Abstract

We describe the design of a small Rayleigh scattering lidar for launch on a sounding rocket as well as the first, to our knowledge, in situ measurements of neutral number density performed with a rocketborne lidar in the mesosphere. The aim of the experiment is to study the dynamics of the neutral atmosphere with emphasis on turbulent structures and gravity waves. The altitude resolution of the density profile is better than 10 m. The uncertainty is 0.3% below 55 km and better than 1% to an altitude of 65 km. The lidar technique meets the requirement of measurement of total molecular density outside the shock front surrounding the supersonic payload, which is necessary for precision measurements of neutral atmospheric density. We have compared different component technologies and design approaches and show performance calculations for two electro-optical systems. The first system has laser and detector components that were available in 1993, the second has new solutions that became available in 1995. The second system has a signal-to-noise ratio that is five times higher than the first and employs a pulsed high-power laser diode array as the transmitter and a large-area avalanche photodiode as the receiver.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. A. Blix, “In situ studies of turbulence in the middle atmosphere by means of electrostatic ion probes,” (Norwegian Defence Research Establishment, Kjeller, 1988).
  2. T. A. Blix, E. V. Thrane, Ø. Andreassen, “In situ measurements of the fine-scale structure and turbulence in the mesosphere and the lower thermosphere by means of electrostatic positive ion probes,” J. Geophys. Res. 95, 5533–5548 (1990).
    [CrossRef]
  3. T. Eriksen, U.-P. Hoppe, E. V. Thrane, T. A. Blix, “A rocket-borne Rayleigh lidar experiment in the middle atmosphere,” (European Space Agency, Noordwijk, The Netherlands, 1995), pp. 523–528.
  4. H. v. Lucke, F. Dingler, M. Rapp, F.-J. Lübken, W. J. Riedel, H. Wolf, “The rocketborne laser absorption spectrometer MASERATI: Scientific aims, experimental method, technical design, and laboratory tests,” (European Space Agency, Noordwijk, The Netherlands, 1997), pp. 305–310.
  5. U.-P. Hoppe, E. V. Thrane, T. A. Blix, T. Eriksen, “Rocket for optical studies of the neutral atmosphere by laser detection (RONALD),” (European Space Agency, Noordwijk, The Netherlands, 1991), pp. 93–98.
  6. F.-J. Lübken, “MASERATI—a new rocketborne tunable diode laser experiment to measure trace gases in the middle atmosphere,” (European Space Agency, Noordwijk, The Netherlands, 1991), pp. 99–104.
  7. R. H. Kingston, Detection of Optical and Infrared Radiation (Springer-Verlag, Berlin, 1979).
  8. M. J. Taylor, K. Henriksen, “Gravity wave studies at polar latitudes,” in Electromagnetic Coupling in the Polar Clefts and Caps, P. E. Sandholt, A. Egeland, eds. (Kluwer Academic, Dordsecht, The Netherlands, 1989), pp. 421–434.
    [CrossRef]
  9. U.S. Standard Atmosphere 1976, NOAA-S/T 76-1562 (National Oceanic and Atmospheric Administration, Washington, D.C., 1976).
  10. E. L. Fleming, S. Chandra, J. J. Barnett, M. Corney, “Zonal mean temperature, pressure, zonal wind and geopotential height as function of latitude,” in Cospar International Reference Atmosphere 1986, D. Rees, J. J. Barnett, K. Labitzke, eds., Adv. Space Res.10, (12)11–(12)59 (1990) (Pergamon, London, 1989).
  11. U.-P. Hoppe, T. Eriksen, E. V. Thrane, T. A. Blix, J. Fiedler, F.-J. Lubken, “Observations in the polar middle atmosphere by rocketborne Rayleigh lidar: first results,” Earth Planets Space (to be published).

1990 (1)

T. A. Blix, E. V. Thrane, Ø. Andreassen, “In situ measurements of the fine-scale structure and turbulence in the mesosphere and the lower thermosphere by means of electrostatic positive ion probes,” J. Geophys. Res. 95, 5533–5548 (1990).
[CrossRef]

Andreassen, Ø.

T. A. Blix, E. V. Thrane, Ø. Andreassen, “In situ measurements of the fine-scale structure and turbulence in the mesosphere and the lower thermosphere by means of electrostatic positive ion probes,” J. Geophys. Res. 95, 5533–5548 (1990).
[CrossRef]

Barnett, J. J.

