Abstract

An approximate linear relationship between the scattering coefficient and the wavelength of light in the visible is found in case 1 and case 2 waters. From this relationship, we estimate scattering at an unknown wavelength from scattering at a single measured wavelength. This approximation is based on measurements in a 1.5-m-thick surface layer collected with an AC9 instrument at 63 stations in the Arabian Sea, northern Gulf of Mexico, and coastal North Carolina. The light-scattering coefficient at 412 nm ranged from 0.2 to 15.1 m-1 in these waters, and the absorption coefficient at 412 nm ranged from 0.2 to 4.0 m-1. A separate data set for 100 stations from Oceanside, California, and Chesapeake Bay, Virginia, was used to validate the relationship. Although the Oceanside waters were considerably different from the developmental data set (based on absorption-to-scattering ratios and single-scattering albedos), the average error between modeled and measured scattering values was 6.0% for the entire test data set over all wavelengths (without regard to sign). The slope of the spectral scattering relationship decreases progressively from high-scattering, turbid waters dominated by suspended sediments to lower-scattering, clear waters dominated by phytoplankton.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem,” Appl. Opt. 35, 4850–4862 (1996).
    [CrossRef] [PubMed]
  2. A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
    [CrossRef]
  3. Z. P. Lee, K. L. Carder, S. K. Hawes, R. G. Steward, T. G. Peacock, C. O. Davis, “Model for the interpretation of hyperspectral remote-sensing reflectance,” Appl. Opt. 33, 5721–5732 (1994).
    [CrossRef] [PubMed]
  4. S. A. Garver, D. A. Siegel, “Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation. 1. Time series from the Sargasso Sea,” J. Geophys. Res. 102, 18,607–18,625 (1997).
    [CrossRef]
  5. H. R. Gordon, G. C. Boynton, “Radiance–irradiance inversion algorithm for estimating the absorption and backscattering coefficients of natural waters: homogeneous waters,” Appl. Opt. 36, 2636–2641 (1997).
    [CrossRef] [PubMed]
  6. Z. P. Lee, K. L. Carder, T. G. Peacock, C. O. Davis, J. L. Mueller, “Method to derive ocean absorption coefficients from remote-sensing reflectance,” Appl. Opt. 35, 453–462 (1996).
    [CrossRef] [PubMed]
  7. C. S. Roesler, M. J. Perry, “In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance,” J. Geophys. Res. 100, 13,279–13,294 (1995).
    [CrossRef]
  8. M. Sydor, R. A. Arnone, R. W. Gould, G. E. Terrie, S. D. Ladner, C. G. Wood, “Remote sensing technique for determination of volume absorption coefficient of turbid water,” Appl. Opt. 37, 4944–4950 (1998).
    [CrossRef]
  9. H. R. Gordon, A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, New York, 1983).
    [CrossRef]
  10. A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters),” J. Geophys. Res. 93, 10,749–10,768 (1988).
    [CrossRef]
  11. A. Bricaud, A. Morel, L. Prieur, “Optical efficiency factors of some phytoplankters,” Limnol. Oceanogr. 28, 816–832 (1983).
    [CrossRef]
  12. D. Stramski, D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28, 343–383 (1991).
    [CrossRef]
  13. D. Stramski, C. D. Mobley, “Effects of microbial particles on oceanic optics: a database of single-particle optical properties,” Limnol. Oceanogr. 42, 538–549 (1997).
    [CrossRef]
  14. A. Morel, Y.-H. Ahn, “Optical efficiency factors for free-living marine bacteria: influence of bacterioplankton upon the optical properties and particulate organic carbon in oceanic waters,” J. Mar. Res. 48, 145–175 (1990).
    [CrossRef]
  15. A. Morel, Y.-H. Ahn, “Optics of heterotrophic nanoflagellates and ciliates: a tentative assessment of their scattering role in oceanic waters compared to those of bacterial and algal cells,” J. Mar. Res. 49, 177–202 (1991).
    [CrossRef]
  16. W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, J. R. V. Zaneveld, “A comparison of methods for the measurement of the absorption coefficient in natural waters,” J. Geophys. Res. 100, 13,201–13,220 (1995).
    [CrossRef]
  17. T. J. Petzold, “Volume scattering functions for selected ocean waters,” Scripps Institution of Oceanography Ref. 72–78, 79 pp. (1972).
  18. R. W. Austin, T. J. Petzold, “Spectral dependence of the diffuse attenuation coefficient of light in ocean waters,” in Ocean Optics VII, M. A. Blizzard, ed., Proc. SPIE489, 168–178 (1984).
    [CrossRef]
  19. WETLabs, Inc., “AC9 Protocol Manual,” www.wetlabs.com (1998).
  20. J. R. V. Zaneveld, J. C. Kitchen, C. Moore, “The scattering error correction of reflecting-tube absorption meters,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 44–55 (1994).
    [CrossRef]
  21. R. M. Pope, E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
    [CrossRef]
  22. R. C. Smith, K. S. Baker, “Optical properties of the clearest natural waters (200–800 nm),” Appl. Opt. 20, 177–184 (1981).
    [CrossRef] [PubMed]
  23. A. H. Barnard, W. S. Pegau, J. R. V. Zaneveld, “Global relationships of the inherent optical properties of the oceans,” J. Geophys. Res. 103, 24,955–24,968 (1998).
  24. M. Sydor, R. A. Arnone, “Effect of suspended particulate and dissolved organic matter on remote sensing of coastal and riverine waters,” Appl. Opt. 36, 6905–6912 (1997).
    [CrossRef]
  25. W. M. Balch, P. M. Holligan, S. G. Ackleson, K. J. Voss, “Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine,” Limnol. Oceanogr. 36, 629–643 (1991).
    [CrossRef]
  26. R. A. Maffione, D. R. Dana, “Instruments and methods for measuring the backward-scattering coefficient of ocean waters,” Appl. Opt. 36, 6057–6067 (1997).
    [CrossRef] [PubMed]
  27. A. Morel, A. Bricaud, “Theoretical results concerning the optics of phytoplankton, with special reference to remote sensing applications,” in Oceanography from Space, J. F. R. Gower, ed. (Plenum, New York, 1981), pp. 313–327.
    [CrossRef]
  28. C. H. Whitlock, L. R. Poole, W. M. Houghton, “Spectral scattering properties of turbid waters,” Geophys. Res. Lett. 7, 81–84 (1980).
    [CrossRef]

