er:YLF pumped with a 1.53 µm Er glass laser,” Appl. Phys. Lett. 54, 869–871 (1989).
[CrossRef]

Pollnau, M.

M. Pollnau, P. J. Hardman, W. A. Clarkson, D. C. Hanna, “Upconversion, lifetime quenching and ground-state bleaching in Nd3+:LiYF4,” Opt. Commun. 147, 203–211 (1998).
[CrossRef]

Porcher, P.

A. A. S. da Gama, Gilberto F. de Sa, P. Porcher, P. Caro, “Energy levels of Nd3+, in LiYF4,” J. Chem. Phys. 75, 2583–2587 (1981).
[CrossRef]

Privis, Yu. S.

T. T. Basiev, Yu. V. Orlovskii, V. G. Ostroumov, Yu. S. Privis, I. A. Shcherbakov, “Nature of the transfer of the electronic excitation energy from Cr3+ to rare-earth ions in garnet crystals,” Quantum Electron. 25, 729–734 (1995).
[CrossRef]

Quarles, G.

G. Quarles, VLOC, 7826 Photonics Drive, New Port Richey, Fla. 34655 (personal communication).

Rand, S. C.

P. Xie, S. C. Rand, “Continuous-wave, fourfold upconversion laser,” Appl. Phys. Lett. 63, 3125–3127 (1993).
[CrossRef]

P. Xie, S. C. Rand, “Continuous-wave trio upconversion laser,” Appl. Phys. Lett. 57, 1182–1184 (1990).
[CrossRef]

Riseberg, L. A.

L. A. Riseberg, M. J. Weber, “Relaxation phenomena in rare-earth luminescence,” in Progress in Optics, E. Wolf, ed. (North-Holland, New York, 1976), Vol. XIV, pp. 91–159.

Rivoire, J. Y.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, P. Laporte, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl111O19,” Phys. Rev. B 51, 784–799 (1995).
[CrossRef]

Ryan, J. R.

Saidov, Z. S.

Seka, W.

J. D. Zuegel, W. Seka, “Direct measurements of 4I11/2 terminal-level lifetime in Nd:YLF,” IEEE J. Quantum Electron. 31, 1742–1746 (1995).
[CrossRef]

Shcherbakov, I. A.

D. A. Zubenko, M. A. Noginov, V. A. Smirnov, I. A. Shcherbakov, “Different mechanisms of nonlinear quenching of luminesence,” Phys. Rev. B 55, 8881–8886 (1997).
[CrossRef]

T. T. Basiev, Yu. V. Orlovskii, V. G. Ostroumov, Yu. S. Privis, I. A. Shcherbakov, “Nature of the transfer of the electronic excitation energy from Cr3+ to rare-earth ions in garnet crystals,” Quantum Electron. 25, 729–734 (1995).
[CrossRef]

A. L. Denisov, V. G. Ostroumov, Z. S. Saidov, V. A. Smirnov, I. A. Shcherbakov, “Spectral and luminescence properties of Cr3+ and Nd3+ ions in gallium garnet crystals,” J. Opt. Soc. Am. B 3, 95–101 (1986).
[CrossRef]

Smirnov, V. A.

D. A. Zubenko, M. A. Noginov, V. A. Smirnov, I. A. Shcherbakov, “Different mechanisms of nonlinear quenching of luminesence,” Phys. Rev. B 55, 8881–8886 (1997).
[CrossRef]

A. L. Denisov, V. G. Ostroumov, Z. S. Saidov, V. A. Smirnov, I. A. Shcherbakov, “Spectral and luminescence properties of Cr3+ and Nd3+ ions in gallium garnet crystals,” J. Opt. Soc. Am. B 3, 95–101 (1986).
[CrossRef]

Tkachuk, A. M.

A. M. Tkachuk, “Self-quenching and up-conversion processes in LiYF4(YLF):RE+3 crystals,” Opt. Spectrosc. (USSR) 68, 775–783 (1990).

Viera, N. D.

E. P. Maldonado, N. D. Viera, “A simple method to determine the effective stimulated emission cross-section of laser media,” Opt. Commun. 117, 102–106 (1995).
[CrossRef]

Weber, M. J.

L. A. Riseberg, M. J. Weber, “Relaxation phenomena in rare-earth luminescence,” in Progress in Optics, E. Wolf, ed. (North-Holland, New York, 1976), Vol. XIV, pp. 91–159.

Xie, P.

P. Xie, S. C. Rand, “Continuous-wave, fourfold upconversion laser,” Appl. Phys. Lett. 63, 3125–3127 (1993).
[CrossRef]

P. Xie, S. C. Rand, “Continuous-wave trio upconversion laser,” Appl. Phys. Lett. 57, 1182–1184 (1990).
[CrossRef]

Zakhidor, A. A.

