Abstract

A simple system of linearly tunable fiber–film wavelength-dependent components is demonstrated that includes a linearly tapered high-index thin-film planar waveguide (PWG) evanescently coupled by a single-mode-fiber half-coupler. We present experimental and theoretical results for the linear tuning of spectral responses such as coupled power, resonance position (λ0), and fiber output-light polarization through position shifting of the linearly tapered PWG, in the direction of the propagating light in the fiber, over the half-coupler block. We achieved almost linear control of the spectral response by changing the temperature of mixture-of-oils and overlay-doped poly(methyl methacrylate) PWG’s when the refractive index of the system decreases with temperature. The variation in thickness of the tapered film is along the direction of the interaction length of the system. Linear tapered PWG’s that comprised a mixture of oils, BK7 glass, and overlay-doped PMMA with high refractive indices were fabricated that could operate the device at lower and higher modes. We investigated the dependence of tuning λ0 on the PWG mode. Tuning by shifting of a linear tapered PWG over a fiber half-block is mode dependent, whereas tuning by changing the refractive index of a uniform PWG is mode independent. Wavelength shift Δλ0 is found to decrease with an increase in the resonant PWG mode number m for linearly tapered PWG’s. A fiber-to-asymmetric linear tapered–PWG coupler, which maintains the taper slope to within a specific limit, can function as a linearly tunable polarizer for the light in the fiber.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. McCallion, W. Johnstone, G. Fawcett, “Tunable in-line fiber-optic bandpass filter,” Opt. Lett. 19, 542–544 (1994).
    [CrossRef] [PubMed]
  2. W. Johnstone, G. Thursby, D. G. Moodie, R. Varshuey, B. Culshaw, “Fiber optic wavelength channel selector with high resolution,” Electron. Lett. 28, 1364–1365 (1992).
    [CrossRef]
  3. M. Zhang, E. Garmire, “Single-mode fiber–film directional coupler,” J. Lightwave Technol. LT-5, 260–267 (1987).
    [CrossRef]
  4. A. T. Andreev, K. P. Panajatov, “Wavelength division action of a distributed single-mode fiber-to-symmetrical planar waveguide coupler,” Photon. Technol. Lett. 6, 1238–1240 (1994).
    [CrossRef]
  5. D. G. Moodie, W. Johnstone, “Wavelength tunability of components based on the evanescent coupling from a side-polished fiber to a high-index-overlay waveguide,” Opt. Lett. 18, 1025–1027 (1993).
    [CrossRef] [PubMed]
  6. C. A. Millar, M. C. Brierley, S. R. Mallinson, “Exposed-core single-mode fiber channel-dropping filter using a high-index overlay waveguide,” Opt. Lett. 12, 284–286 (1987).
    [CrossRef] [PubMed]
  7. Y. Cai, T. Mizumoto, Y. Naito, “An effective method for coupling single-mode fiber to thin film waveguide,” J. Lightwave Technol. 9, 577–583 (1991).
    [CrossRef]
  8. A. T. Andreev, K. P. Panajatov, “Distributed single-mode fiber to single-mode planar waveguide coupler,” J. Lightwave Technol. 11, 1985–1989 (1993).
    [CrossRef]
  9. D. Marcuse, “Investigation of coupling between a fiber and an infinite slab,” J. Lightwave Technol. 7, 122–130 (1989).
    [CrossRef]
  10. A. N. Miliou, R. Srivastava, R. V. Ramaswamy, “A 1.3 µm directional coupler polarization splitter by ion exchange,” J. Lightwave Technol. 11, 220–225 (1993).
    [CrossRef]
  11. K. Morishita, K. Aso, “Fiber loop polarizers using a fused taper coupler,” J. Lightwave Technol. 12, 634–637 (1994).
    [CrossRef]
  12. A. M. Scheggi, M. Brenci, G. Conforti, R. Falciai, “Optical-fibre thermometer for medical use,” Proc. Inst. Electr. Eng. Part H 131, 270–272 (1984).
  13. K. P. Panajotov, “Polarisation properties of a fiber-to-asymmetric planar waveguide coupler,” J. Lightwave Technol. 12, 983–988 (1994).
    [CrossRef]
  14. A. K. Das, A. Hussain, “Single-mode fiber–linearly tapered planar waveguide tunable coupler,” Appl. Opt. 36, 6822–6827 (1997).
    [CrossRef]
  15. D. Marcuse, Light Transmission Optics, 2nd ed. (Von Nostrand Reinhold, New York, 1982).
  16. C. Liao, G. I. Stegeman, C. T. Seaton, R. L. Shoemaker, J. D. Valera, “Nonlinear distributed waveguide couplers,” J. Opt. Soc. Am. A 12, 590–594 (1985).
    [CrossRef]
  17. M. J. F. Digonnet, H. J. Shaw, “Analysis of a tunable single mode optical fiber coupler,” IEEE J. Quantum Electron. QE-18, 746–754 (1982).
    [CrossRef]
  18. H. Nishihara, M. Haruna, T. Sahara, Optical Integrated Circuits (McGraw-Hill, New York, 1989).
  19. L. A. Hornak, Polymers for Lightwave and Integrated Optics (Marcel Dekker, New York, 1992).
  20. A. K. Das, A. K. Ganguly, “Efficient method of coupling from a single-mode fiber to a thin film waveguide,” Opt. Lett. 19, 2110–2112 (1994).
    [CrossRef] [PubMed]
  21. R. S. Mozhrefzadeh, M. D. Radcliffe, T. C. Lee, S. K. Mohapatra, “Temperature dependence of index of refraction of polymer waveguides,” J. Lightwave Technol. 10, 420–425 (1992).
    [CrossRef]