1998

M. Sydor, R. A. Arnone, R. W. Gould, G. E. Terrie, S. D. Ladner, C. G. Wood, “Remote sensing technique for determination of volume absorption coefficient of turbid water,” Appl. Opt. 37, 4944–4950 (1998).
[CrossRef]

A. H. Barnard, W. S. Pegau, J. R. V. Zaneveld, “Global relationships of the inherent optical properties of the oceans,” J. Geophys. Res. 103, 24,955–24,968 (1998).

1997

1996

1995

C. S. Roesler, M. J. Perry, “In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance,” J. Geophys. Res. 100, 13,279–13,294 (1995).
[CrossRef]

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, J. R. V. Zaneveld, “A comparison of methods for the measurement of the absorption coefficient in natural waters,” J. Geophys. Res. 100, 13,201–13,220 (1995).
[CrossRef]

1994

1991

D. Stramski, D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28, 343–383 (1991).
[CrossRef]

W. M. Balch, P. M. Holligan, S. G. Ackleson, K. J. Voss, “Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine,” Limnol. Oceanogr. 36, 629–643 (1991).
[CrossRef]

A. Morel, Y.-H. Ahn, “Optics of heterotrophic nanoflagellates and ciliates: a tentative assessment of their scattering role in oceanic waters compared to those of bacterial and algal cells,” J. Mar. Res. 49, 177–202 (1991).
[CrossRef]

1990

A. Morel, Y.-H. Ahn, “Optical efficiency factors for free-living marine bacteria: influence of bacterioplankton upon the optical properties and particulate organic carbon in oceanic waters,” J. Mar. Res. 48, 145–175 (1990).
[CrossRef]

