Abstract

Diffractive elements with polarization multiplexing for the visible spectral region are demonstrated. The polarization-multiplexing property of the element is based on the polarization-dependent transmission characteristics of metal-stripe subwavelength period gratings. The proper dimensions of these gratings are estimated by rigorous calculations. The principle of polarization multiplexing by use of metal-stripe subwavelength period gratings is described for a diffractive element that has a binary amplitude transmission per polarization channel and is demonstrated by experimental results.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Turunen, F. Wyrowski, Diffractive Optics for Industrial and Commercial Applications (Akademie Verlag, Berlin, 1997).
  2. F. Xu, J. E. Ford, Y. Fainman, “Polarization-selective computer-generated holograms: design, fabrication, and applications,” Appl. Opt. 34, 256–266 (1995).
    [CrossRef] [PubMed]
  3. E. Noponen, A. Vasara, J. Turunen, J. Miller, M. Taghizadeh, “Synthetic diffractive optics in the resonance domain,” J. Opt. Soc. Am. A 9, 1206–1213 (1992).
    [CrossRef]
  4. N. Davidson, A. Friesem, E. Hasman, “Computer-generated relief gratings as space-variant polarization elements,” Opt. Lett. 17, 1541–1543 (1992).
    [CrossRef] [PubMed]
  5. F. Xu, R.-C. Tyan, P.-C. Sun, Y. Fainman, C.-C. Cheng, A. Scherer, “Form-birefringent computer-generated holograms,” Opt. Lett. 21, 1513–1515 (1996).
    [CrossRef] [PubMed]
  6. R.-C. Tyan, A. A. Salvekar, H.-P. Chou, C.-C. Cheng, A. Scherer, P.-C. Sun, F. Xu, Y. Fainman, “Design, fabrication, and characterization of form-birefringent multilayer polarizing beam splitter,” J. Opt. Soc. Am. A 14, 1627–1636 (1997).
    [CrossRef]
  7. S. Liu, Y. Chen, “Multilevel binary phase grating polarization device with a birefringent substrate,” Opt. Lett. 20, 1832–1834 (1995).
    [CrossRef] [PubMed]
  8. N. Nieuborg, A. Kirk, B. Morlion, H. Thienpont, I. Veretennicoff, “Polarization-selective diffractive optical elements with an index-matching gap material,” Appl. Opt. 36, 4681–4685 (1997).
    [CrossRef] [PubMed]
  9. J. Hossfeld, D. Columbus, H. Sprave, T. Tschudi, W. Dultz, “Polarizing computer-generated holograms,” Opt. Eng. 32, 1835–1838 (1993).
    [CrossRef]
  10. H. Aagedal, F. Wyrowski, M. Schmid, “Paraxial beam splitting and shaping,” in Diffractive Optics for Industrial and Commercial Applications, J. Turunen, F. Wyrowski, eds. (Akademie Verlag, Berlin, 1997), pp. 165–188.
  11. H. Aagedal, F. Wyrowski, “On pixel-oriented structure parameterization for design of diffractive elements,” J. Mod. Opt. 45, 1451–1464 (1998).
    [CrossRef]
  12. J. Auton, “Infrared transmission polarizers by photolithography,” Appl. Opt. 6, 1023–1027 (1967).
    [CrossRef] [PubMed]
  13. G. Bird, M. Parrish, “The wire grid as a near-infrared polarizer,” J. Opt. Soc. Am. 50, 886 (1960).
    [CrossRef]
  14. P. Cheo, C. Bass, “Efficient wire-grid polarizer for CO2 lasers,” Appl. Phys. Lett. 18, 565–567 (1971).
    [CrossRef]
  15. B. Schnabel, E.-B. Kley, F. Wyrowski, “Polarizing visible light by subwavelength-period metal-stripe gratings,” Opt. Eng. 30, 220–226 (1999).
    [CrossRef]
  16. J. Turunen, “Diffraction theory of microrelief gratings,” in Micro-optics: Elements, Systems, and Applications, H. Herzig, ed. (Taylor & Francis, London, 1997), pp. 31–52.
  17. F. Wyrowski, O. Brynghahl, “Iterative Fourier-transform algorithm applied to computer holography,” J. Opt. Soc. Am. A 5, 1058–1065 (1988).
    [CrossRef]
  18. O. Bryngdahl, F. Wyrowski, “Digital holography—computer-generated holograms,” in Progress in Optics XXVIII, E. Wolf, ed. (North-Holland, Amsterdam, 1990), pp. 1–86.
    [CrossRef]