1997 (1)

1994 (5)

K. Morishita, K. Aso, “Fiber loop polarizers using a fused taper coupler,” J. Lightwave Technol. 12, 634–637 (1994).
[CrossRef]

A. K. Das, A. K. Ganguly, “Efficient method of coupling from a single-mode fiber to a thin film waveguide,” Opt. Lett. 19, 2110–2112 (1994).
[CrossRef] [PubMed]

K. P. Panajotov, “Polarisation properties of a fiber-to-asymmetric planar waveguide coupler,” J. Lightwave Technol. 12, 983–988 (1994).
[CrossRef]

K. McCallion, W. Johnstone, G. Fawcett, “Tunable in-line fiber-optic bandpass filter,” Opt. Lett. 19, 542–544 (1994).
[CrossRef] [PubMed]

A. T. Andreev, K. P. Panajatov, “Wavelength division action of a distributed single-mode fiber-to-symmetrical planar waveguide coupler,” Photon. Technol. Lett. 6, 1238–1240 (1994).
[CrossRef]

1993 (3)

D. G. Moodie, W. Johnstone, “Wavelength tunability of components based on the evanescent coupling from a side-polished fiber to a high-index-overlay waveguide,” Opt. Lett. 18, 1025–1027 (1993).
[CrossRef] [PubMed]

A. T. Andreev, K. P. Panajatov, “Distributed single-mode fiber to single-mode planar waveguide coupler,” J. Lightwave Technol. 11, 1985–1989 (1993).
[CrossRef]

A. N. Miliou, R. Srivastava, R. V. Ramaswamy, “A 1.3 µm directional coupler polarization splitter by ion exchange,” J. Lightwave Technol. 11, 220–225 (1993).
[CrossRef]

1992 (2)

W. Johnstone, G. Thursby, D. G. Moodie, R. Varshuey, B. Culshaw, “Fiber optic wavelength channel selector with high resolution,” Electron. Lett. 28, 1364–1365 (1992).
[CrossRef]

R. S. Mozhrefzadeh, M. D. Radcliffe, T. C. Lee, S. K. Mohapatra, “Temperature dependence of index of refraction of polymer waveguides,” J. Lightwave Technol. 10, 420–425 (1992).
[CrossRef]

1991 (1)

Y. Cai, T. Mizumoto, Y. Naito, “An effective method for coupling single-mode fiber to thin film waveguide,” J. Lightwave Technol. 9, 577–583 (1991).
[CrossRef]

1989 (1)

D. Marcuse, “Investigation of coupling between a fiber and an infinite slab,” J. Lightwave Technol. 7, 122–130 (1989).
[CrossRef]

1987 (2)

1985 (1)

C. Liao, G. I. Stegeman, C. T. Seaton, R. L. Shoemaker, J. D. Valera, “Nonlinear distributed waveguide couplers,” J. Opt. Soc. Am. A 12, 590–594 (1985).
[CrossRef]

1984 (1)

A. M. Scheggi, M. Brenci, G. Conforti, R. Falciai, “Optical-fibre thermometer for medical use,” Proc. Inst. Electr. Eng. Part H 131, 270–272 (1984).