1988

A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters),” J. Geophys. Res. 93, 10,749–10,768 (1988).
[CrossRef]

1983

A. Bricaud, A. Morel, L. Prieur, “Optical efficiency factors of some phytoplankters,” Limnol. Oceanogr. 28, 816–832 (1983).
[CrossRef]

1981

1980

C. H. Whitlock, L. R. Poole, W. M. Houghton, “Spectral scattering properties of turbid waters,” Geophys. Res. Lett. 7, 81–84 (1980).
[CrossRef]

1977

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

1972

T. J. Petzold, “Volume scattering functions for selected ocean waters,” Scripps Institution of Oceanography Ref. 72–78, 79 pp. (1972).

Ackleson, S. G.

W. M. Balch, P. M. Holligan, S. G. Ackleson, K. J. Voss, “Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine,” Limnol. Oceanogr. 36, 629–643 (1991).
[CrossRef]

Ahn, Y.-H.

A. Morel, Y.-H. Ahn, “Optics of heterotrophic nanoflagellates and ciliates: a tentative assessment of their scattering role in oceanic waters compared to those of bacterial and algal cells,” J. Mar. Res. 49, 177–202 (1991).
[CrossRef]

A. Morel, Y.-H. Ahn, “Optical efficiency factors for free-living marine bacteria: influence of bacterioplankton upon the optical properties and particulate organic carbon in oceanic waters,” J. Mar. Res. 48, 145–175 (1990).
[CrossRef]

Arnone, R. A.

Austin, R. W.

R. W. Austin, T. J. Petzold, “Spectral dependence of the diffuse attenuation coefficient of light in ocean waters,” in Ocean Optics VII, M. A. Blizzard, ed., Proc. SPIE489, 168–178 (1984).
[CrossRef]

Baker, K. S.

Balch, W. M.

W. M. Balch, P. M. Holligan, S. G. Ackleson, K. J. Voss, “Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine,” Limnol. Oceanogr. 36, 629–643 (1991).
[CrossRef]

Barnard, A. H.

A. H. Barnard, W. S. Pegau, J. R. V. Zaneveld, “Global relationships of the inherent optical properties of the oceans,” J. Geophys. Res. 103, 24,955–24,968 (1998).

Boynton, G. C.

Bricaud, A.

A. Bricaud, A. Morel, L. Prieur, “Optical efficiency factors of some phytoplankters,” Limnol. Oceanogr. 28, 816–832 (1983).
[CrossRef]

A. Morel, A. Bricaud, “Theoretical results concerning the optics of phytoplankton, with special reference to remote sensing applications,” in Oceanography from Space, J. F. R. Gower, ed. (Plenum, New York, 1981), pp. 313–327.
[CrossRef]

Carder, K. L.

Cleveland, J. S.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, J. R. V. Zaneveld, “A comparison of methods for the measurement of the absorption coefficient in natural waters,” J. Geophys. Res. 100, 13,201–13,220 (1995).
[CrossRef]

Dana, D. R.

Davis, C. O.

Doss, W.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, J. R. V. Zaneveld, “A comparison of methods for the measurement of the absorption coefficient in natural waters,” J. Geophys. Res. 100, 13,201–13,220 (1995).
[CrossRef]

Fry, E. S.

Garver, S. A.

S. A. Garver, D. A. Siegel, “Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation. 1. Time series from the Sargasso Sea,” J. Geophys. Res. 102, 18,607–18,625 (1997).
[CrossRef]

Gentili, B.

Gordon, H. R.

Gould, R. W.

Gower, J. F. R.

A. Morel, A. Bricaud, “Theoretical results concerning the optics of phytoplankton, with special reference to remote sensing applications,” in Oceanography from Space, J. F. R. Gower, ed. (Plenum, New York, 1981), pp. 313–327.
[CrossRef]

Hawes, S. K.

Holligan, P. M.