V. M. Agranovich, N. A. Efremov, A. A. Zakhidor, “Excitation luminescence of molecular crystals at high excitation levels,” Bull. Acad. Sci. USSR Phys. Ser. 44, 63–67 (1980).

Zubenko, D. A.

D. A. Zubenko, M. A. Noginov, V. A. Smirnov, I. A. Shcherbakov, “Different mechanisms of nonlinear quenching of luminesence,” Phys. Rev. B 55, 8881–8886 (1997).
[CrossRef]

Zuegel, J. D.

J. D. Zuegel, W. Seka, “Direct measurements of 4I11/2 terminal-level lifetime in Nd:YLF,” IEEE J. Quantum Electron. 31, 1742–1746 (1995).
[CrossRef]

Appl. Phys. Lett. (3)

P. Xie, S. C. Rand, “Continuous-wave trio upconversion laser,” Appl. Phys. Lett. 57, 1182–1184 (1990).
[CrossRef]

S. A. Pollack, D. B. Chang, M. Birnbaum, “Threefold upconversion laser at 0.85, 1.23, and 1.73 µm in Er:YLF pumped with a 1.53 µm Er glass laser,” Appl. Phys. Lett. 54, 869–871 (1989).
[CrossRef]

P. Xie, S. C. Rand, “Continuous-wave, fourfold upconversion laser,” Appl. Phys. Lett. 63, 3125–3127 (1993).
[CrossRef]

Bull. Acad. Sci. USSR Phys. Ser. (1)

V. M. Agranovich, N. A. Efremov, A. A. Zakhidor, “Excitation luminescence of molecular crystals at high excitation levels,” Bull. Acad. Sci. USSR Phys. Ser. 44, 63–67 (1980).

IEEE J. Quantum Electron. (3)

N. P. Barnes, E. D. Filer, C. A. Morrison, C. J. Lee, “Ho:Tm lasers I: theoretical,” IEEE J. Quantum Electron. 32, 92–103 (1996).
[CrossRef]

K. Otsuka, K. Kubodera, “Effects of Auger recombination process on laser dynamics,” IEEE J. Quantum Electron. QE16, 538–541 (1980).
[CrossRef]

J. D. Zuegel, W. Seka, “Direct measurements of 4I11/2 terminal-level lifetime in Nd:YLF,” IEEE J. Quantum Electron. 31, 1742–1746 (1995).
[CrossRef]

J. Chem. Phys. (2)

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
[CrossRef]

A. A. S. da Gama, Gilberto F. de Sa, P. Porcher, P. Caro, “Energy levels of Nd3+, in LiYF4,” J. Chem. Phys. 75, 2583–2587 (1981).
[CrossRef]

J. Lumin. (1)

H. W. Moos, “Spectroscopic relaxation processes of rare earth ions in crystals,” J. Lumin. 1,2106–121 (1970).

J. Opt. Soc. Am. B (2)

J. Phys. Chem. Solids (1)

A. L. Harmer, A. Linz, D. R. Gabbe, “Fluorescence of Nd3+ in lithium yttrium fluoride,” J. Phys. Chem. Solids 30, 1483–1491 (1969).
[CrossRef]

Opt. Commun. (2)

M. Pollnau, P. J. Hardman, W. A. Clarkson, D. C. Hanna, “Upconversion, lifetime quenching and ground-state bleaching in Nd3+:LiYF4,” Opt. Commun. 147, 203–211 (1998).
[CrossRef]

E. P. Maldonado, N. D. Viera, “A simple method to determine the effective stimulated emission cross-section of laser media,” Opt. Commun. 117, 102–106 (1995).
[CrossRef]

Opt. Spectrosc. (USSR) (1)

A. M. Tkachuk, “Self-quenching and up-conversion processes in LiYF4(YLF):RE+3 crystals,” Opt. Spectrosc. (USSR) 68, 775–783 (1990).

Phys. Rev. B (2)

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, P. Laporte, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl111O19,” Phys. Rev. B 51, 784–799 (1995).
[CrossRef]

D. A. Zubenko, M. A. Noginov, V. A. Smirnov, I. A. Shcherbakov, “Different mechanisms of nonlinear quenching of luminesence,” Phys. Rev. B 55, 8881–8886 (1997).
[CrossRef]

Quantum Electron. (1)

T. T. Basiev, Yu. V. Orlovskii, V. G. Ostroumov, Yu. S. Privis, I. A. Shcherbakov, “Nature of the transfer of the electronic excitation energy from Cr3+ to rare-earth ions in garnet crystals,” Quantum Electron. 25, 729–734 (1995).
[CrossRef]

Sov. Phys. Usp. (1)

A. I. Burshtein, “Concentration quenching of noncoherent excitations in solutions,” Sov. Phys. Usp. 27, 579–606 (1984).
[CrossRef]

Other (6)

G. Quarles, VLOC, 7826 Photonics Drive, New Port Richey, Fla. 34655 (personal communication).

C. Bibeau, “Evaluation of the 4I11/2 terminal level lifetime for several neodymium-doped laser crystals and glasses,” Ph.D. dissertation (University of California, Davis, Davis, Calif., 1995; Lawrence Livermore National Laboratory, Livermore, Calif., UCRL-LR-120895, 1995).