1982 (1)

M. J. F. Digonnet, H. J. Shaw, “Analysis of a tunable single mode optical fiber coupler,” IEEE J. Quantum Electron. QE-18, 746–754 (1982).
[CrossRef]

Andreev, A. T.

A. T. Andreev, K. P. Panajatov, “Wavelength division action of a distributed single-mode fiber-to-symmetrical planar waveguide coupler,” Photon. Technol. Lett. 6, 1238–1240 (1994).
[CrossRef]

A. T. Andreev, K. P. Panajatov, “Distributed single-mode fiber to single-mode planar waveguide coupler,” J. Lightwave Technol. 11, 1985–1989 (1993).
[CrossRef]

Aso, K.

K. Morishita, K. Aso, “Fiber loop polarizers using a fused taper coupler,” J. Lightwave Technol. 12, 634–637 (1994).
[CrossRef]

Brenci, M.

A. M. Scheggi, M. Brenci, G. Conforti, R. Falciai, “Optical-fibre thermometer for medical use,” Proc. Inst. Electr. Eng. Part H 131, 270–272 (1984).

Brierley, M. C.

Cai, Y.

Y. Cai, T. Mizumoto, Y. Naito, “An effective method for coupling single-mode fiber to thin film waveguide,” J. Lightwave Technol. 9, 577–583 (1991).
[CrossRef]

Conforti, G.

A. M. Scheggi, M. Brenci, G. Conforti, R. Falciai, “Optical-fibre thermometer for medical use,” Proc. Inst. Electr. Eng. Part H 131, 270–272 (1984).

Culshaw, B.

W. Johnstone, G. Thursby, D. G. Moodie, R. Varshuey, B. Culshaw, “Fiber optic wavelength channel selector with high resolution,” Electron. Lett. 28, 1364–1365 (1992).
[CrossRef]

Das, A. K.

Digonnet, M. J. F.

M. J. F. Digonnet, H. J. Shaw, “Analysis of a tunable single mode optical fiber coupler,” IEEE J. Quantum Electron. QE-18, 746–754 (1982).
[CrossRef]

Falciai, R.

A. M. Scheggi, M. Brenci, G. Conforti, R. Falciai, “Optical-fibre thermometer for medical use,” Proc. Inst. Electr. Eng. Part H 131, 270–272 (1984).

Fawcett, G.

Ganguly, A. K.

Garmire, E.

M. Zhang, E. Garmire, “Single-mode fiber–film directional coupler,” J. Lightwave Technol. LT-5, 260–267 (1987).
[CrossRef]

Haruna, M.

H. Nishihara, M. Haruna, T. Sahara, Optical Integrated Circuits (McGraw-Hill, New York, 1989).

Hornak, L. A.

L. A. Hornak, Polymers for Lightwave and Integrated Optics (Marcel Dekker, New York, 1992).

Hussain, A.

Johnstone, W.

Lee, T. C.

R. S. Mozhrefzadeh, M. D. Radcliffe, T. C. Lee, S. K. Mohapatra, “Temperature dependence of index of refraction of polymer waveguides,” J. Lightwave Technol. 10, 420–425 (1992).
[CrossRef]

Liao, C.

C. Liao, G. I. Stegeman, C. T. Seaton, R. L. Shoemaker, J. D. Valera, “Nonlinear distributed waveguide couplers,” J. Opt. Soc. Am. A 12, 590–594 (1985).
[CrossRef]

Mallinson, S. R.

Marcuse, D.

D. Marcuse, “Investigation of coupling between a fiber and an infinite slab,” J. Lightwave Technol. 7, 122–130 (1989).
[CrossRef]

D. Marcuse, Light Transmission Optics, 2nd ed. (Von Nostrand Reinhold, New York, 1982).

McCallion, K.