W. M. Balch, P. M. Holligan, S. G. Ackleson, K. J. Voss, “Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine,” Limnol. Oceanogr. 36, 629–643 (1991).
[CrossRef]

Houghton, W. M.

C. H. Whitlock, L. R. Poole, W. M. Houghton, “Spectral scattering properties of turbid waters,” Geophys. Res. Lett. 7, 81–84 (1980).
[CrossRef]

Kennedy, C. D.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, J. R. V. Zaneveld, “A comparison of methods for the measurement of the absorption coefficient in natural waters,” J. Geophys. Res. 100, 13,201–13,220 (1995).
[CrossRef]

Kiefer, D. A.

D. Stramski, D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28, 343–383 (1991).
[CrossRef]

Kitchen, J. C.

J. R. V. Zaneveld, J. C. Kitchen, C. Moore, “The scattering error correction of reflecting-tube absorption meters,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 44–55 (1994).
[CrossRef]

Ladner, S. D.

Lee, Z. P.

Maffione, R. A.

R. A. Maffione, D. R. Dana, “Instruments and methods for measuring the backward-scattering coefficient of ocean waters,” Appl. Opt. 36, 6057–6067 (1997).
[CrossRef] [PubMed]

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, J. R. V. Zaneveld, “A comparison of methods for the measurement of the absorption coefficient in natural waters,” J. Geophys. Res. 100, 13,201–13,220 (1995).
[CrossRef]

Mobley, C. D.

D. Stramski, C. D. Mobley, “Effects of microbial particles on oceanic optics: a database of single-particle optical properties,” Limnol. Oceanogr. 42, 538–549 (1997).
[CrossRef]

Moore, C.

J. R. V. Zaneveld, J. C. Kitchen, C. Moore, “The scattering error correction of reflecting-tube absorption meters,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 44–55 (1994).
[CrossRef]

Morel, A.

A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem,” Appl. Opt. 35, 4850–4862 (1996).
[CrossRef] [PubMed]

A. Morel, Y.-H. Ahn, “Optics of heterotrophic nanoflagellates and ciliates: a tentative assessment of their scattering role in oceanic waters compared to those of bacterial and algal cells,” J. Mar. Res. 49, 177–202 (1991).
[CrossRef]

A. Morel, Y.-H. Ahn, “Optical efficiency factors for free-living marine bacteria: influence of bacterioplankton upon the optical properties and particulate organic carbon in oceanic waters,” J. Mar. Res. 48, 145–175 (1990).
[CrossRef]

A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters),” J. Geophys. Res. 93, 10,749–10,768 (1988).
[CrossRef]

A. Bricaud, A. Morel, L. Prieur, “Optical efficiency factors of some phytoplankters,” Limnol. Oceanogr. 28, 816–832 (1983).
[CrossRef]

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

H. R. Gordon, A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, New York, 1983).
[CrossRef]

A. Morel, A. Bricaud, “Theoretical results concerning the optics of phytoplankton, with special reference to remote sensing applications,” in Oceanography from Space, J. F. R. Gower, ed. (Plenum, New York, 1981), pp. 313–327.
[CrossRef]

Mueller, J. L.

Z. P. Lee, K. L. Carder, T. G. Peacock, C. O. Davis, J. L. Mueller, “Method to derive ocean absorption coefficients from remote-sensing reflectance,” Appl. Opt. 35, 453–462 (1996).
[CrossRef] [PubMed]

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, J. R. V. Zaneveld, “A comparison of methods for the measurement of the absorption coefficient in natural waters,” J. Geophys. Res. 100, 13,201–13,220 (1995).
[CrossRef]

Peacock, T. G.

Pegau, W. S.

A. H. Barnard, W. S. Pegau, J. R. V. Zaneveld, “Global relationships of the inherent optical properties of the oceans,” J. Geophys. Res. 103, 24,955–24,968 (1998).

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, J. R. V. Zaneveld, “A comparison of methods for the measurement of the absorption coefficient in natural waters,” J. Geophys. Res. 100, 13,201–13,220 (1995).
[CrossRef]

Perry, M. J.