E. L. Fleming, S. Chandra, J. J. Barnett, M. Corney, “Zonal mean temperature, pressure, zonal wind and geopotential height as function of latitude,” in Cospar International Reference Atmosphere 1986, D. Rees, J. J. Barnett, K. Labitzke, eds., Adv. Space Res.10, (12)11–(12)59 (1990) (Pergamon, London, 1989).

Blix, T. A.

T. A. Blix, E. V. Thrane, Ø. Andreassen, “In situ measurements of the fine-scale structure and turbulence in the mesosphere and the lower thermosphere by means of electrostatic positive ion probes,” J. Geophys. Res. 95, 5533–5548 (1990).
[CrossRef]

T. Eriksen, U.-P. Hoppe, E. V. Thrane, T. A. Blix, “A rocket-borne Rayleigh lidar experiment in the middle atmosphere,” (European Space Agency, Noordwijk, The Netherlands, 1995), pp. 523–528.

U.-P. Hoppe, E. V. Thrane, T. A. Blix, T. Eriksen, “Rocket for optical studies of the neutral atmosphere by laser detection (RONALD),” (European Space Agency, Noordwijk, The Netherlands, 1991), pp. 93–98.

T. A. Blix, “In situ studies of turbulence in the middle atmosphere by means of electrostatic ion probes,” (Norwegian Defence Research Establishment, Kjeller, 1988).

U.-P. Hoppe, T. Eriksen, E. V. Thrane, T. A. Blix, J. Fiedler, F.-J. Lubken, “Observations in the polar middle atmosphere by rocketborne Rayleigh lidar: first results,” Earth Planets Space (to be published).

Chandra, S.

E. L. Fleming, S. Chandra, J. J. Barnett, M. Corney, “Zonal mean temperature, pressure, zonal wind and geopotential height as function of latitude,” in Cospar International Reference Atmosphere 1986, D. Rees, J. J. Barnett, K. Labitzke, eds., Adv. Space Res.10, (12)11–(12)59 (1990) (Pergamon, London, 1989).

Corney, M.

E. L. Fleming, S. Chandra, J. J. Barnett, M. Corney, “Zonal mean temperature, pressure, zonal wind and geopotential height as function of latitude,” in Cospar International Reference Atmosphere 1986, D. Rees, J. J. Barnett, K. Labitzke, eds., Adv. Space Res.10, (12)11–(12)59 (1990) (Pergamon, London, 1989).

Dingler, F.

H. v. Lucke, F. Dingler, M. Rapp, F.-J. Lübken, W. J. Riedel, H. Wolf, “The rocketborne laser absorption spectrometer MASERATI: Scientific aims, experimental method, technical design, and laboratory tests,” (European Space Agency, Noordwijk, The Netherlands, 1997), pp. 305–310.

Eriksen, T.

U.-P. Hoppe, E. V. Thrane, T. A. Blix, T. Eriksen, “Rocket for optical studies of the neutral atmosphere by laser detection (RONALD),” (European Space Agency, Noordwijk, The Netherlands, 1991), pp. 93–98.

T. Eriksen, U.-P. Hoppe, E. V. Thrane, T. A. Blix, “A rocket-borne Rayleigh lidar experiment in the middle atmosphere,” (European Space Agency, Noordwijk, The Netherlands, 1995), pp. 523–528.

U.-P. Hoppe, T. Eriksen, E. V. Thrane, T. A. Blix, J. Fiedler, F.-J. Lubken, “Observations in the polar middle atmosphere by rocketborne Rayleigh lidar: first results,” Earth Planets Space (to be published).

Fiedler, J.

U.-P. Hoppe, T. Eriksen, E. V. Thrane, T. A. Blix, J. Fiedler, F.-J. Lubken, “Observations in the polar middle atmosphere by rocketborne Rayleigh lidar: first results,” Earth Planets Space (to be published).

Fleming, E. L.

E. L. Fleming, S. Chandra, J. J. Barnett, M. Corney, “Zonal mean temperature, pressure, zonal wind and geopotential height as function of latitude,” in Cospar International Reference Atmosphere 1986, D. Rees, J. J. Barnett, K. Labitzke, eds., Adv. Space Res.10, (12)11–(12)59 (1990) (Pergamon, London, 1989).

Henriksen, K.

M. J. Taylor, K. Henriksen, “Gravity wave studies at polar latitudes,” in Electromagnetic Coupling in the Polar Clefts and Caps, P. E. Sandholt, A. Egeland, eds. (Kluwer Academic, Dordsecht, The Netherlands, 1989), pp. 421–434.
[CrossRef]

Hoppe, U.-P.