Miliou, A. N.

A. N. Miliou, R. Srivastava, R. V. Ramaswamy, “A 1.3 µm directional coupler polarization splitter by ion exchange,” J. Lightwave Technol. 11, 220–225 (1993).
[CrossRef]

Millar, C. A.

Mizumoto, T.

Y. Cai, T. Mizumoto, Y. Naito, “An effective method for coupling single-mode fiber to thin film waveguide,” J. Lightwave Technol. 9, 577–583 (1991).
[CrossRef]

Mohapatra, S. K.

R. S. Mozhrefzadeh, M. D. Radcliffe, T. C. Lee, S. K. Mohapatra, “Temperature dependence of index of refraction of polymer waveguides,” J. Lightwave Technol. 10, 420–425 (1992).
[CrossRef]

Moodie, D. G.

D. G. Moodie, W. Johnstone, “Wavelength tunability of components based on the evanescent coupling from a side-polished fiber to a high-index-overlay waveguide,” Opt. Lett. 18, 1025–1027 (1993).
[CrossRef] [PubMed]

W. Johnstone, G. Thursby, D. G. Moodie, R. Varshuey, B. Culshaw, “Fiber optic wavelength channel selector with high resolution,” Electron. Lett. 28, 1364–1365 (1992).
[CrossRef]

Morishita, K.

K. Morishita, K. Aso, “Fiber loop polarizers using a fused taper coupler,” J. Lightwave Technol. 12, 634–637 (1994).
[CrossRef]

Mozhrefzadeh, R. S.

R. S. Mozhrefzadeh, M. D. Radcliffe, T. C. Lee, S. K. Mohapatra, “Temperature dependence of index of refraction of polymer waveguides,” J. Lightwave Technol. 10, 420–425 (1992).
[CrossRef]

Naito, Y.

Y. Cai, T. Mizumoto, Y. Naito, “An effective method for coupling single-mode fiber to thin film waveguide,” J. Lightwave Technol. 9, 577–583 (1991).
[CrossRef]

Nishihara, H.

H. Nishihara, M. Haruna, T. Sahara, Optical Integrated Circuits (McGraw-Hill, New York, 1989).

Panajatov, K. P.

A. T. Andreev, K. P. Panajatov, “Wavelength division action of a distributed single-mode fiber-to-symmetrical planar waveguide coupler,” Photon. Technol. Lett. 6, 1238–1240 (1994).
[CrossRef]

A. T. Andreev, K. P. Panajatov, “Distributed single-mode fiber to single-mode planar waveguide coupler,” J. Lightwave Technol. 11, 1985–1989 (1993).
[CrossRef]

Panajotov, K. P.

K. P. Panajotov, “Polarisation properties of a fiber-to-asymmetric planar waveguide coupler,” J. Lightwave Technol. 12, 983–988 (1994).
[CrossRef]

Radcliffe, M. D.

R. S. Mozhrefzadeh, M. D. Radcliffe, T. C. Lee, S. K. Mohapatra, “Temperature dependence of index of refraction of polymer waveguides,” J. Lightwave Technol. 10, 420–425 (1992).
[CrossRef]

Ramaswamy, R. V.

A. N. Miliou, R. Srivastava, R. V. Ramaswamy, “A 1.3 µm directional coupler polarization splitter by ion exchange,” J. Lightwave Technol. 11, 220–225 (1993).
[CrossRef]

Sahara, T.

H. Nishihara, M. Haruna, T. Sahara, Optical Integrated Circuits (McGraw-Hill, New York, 1989).

Scheggi, A. M.

A. M. Scheggi, M. Brenci, G. Conforti, R. Falciai, “Optical-fibre thermometer for medical use,” Proc. Inst. Electr. Eng. Part H 131, 270–272 (1984).

Seaton, C. T.

C. Liao, G. I. Stegeman, C. T. Seaton, R. L. Shoemaker, J. D. Valera, “Nonlinear distributed waveguide couplers,” J. Opt. Soc. Am. A 12, 590–594 (1985).
[CrossRef]

Shaw, H. J.