C. S. Roesler, M. J. Perry, “In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance,” J. Geophys. Res. 100, 13,279–13,294 (1995).
[CrossRef]

Petzold, T. J.

T. J. Petzold, “Volume scattering functions for selected ocean waters,” Scripps Institution of Oceanography Ref. 72–78, 79 pp. (1972).

R. W. Austin, T. J. Petzold, “Spectral dependence of the diffuse attenuation coefficient of light in ocean waters,” in Ocean Optics VII, M. A. Blizzard, ed., Proc. SPIE489, 168–178 (1984).
[CrossRef]

Poole, L. R.

C. H. Whitlock, L. R. Poole, W. M. Houghton, “Spectral scattering properties of turbid waters,” Geophys. Res. Lett. 7, 81–84 (1980).
[CrossRef]

Pope, R. M.

Prieur, L.

A. Bricaud, A. Morel, L. Prieur, “Optical efficiency factors of some phytoplankters,” Limnol. Oceanogr. 28, 816–832 (1983).
[CrossRef]

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

Roesler, C. S.

C. S. Roesler, M. J. Perry, “In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance,” J. Geophys. Res. 100, 13,279–13,294 (1995).
[CrossRef]

Siegel, D. A.

S. A. Garver, D. A. Siegel, “Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation. 1. Time series from the Sargasso Sea,” J. Geophys. Res. 102, 18,607–18,625 (1997).
[CrossRef]

Smith, R. C.

Steward, R. G.

Stone, R.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, J. R. V. Zaneveld, “A comparison of methods for the measurement of the absorption coefficient in natural waters,” J. Geophys. Res. 100, 13,201–13,220 (1995).
[CrossRef]

Stramski, D.

D. Stramski, C. D. Mobley, “Effects of microbial particles on oceanic optics: a database of single-particle optical properties,” Limnol. Oceanogr. 42, 538–549 (1997).
[CrossRef]

D. Stramski, D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28, 343–383 (1991).
[CrossRef]

Sydor, M.

Terrie, G. E.

Trees, C. C.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, J. R. V. Zaneveld, “A comparison of methods for the measurement of the absorption coefficient in natural waters,” J. Geophys. Res. 100, 13,201–13,220 (1995).
[CrossRef]

Voss, K. J.

W. M. Balch, P. M. Holligan, S. G. Ackleson, K. J. Voss, “Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine,” Limnol. Oceanogr. 36, 629–643 (1991).
[CrossRef]

Weidemann, A. D.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, J. R. V. Zaneveld, “A comparison of methods for the measurement of the absorption coefficient in natural waters,” J. Geophys. Res. 100, 13,201–13,220 (1995).
[CrossRef]

Wells, W. H.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, J. R. V. Zaneveld, “A comparison of methods for the measurement of the absorption coefficient in natural waters,” J. Geophys. Res. 100, 13,201–13,220 (1995).
[CrossRef]

Whitlock, C. H.

C. H. Whitlock, L. R. Poole, W. M. Houghton, “Spectral scattering properties of turbid waters,” Geophys. Res. Lett. 7, 81–84 (1980).
[CrossRef]

Wood, C. G.

Zaneveld, J. R. V.

A. H. Barnard, W. S. Pegau, J. R. V. Zaneveld, “Global relationships of the inherent optical properties of the oceans,” J. Geophys. Res. 103, 24,955–24,968 (1998).

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, J. R. V. Zaneveld, “A comparison of methods for the measurement of the absorption coefficient in natural waters,” J. Geophys. Res. 100, 13,201–13,220 (1995).
[CrossRef]

J. R. V. Zaneveld, J. C. Kitchen, C. Moore, “The scattering error correction of reflecting-tube absorption meters,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 44–55 (1994).
[CrossRef]

Appl. Opt.