1999

B. Schnabel, E.-B. Kley, F. Wyrowski, “Polarizing visible light by subwavelength-period metal-stripe gratings,” Opt. Eng. 30, 220–226 (1999).
[CrossRef]

1998

H. Aagedal, F. Wyrowski, “On pixel-oriented structure parameterization for design of diffractive elements,” J. Mod. Opt. 45, 1451–1464 (1998).
[CrossRef]

1997

1996

1995

1993

J. Hossfeld, D. Columbus, H. Sprave, T. Tschudi, W. Dultz, “Polarizing computer-generated holograms,” Opt. Eng. 32, 1835–1838 (1993).
[CrossRef]

1992

1988

1971

P. Cheo, C. Bass, “Efficient wire-grid polarizer for CO2 lasers,” Appl. Phys. Lett. 18, 565–567 (1971).
[CrossRef]

1967

1960

Aagedal, H.

H. Aagedal, F. Wyrowski, “On pixel-oriented structure parameterization for design of diffractive elements,” J. Mod. Opt. 45, 1451–1464 (1998).
[CrossRef]

H. Aagedal, F. Wyrowski, M. Schmid, “Paraxial beam splitting and shaping,” in Diffractive Optics for Industrial and Commercial Applications, J. Turunen, F. Wyrowski, eds. (Akademie Verlag, Berlin, 1997), pp. 165–188.

Auton, J.

Bass, C.

P. Cheo, C. Bass, “Efficient wire-grid polarizer for CO2 lasers,” Appl. Phys. Lett. 18, 565–567 (1971).
[CrossRef]

Bird, G.

Bryngdahl, O.

O. Bryngdahl, F. Wyrowski, “Digital holography—computer-generated holograms,” in Progress in Optics XXVIII, E. Wolf, ed. (North-Holland, Amsterdam, 1990), pp. 1–86.
[CrossRef]

Brynghahl, O.

Chen, Y.

Cheng, C.-C.

Cheo, P.

P. Cheo, C. Bass, “Efficient wire-grid polarizer for CO2 lasers,” Appl. Phys. Lett. 18, 565–567 (1971).
[CrossRef]

Chou, H.-P.

Columbus, D.

J. Hossfeld, D. Columbus, H. Sprave, T. Tschudi, W. Dultz, “Polarizing computer-generated holograms,” Opt. Eng. 32, 1835–1838 (1993).
[CrossRef]

Davidson, N.

Dultz, W.

J. Hossfeld, D. Columbus, H. Sprave, T. Tschudi, W. Dultz, “Polarizing computer-generated holograms,” Opt. Eng. 32, 1835–1838 (1993).
[CrossRef]

Fainman, Y.

Ford, J. E.

Friesem, A.

Hasman, E.

Hossfeld, J.

J. Hossfeld, D. Columbus, H. Sprave, T. Tschudi, W. Dultz, “Polarizing computer-generated holograms,” Opt. Eng. 32, 1835–1838 (1993).
[CrossRef]

Kirk, A.

Kley, E.-B.

B. Schnabel, E.-B. Kley, F. Wyrowski, “Polarizing visible light by subwavelength-period metal-stripe gratings,” Opt. Eng. 30, 220–226 (1999).
[CrossRef]

Liu, S.

Miller, J.

Morlion, B.

Nieuborg, N.

Noponen, E.

Parrish, M.

Salvekar, A. A.

Scherer, A.

Schmid, M.

H. Aagedal, F. Wyrowski, M. Schmid, “Paraxial beam splitting and shaping,” in Diffractive Optics for Industrial and Commercial Applications, J. Turunen, F. Wyrowski, eds. (Akademie Verlag, Berlin, 1997), pp. 165–188.

Schnabel, B.