M. J. F. Digonnet, H. J. Shaw, “Analysis of a tunable single mode optical fiber coupler,” IEEE J. Quantum Electron. QE-18, 746–754 (1982).
[CrossRef]

Shoemaker, R. L.

C. Liao, G. I. Stegeman, C. T. Seaton, R. L. Shoemaker, J. D. Valera, “Nonlinear distributed waveguide couplers,” J. Opt. Soc. Am. A 12, 590–594 (1985).
[CrossRef]

Srivastava, R.

A. N. Miliou, R. Srivastava, R. V. Ramaswamy, “A 1.3 µm directional coupler polarization splitter by ion exchange,” J. Lightwave Technol. 11, 220–225 (1993).
[CrossRef]

Stegeman, G. I.

C. Liao, G. I. Stegeman, C. T. Seaton, R. L. Shoemaker, J. D. Valera, “Nonlinear distributed waveguide couplers,” J. Opt. Soc. Am. A 12, 590–594 (1985).
[CrossRef]

Thursby, G.

W. Johnstone, G. Thursby, D. G. Moodie, R. Varshuey, B. Culshaw, “Fiber optic wavelength channel selector with high resolution,” Electron. Lett. 28, 1364–1365 (1992).
[CrossRef]

Valera, J. D.

C. Liao, G. I. Stegeman, C. T. Seaton, R. L. Shoemaker, J. D. Valera, “Nonlinear distributed waveguide couplers,” J. Opt. Soc. Am. A 12, 590–594 (1985).
[CrossRef]

Varshuey, R.

W. Johnstone, G. Thursby, D. G. Moodie, R. Varshuey, B. Culshaw, “Fiber optic wavelength channel selector with high resolution,” Electron. Lett. 28, 1364–1365 (1992).
[CrossRef]

Zhang, M.

M. Zhang, E. Garmire, “Single-mode fiber–film directional coupler,” J. Lightwave Technol. LT-5, 260–267 (1987).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (1)

W. Johnstone, G. Thursby, D. G. Moodie, R. Varshuey, B. Culshaw, “Fiber optic wavelength channel selector with high resolution,” Electron. Lett. 28, 1364–1365 (1992).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. J. F. Digonnet, H. J. Shaw, “Analysis of a tunable single mode optical fiber coupler,” IEEE J. Quantum Electron. QE-18, 746–754 (1982).
[CrossRef]

J. Lightwave Technol. (8)

K. P. Panajotov, “Polarisation properties of a fiber-to-asymmetric planar waveguide coupler,” J. Lightwave Technol. 12, 983–988 (1994).
[CrossRef]

R. S. Mozhrefzadeh, M. D. Radcliffe, T. C. Lee, S. K. Mohapatra, “Temperature dependence of index of refraction of polymer waveguides,” J. Lightwave Technol. 10, 420–425 (1992).
[CrossRef]

M. Zhang, E. Garmire, “Single-mode fiber–film directional coupler,” J. Lightwave Technol. LT-5, 260–267 (1987).
[CrossRef]

Y. Cai, T. Mizumoto, Y. Naito, “An effective method for coupling single-mode fiber to thin film waveguide,” J. Lightwave Technol. 9, 577–583 (1991).
[CrossRef]

A. T. Andreev, K. P. Panajatov, “Distributed single-mode fiber to single-mode planar waveguide coupler,” J. Lightwave Technol. 11, 1985–1989 (1993).
[CrossRef]

D. Marcuse, “Investigation of coupling between a fiber and an infinite slab,” J. Lightwave Technol. 7, 122–130 (1989).
[CrossRef]

A. N. Miliou, R. Srivastava, R. V. Ramaswamy, “A 1.3 µm directional coupler polarization splitter by ion exchange,” J. Lightwave Technol. 11, 220–225 (1993).
[CrossRef]

K. Morishita, K. Aso, “Fiber loop polarizers using a fused taper coupler,” J. Lightwave Technol. 12, 634–637 (1994).
[CrossRef]

J. Opt. Soc. Am. A (1)

C. Liao, G. I. Stegeman, C. T. Seaton, R. L. Shoemaker, J. D. Valera, “Nonlinear distributed waveguide couplers,” J. Opt. Soc. Am. A 12, 590–594 (1985).
[CrossRef]