R. C. Smith, K. S. Baker, “Optical properties of the clearest natural waters (200–800 nm),” Appl. Opt. 20, 177–184 (1981).
[CrossRef] [PubMed]

Z. P. Lee, K. L. Carder, S. K. Hawes, R. G. Steward, T. G. Peacock, C. O. Davis, “Model for the interpretation of hyperspectral remote-sensing reflectance,” Appl. Opt. 33, 5721–5732 (1994).
[CrossRef] [PubMed]

H. R. Gordon, G. C. Boynton, “Radiance–irradiance inversion algorithm for estimating the absorption and backscattering coefficients of natural waters: homogeneous waters,” Appl. Opt. 36, 2636–2641 (1997).
[CrossRef] [PubMed]

R. A. Maffione, D. R. Dana, “Instruments and methods for measuring the backward-scattering coefficient of ocean waters,” Appl. Opt. 36, 6057–6067 (1997).
[CrossRef] [PubMed]

M. Sydor, R. A. Arnone, “Effect of suspended particulate and dissolved organic matter on remote sensing of coastal and riverine waters,” Appl. Opt. 36, 6905–6912 (1997).
[CrossRef]

Z. P. Lee, K. L. Carder, T. G. Peacock, C. O. Davis, J. L. Mueller, “Method to derive ocean absorption coefficients from remote-sensing reflectance,” Appl. Opt. 35, 453–462 (1996).
[CrossRef] [PubMed]

A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem,” Appl. Opt. 35, 4850–4862 (1996).
[CrossRef] [PubMed]

M. Sydor, R. A. Arnone, R. W. Gould, G. E. Terrie, S. D. Ladner, C. G. Wood, “Remote sensing technique for determination of volume absorption coefficient of turbid water,” Appl. Opt. 37, 4944–4950 (1998).
[CrossRef]

R. M. Pope, E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
[CrossRef]

Geophys. Res. Lett.

C. H. Whitlock, L. R. Poole, W. M. Houghton, “Spectral scattering properties of turbid waters,” Geophys. Res. Lett. 7, 81–84 (1980).
[CrossRef]

J. Geophys. Res.

S. A. Garver, D. A. Siegel, “Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation. 1. Time series from the Sargasso Sea,” J. Geophys. Res. 102, 18,607–18,625 (1997).
[CrossRef]

C. S. Roesler, M. J. Perry, “In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance,” J. Geophys. Res. 100, 13,279–13,294 (1995).
[CrossRef]

A. H. Barnard, W. S. Pegau, J. R. V. Zaneveld, “Global relationships of the inherent optical properties of the oceans,” J. Geophys. Res. 103, 24,955–24,968 (1998).

A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters),” J. Geophys. Res. 93, 10,749–10,768 (1988).
[CrossRef]

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, J. R. V. Zaneveld, “A comparison of methods for the measurement of the absorption coefficient in natural waters,” J. Geophys. Res. 100, 13,201–13,220 (1995).
[CrossRef]

J. Mar. Res.

A. Morel, Y.-H. Ahn, “Optical efficiency factors for free-living marine bacteria: influence of bacterioplankton upon the optical properties and particulate organic carbon in oceanic waters,” J. Mar. Res. 48, 145–175 (1990).
[CrossRef]

A. Morel, Y.-H. Ahn, “Optics of heterotrophic nanoflagellates and ciliates: a tentative assessment of their scattering role in oceanic waters compared to those of bacterial and algal cells,” J. Mar. Res. 49, 177–202 (1991).
[CrossRef]

Limnol. Oceanogr.

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

W. M. Balch, P. M. Holligan, S. G. Ackleson, K. J. Voss, “Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine,” Limnol. Oceanogr. 36, 629–643 (1991).
[CrossRef]

A. Bricaud, A. Morel, L. Prieur, “Optical efficiency factors of some phytoplankters,” Limnol. Oceanogr. 28, 816–832 (1983).
[CrossRef]

D. Stramski, C. D. Mobley, “Effects of microbial particles on oceanic optics: a database of single-particle optical properties,” Limnol. Oceanogr. 42, 538–549 (1997).
[CrossRef]

Prog. Oceanogr.