U.-P. Hoppe, T. Eriksen, E. V. Thrane, T. A. Blix, J. Fiedler, F.-J. Lubken, “Observations in the polar middle atmosphere by rocketborne Rayleigh lidar: first results,” Earth Planets Space (to be published).

T. Eriksen, U.-P. Hoppe, E. V. Thrane, T. A. Blix, “A rocket-borne Rayleigh lidar experiment in the middle atmosphere,” (European Space Agency, Noordwijk, The Netherlands, 1995), pp. 523–528.

U.-P. Hoppe, E. V. Thrane, T. A. Blix, T. Eriksen, “Rocket for optical studies of the neutral atmosphere by laser detection (RONALD),” (European Space Agency, Noordwijk, The Netherlands, 1991), pp. 93–98.

Kingston, R. H.

R. H. Kingston, Detection of Optical and Infrared Radiation (Springer-Verlag, Berlin, 1979).

Lubken, F.-J.

U.-P. Hoppe, T. Eriksen, E. V. Thrane, T. A. Blix, J. Fiedler, F.-J. Lubken, “Observations in the polar middle atmosphere by rocketborne Rayleigh lidar: first results,” Earth Planets Space (to be published).

Lübken, F.-J.

F.-J. Lübken, “MASERATI—a new rocketborne tunable diode laser experiment to measure trace gases in the middle atmosphere,” (European Space Agency, Noordwijk, The Netherlands, 1991), pp. 99–104.

H. v. Lucke, F. Dingler, M. Rapp, F.-J. Lübken, W. J. Riedel, H. Wolf, “The rocketborne laser absorption spectrometer MASERATI: Scientific aims, experimental method, technical design, and laboratory tests,” (European Space Agency, Noordwijk, The Netherlands, 1997), pp. 305–310.

Lucke, H. v.

H. v. Lucke, F. Dingler, M. Rapp, F.-J. Lübken, W. J. Riedel, H. Wolf, “The rocketborne laser absorption spectrometer MASERATI: Scientific aims, experimental method, technical design, and laboratory tests,” (European Space Agency, Noordwijk, The Netherlands, 1997), pp. 305–310.

Rapp, M.

H. v. Lucke, F. Dingler, M. Rapp, F.-J. Lübken, W. J. Riedel, H. Wolf, “The rocketborne laser absorption spectrometer MASERATI: Scientific aims, experimental method, technical design, and laboratory tests,” (European Space Agency, Noordwijk, The Netherlands, 1997), pp. 305–310.

Riedel, W. J.

H. v. Lucke, F. Dingler, M. Rapp, F.-J. Lübken, W. J. Riedel, H. Wolf, “The rocketborne laser absorption spectrometer MASERATI: Scientific aims, experimental method, technical design, and laboratory tests,” (European Space Agency, Noordwijk, The Netherlands, 1997), pp. 305–310.

Taylor, M. J.

M. J. Taylor, K. Henriksen, “Gravity wave studies at polar latitudes,” in Electromagnetic Coupling in the Polar Clefts and Caps, P. E. Sandholt, A. Egeland, eds. (Kluwer Academic, Dordsecht, The Netherlands, 1989), pp. 421–434.
[CrossRef]

Thrane, E. V.

T. A. Blix, E. V. Thrane, Ø. Andreassen, “In situ measurements of the fine-scale structure and turbulence in the mesosphere and the lower thermosphere by means of electrostatic positive ion probes,” J. Geophys. Res. 95, 5533–5548 (1990).
[CrossRef]

T. Eriksen, U.-P. Hoppe, E. V. Thrane, T. A. Blix, “A rocket-borne Rayleigh lidar experiment in the middle atmosphere,” (European Space Agency, Noordwijk, The Netherlands, 1995), pp. 523–528.

U.-P. Hoppe, E. V. Thrane, T. A. Blix, T. Eriksen, “Rocket for optical studies of the neutral atmosphere by laser detection (RONALD),” (European Space Agency, Noordwijk, The Netherlands, 1991), pp. 93–98.

U.-P. Hoppe, T. Eriksen, E. V. Thrane, T. A. Blix, J. Fiedler, F.-J. Lubken, “Observations in the polar middle atmosphere by rocketborne Rayleigh lidar: first results,” Earth Planets Space (to be published).

Wolf, H.

H. v. Lucke, F. Dingler, M. Rapp, F.-J. Lübken, W. J. Riedel, H. Wolf, “The rocketborne laser absorption spectrometer MASERATI: Scientific aims, experimental method, technical design, and laboratory tests,” (European Space Agency, Noordwijk, The Netherlands, 1997), pp. 305–310.