Opt. Lett. (4)

Photon. Technol. Lett. (1)

A. T. Andreev, K. P. Panajatov, “Wavelength division action of a distributed single-mode fiber-to-symmetrical planar waveguide coupler,” Photon. Technol. Lett. 6, 1238–1240 (1994).
[CrossRef]

Proc. Inst. Electr. Eng. Part H (1)

A. M. Scheggi, M. Brenci, G. Conforti, R. Falciai, “Optical-fibre thermometer for medical use,” Proc. Inst. Electr. Eng. Part H 131, 270–272 (1984).

Other (3)

D. Marcuse, Light Transmission Optics, 2nd ed. (Von Nostrand Reinhold, New York, 1982).

H. Nishihara, M. Haruna, T. Sahara, Optical Integrated Circuits (McGraw-Hill, New York, 1989).

L. A. Hornak, Polymers for Lightwave and Integrated Optics (Marcel Dekker, New York, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Longitudinal view of the distributed fiber to (a) a linearly tapered symmetric PWG coupler and (b) a linearly tapered asymmetric PWG coupler.

Fig. 2
Fig. 2

Theoretical variation of throughput power P t versus λ with a symmetric linearly tapered mixture-of-oils PWG (n f = 1.5296) and a single-mode coupling fiber half-coupler [Fig. 1(a)] at m = 4 for ⓐ d 0 = 6.4 µm (Δz = 0), ⓑ d 0 = 6.5 µm (Δz = 5 mm), ⓒ d 0 = 6.55 µm (Δz = 7.5 mm), and the experimental points.

Fig. 3
Fig. 3

Theoretical plots of resonance position λ0 versus position shift (ΔZ) of a linearly tapered PWG over the fiber half-coupler for n f = 1.5296 and ⓐ m = 1, ⓑ m = 4, and the experimental points. Theoretical plots of λ0 versus change in refractive index (Δn f ) of a uniform-thickness PWG for ⓒ m = 1, d 0 = 1.8 µm; ⓓ m = 4, d o = 6.5 µm, and the experimental points. ⓔ Theoretical plot of λ0 versus change in refractive index of the superstrate (Δn c ) of a uniform-thickness PWG for the TE mode with n f = 1.5038, m = 4, and d 0 = 6.9 µm.

Fig. 4
Fig. 4

Theoretical variation of throughout power P t versus λ with a linearly tapered BK7 glass asymmetric (n c = 1) PWG and a single-mode standard fiber half-coupler [Fig. 1(b)]. Solid curves, TE mode; dashed curves, TM mode for ⓐ d 0 = 7.5 µm (Δz = 0), ⓑ d 0 = 7.65 µm (Δz = 7.5 mm), ⓒ d 0 = 7.8 µm (Δz = 15 mm), and the experimental points.

Fig. 5
Fig. 5

Theoretical variation of throughput power P t versus λ with a doped-PMMA overlay PWG (d 0 = d 1 = d 2 = 7.1µm, n c = 1) and a coupling fiber half-coupler. Solid curves, TE mode; dashed curves, TM mode for ⓐ n f = 1.5296 (ΔT = 0) and ⓑ n f = 1.5276 (ΔT ≃ 8.5 °C), and the experimental points.

Tables (1)

Tables Icon

Table 1 Values of Mode m

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

d|i=d0+iΔd,
ψ=a0zF0 exp-jβf0z+ν=0Ns bνzSν exp-jβsνz,
da0dzi=-jQf0s+Qf0ca0|i-j ν0Ns Kf0νbν expjβf0-βsνz|i,
dbνdzi=-jKsν0+Kcν0a0 expjβsν-βf0z|i,
hz=h0+z2/2R.
Δλ=λ02φ2-φ2/2πdnf2-nef21/2-λ0φ2-φ2,
φk=tan-1ξnf2-nef2/nef2-nk21/2, k=1, 2,
Δλ=λ02φ11+φ22-λ0X-X/X-λ0φ11+φ22,
X=2πdnf2-nef21/2,
X=2πdnf2-nef21/2,
φkk=φk-φk.

Metrics