D. Stramski, D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28, 343–383 (1991).
[CrossRef]

Scripps Institution of Oceanography Ref. 72–78, 79

T. J. Petzold, “Volume scattering functions for selected ocean waters,” Scripps Institution of Oceanography Ref. 72–78, 79 pp. (1972).

Other

R. W. Austin, T. J. Petzold, “Spectral dependence of the diffuse attenuation coefficient of light in ocean waters,” in Ocean Optics VII, M. A. Blizzard, ed., Proc. SPIE489, 168–178 (1984).
[CrossRef]

WETLabs, Inc., “AC9 Protocol Manual,” www.wetlabs.com (1998).

J. R. V. Zaneveld, J. C. Kitchen, C. Moore, “The scattering error correction of reflecting-tube absorption meters,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 44–55 (1994).
[CrossRef]

H. R. Gordon, A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, New York, 1983).
[CrossRef]

A. Morel, A. Bricaud, “Theoretical results concerning the optics of phytoplankton, with special reference to remote sensing applications,” in Oceanography from Space, J. F. R. Gower, ed. (Plenum, New York, 1981), pp. 313–327.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Wavelength dependence of scattering, b(λ) versus b(555) for λ = 412, 440, 488, 510, 532, 650, 676, and 715 nm (AC9-derived values). The curves represent least-squares linear regressions. Slopes, intercepts, and R 2 values are listed in Table 2.

Fig. 2
Fig. 2

Regression slope versus wavelength. The slope values M are from the regression analyses of the b(λ) versus b(555) data shown in Fig. 1. The solid line represents the least-squares regression fit to the data, with slope, intercept, and R 2 values indicated.

Fig. 3
Fig. 3

a(412)/b(412) ratio versus ω0555. Circles indicate stations from Oceanside, California; squares indicate stations from all other locations (including both model development and validation data sets).

Fig. 4
Fig. 4

AC9-derived b(555) versus pigment concentration (sum of chlorophyll and phaeophytin) for Chesapeake Bay stations. Solid curve represents the Morel11 model to estimate b(550) from pigments; dotted curve represents the Morel11 limit for case 1 waters (i.e., points on or above the dotted curve are from case 2 waters).

Fig. 5
Fig. 5

Backscattering versus scattering (data from Petzold17). The solid line represents the least-squares regression fit to the data, with slope, intercept, and R 2 values indicated.

Fig. 6
Fig. 6

b(λ) normalized to b(555) versus wavelength. (a) Developmental data set (circles). (b) Test data set (squares). Linear and power model (n = 0, -1, -2) spectra are indicated for comparison with the data distributions.

Fig. 7
Fig. 7

Percent error between modeled and AC9-derived b(λ) values versus b(555). Model results are from the validation data set (Oceanside and Chesapeake Bay stations). Dotted lines indicate ±10% error; dashed lines indicate ±25% error. In the legend, the values in parentheses indicate the average percent error for each wavelength, without regard to the sign of the error (for example, the average of a 10% and a -10% error is 10%, not 0).

Fig. 8
Fig. 8

Scattering coefficient versus wavelength. Selected stations are from the Chesapeake Bay region (validation data set) covering a wide range of scattering values. Note the decrease in the spectral slope as the scattering magnitude decreases. Solid lines are model results; dotted lines are least-squares regression fits to the AC9-derived values. Spectral slope values m are indicated for the regression lines.

Tables (2)

Tables Icon

Table 1 Stations Comprising the Model Development and Validation Data Sets

Tables Icon

Table 2 Spectral b Least-Squares Linear Regression Resultsa

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

R=fbb/a.
bλ=cλ-aλ.
bλ=Mλb555+I.
Mλ=mλ+i,
bλr=Mλrb555, bλ=Mλb555,
Mλr=mλr+i, Mλ=mλ+i.
bλr=mλr+ib555,
bλ=mλ+ib555.
bλr/mλr+i=bλ/mλ+i.
bλ=bλrmλ+i/mλr+i.
percent error=100 modeled bλ-measured bλ/measured bλ.
mbλ-bλr/λ-λr.
m=-0.00113 b555.

Metrics