N. P. Barnes, E. D. Filer, C. A. Morrison, “Self-quenching of the Nd 4F3/2 manifold,” in Advanced Solid-State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 526–529.

L. A. Riseberg, M. J. Weber, “Relaxation phenomena in rare-earth luminescence,” in Progress in Optics, E. Wolf, ed. (North-Holland, New York, 1976), Vol. XIV, pp. 91–159.

Th. Förster, “Intermolecular energy migration and fluorescence,” in Biological Physics, E. V. Mielczarek, E. Greenbaum, R. S. Knox, eds. (American Institute of Physics, New York, 1993), pp. 148–160.

K. M. Dinndorf, “Energy transfer between thulium and holmium in laser hosts,” Ph.D. dissertation (MIT, Cambridge, Mass., 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Energy-level diagram for Nd:YLF based on Ref. 13. The 4 F 3/2 metastable state is the only long-lived energy level (τ = 520 µs for 1 at. %), except for the 2 P 3/2 level, which exhibits a lifetime τ ≈ 30 µs. All other levels have short lifetimes dominated by multiphonon nonradiative relaxation.

Fig. 2
Fig. 2

Experimental schematic. An intracavity pumping scheme achieves high population inversions in Nd:YLF. Q/S, Pockels cell; HR, high reflector mirrors; PMT, photomultiplier tube. Small-signal-gain probe measures absolute 4 F 3/2 population inversion. cw, continuous wave.

Fig. 3
Fig. 3

Time-resolved 1047- and 1053-nm fluorescence from 4 F 3/2 state. (a) Short time development, (b) measured population decay of the 4 F 3/2 upper state normalized to the dopant ion concentration.

Fig. 4
Fig. 4

Peak, unpolarized upconversion spectra measured after Q-switched pumping at 865.1 nm. The dashed line at ∼430 nm represents two quanta of pump excitation. Upconversion fluorescence shorter than this wavelength can result only from a higher-order upconversion mechanism.

Fig. 5
Fig. 5

Time-resolved visible upconversion emissions. (a) Short time development of 530-nm signal; (b) long-term, nonexponential decay. Dashed line, fit to migration-assisted ETU I(t) ∝ [n(t)]2, where n(t) is given by Eq. (5a) with τ f = 525 µs and α = 0.98 × 10-16 cm6/s.

Fig. 6
Fig. 6

Reduced slope for ln(N peak) versus ln(E pump) indicates that a strong nonlinear loss mechanism exists from the 4 F 3/2 energy level at high population inversions.

Fig. 7
Fig. 7

Linear dependence of the 4 F 3/2 upper-state decay plotted versus 1 - exp(-t/τ) indicates migration-assisted ETU. Measurements are equally spaced (Δt = 10 µs) with time increasing from left to right. An initial phase of static ETU causes the measured plot to depart slightly from Eq. (5), which is also plotted as a solid line with measured values for α, τ, and n 0.

Fig. 8
Fig. 8

Rate-equation form for 4 F 3/2 upper-state population decay dynamics shows quadratic nature of ETU process to be active at high population inversions.

Fig. 9
Fig. 9

Truncated lattice sum in Eq. (3b) for Nd:YLF drops rapidly as a function of distance from the origin. Coordination sphere numbers corresponding to Table 1 are included.

Tables (1)

Tables Icon

Table 1 Nearest-Neighbor Lattice Sites in Nd:YLFa

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Wij=CddRij6+CdqRij8+CqqRij10+,
dndt=nτf-αn2,
nt=n0exp-t/τf1+α1τfn01-exp-t/τfn01+α1n0t  for tτf  1,
α1Cda* i Ri-6NNd,
nt=n0exp-t/τf1+π2n0τfCda*1/2 erft/τf1/2,
nt=n0exp-t/τf1+α2τfn01-exp-t/τf,
α2322π37/2NNdCda*Cdd1/2.
τhop8π327 CddNNd2-1,
dndt=-nτf-α2n2-β2n3-,
dn2dt=Wpumptn1-n2-n2τ2-α1n22,

Metrics