J. Geophys. Res. (1)

T. A. Blix, E. V. Thrane, Ø. Andreassen, “In situ measurements of the fine-scale structure and turbulence in the mesosphere and the lower thermosphere by means of electrostatic positive ion probes,” J. Geophys. Res. 95, 5533–5548 (1990).
[CrossRef]

Other (10)

T. Eriksen, U.-P. Hoppe, E. V. Thrane, T. A. Blix, “A rocket-borne Rayleigh lidar experiment in the middle atmosphere,” (European Space Agency, Noordwijk, The Netherlands, 1995), pp. 523–528.

H. v. Lucke, F. Dingler, M. Rapp, F.-J. Lübken, W. J. Riedel, H. Wolf, “The rocketborne laser absorption spectrometer MASERATI: Scientific aims, experimental method, technical design, and laboratory tests,” (European Space Agency, Noordwijk, The Netherlands, 1997), pp. 305–310.

U.-P. Hoppe, E. V. Thrane, T. A. Blix, T. Eriksen, “Rocket for optical studies of the neutral atmosphere by laser detection (RONALD),” (European Space Agency, Noordwijk, The Netherlands, 1991), pp. 93–98.

F.-J. Lübken, “MASERATI—a new rocketborne tunable diode laser experiment to measure trace gases in the middle atmosphere,” (European Space Agency, Noordwijk, The Netherlands, 1991), pp. 99–104.

R. H. Kingston, Detection of Optical and Infrared Radiation (Springer-Verlag, Berlin, 1979).

M. J. Taylor, K. Henriksen, “Gravity wave studies at polar latitudes,” in Electromagnetic Coupling in the Polar Clefts and Caps, P. E. Sandholt, A. Egeland, eds. (Kluwer Academic, Dordsecht, The Netherlands, 1989), pp. 421–434.
[CrossRef]

U.S. Standard Atmosphere 1976, NOAA-S/T 76-1562 (National Oceanic and Atmospheric Administration, Washington, D.C., 1976).

E. L. Fleming, S. Chandra, J. J. Barnett, M. Corney, “Zonal mean temperature, pressure, zonal wind and geopotential height as function of latitude,” in Cospar International Reference Atmosphere 1986, D. Rees, J. J. Barnett, K. Labitzke, eds., Adv. Space Res.10, (12)11–(12)59 (1990) (Pergamon, London, 1989).

U.-P. Hoppe, T. Eriksen, E. V. Thrane, T. A. Blix, J. Fiedler, F.-J. Lubken, “Observations in the polar middle atmosphere by rocketborne Rayleigh lidar: first results,” Earth Planets Space (to be published).

T. A. Blix, “In situ studies of turbulence in the middle atmosphere by means of electrostatic ion probes,” (Norwegian Defence Research Establishment, Kjeller, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Rocketborne lidar.

Fig. 2
Fig. 2

Overlap function (solid curve) and signal contribution versus distance from payload.

Fig. 3
Fig. 3

Spectral characteristics of high-power laser diode arrays.

Fig. 4
Fig. 4

SNR for the different detector systems versus signal rate.

Fig. 5
Fig. 5

TROLL lidar instrument.

Fig. 6
Fig. 6

TROLL receiver data: dotted curve, background signal; solid curve, background with the additional Rayleigh-scattered signal.

Fig. 7
Fig. 7

Relative uncertainty of number density: dashed curve, expected value; solid curve, experimental data.

Fig. 8
Fig. 8

Measured number density profile normalized to CIRA 86.

Tables (3)

Tables Icon

Table 1 Characteristics of Laser Diode Arrays

Tables Icon

Table 2 Characteristics of Detectors

Tables Icon

Table 3 Specifications of Evaluated Lidar Systems

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Pz=PonzAησλrr+ΔrT2rξrr2dr,
Ī=ηP/hν,
pn, τ=Īτnn!exp-Īτ.
SNR=n¯σ=n¯.
Īcnt=1tFWHMp1, tFWHM+n=2 pn, tFWHMp0, tFWHM.
SNR=n¯cntn¯dark+n¯1/2=ĪcnttĪdarkt+Īt1/2,
is=ı¯=Īe=ηP/hνe,
is,rms=2eisM2FB1/2,
id,rms=2eĪdarkeM2B1/2.
SNR=isirms=is/Mis,rms2+id,rms2+ie,rms21/2.
id,rms=NEPMRB,

Metrics