B. Schnabel, E.-B. Kley, F. Wyrowski, “Polarizing visible light by subwavelength-period metal-stripe gratings,” Opt. Eng. 30, 220–226 (1999).
[CrossRef]

Sprave, H.

J. Hossfeld, D. Columbus, H. Sprave, T. Tschudi, W. Dultz, “Polarizing computer-generated holograms,” Opt. Eng. 32, 1835–1838 (1993).
[CrossRef]

Sun, P.-C.

Taghizadeh, M.

Thienpont, H.

Tschudi, T.

J. Hossfeld, D. Columbus, H. Sprave, T. Tschudi, W. Dultz, “Polarizing computer-generated holograms,” Opt. Eng. 32, 1835–1838 (1993).
[CrossRef]

Turunen, J.

E. Noponen, A. Vasara, J. Turunen, J. Miller, M. Taghizadeh, “Synthetic diffractive optics in the resonance domain,” J. Opt. Soc. Am. A 9, 1206–1213 (1992).
[CrossRef]

J. Turunen, F. Wyrowski, Diffractive Optics for Industrial and Commercial Applications (Akademie Verlag, Berlin, 1997).

J. Turunen, “Diffraction theory of microrelief gratings,” in Micro-optics: Elements, Systems, and Applications, H. Herzig, ed. (Taylor & Francis, London, 1997), pp. 31–52.

Tyan, R.-C.

Vasara, A.

Veretennicoff, I.

Wyrowski, F.

B. Schnabel, E.-B. Kley, F. Wyrowski, “Polarizing visible light by subwavelength-period metal-stripe gratings,” Opt. Eng. 30, 220–226 (1999).
[CrossRef]

H. Aagedal, F. Wyrowski, “On pixel-oriented structure parameterization for design of diffractive elements,” J. Mod. Opt. 45, 1451–1464 (1998).
[CrossRef]

F. Wyrowski, O. Brynghahl, “Iterative Fourier-transform algorithm applied to computer holography,” J. Opt. Soc. Am. A 5, 1058–1065 (1988).
[CrossRef]

H. Aagedal, F. Wyrowski, M. Schmid, “Paraxial beam splitting and shaping,” in Diffractive Optics for Industrial and Commercial Applications, J. Turunen, F. Wyrowski, eds. (Akademie Verlag, Berlin, 1997), pp. 165–188.

O. Bryngdahl, F. Wyrowski, “Digital holography—computer-generated holograms,” in Progress in Optics XXVIII, E. Wolf, ed. (North-Holland, Amsterdam, 1990), pp. 1–86.
[CrossRef]

J. Turunen, F. Wyrowski, Diffractive Optics for Industrial and Commercial Applications (Akademie Verlag, Berlin, 1997).

Xu, F.

Appl. Opt.

Appl. Phys. Lett.

P. Cheo, C. Bass, “Efficient wire-grid polarizer for CO2 lasers,” Appl. Phys. Lett. 18, 565–567 (1971).
[CrossRef]

J. Mod. Opt.

H. Aagedal, F. Wyrowski, “On pixel-oriented structure parameterization for design of diffractive elements,” J. Mod. Opt. 45, 1451–1464 (1998).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Opt. Eng.

J. Hossfeld, D. Columbus, H. Sprave, T. Tschudi, W. Dultz, “Polarizing computer-generated holograms,” Opt. Eng. 32, 1835–1838 (1993).
[CrossRef]

B. Schnabel, E.-B. Kley, F. Wyrowski, “Polarizing visible light by subwavelength-period metal-stripe gratings,” Opt. Eng. 30, 220–226 (1999).
[CrossRef]

Opt. Lett.

Other

H. Aagedal, F. Wyrowski, M. Schmid, “Paraxial beam splitting and shaping,” in Diffractive Optics for Industrial and Commercial Applications, J. Turunen, F. Wyrowski, eds. (Akademie Verlag, Berlin, 1997), pp. 165–188.

J. Turunen, “Diffraction theory of microrelief gratings,” in Micro-optics: Elements, Systems, and Applications, H. Herzig, ed. (Taylor & Francis, London, 1997), pp. 31–52.

O. Bryngdahl, F. Wyrowski, “Digital holography—computer-generated holograms,” in Progress in Optics XXVIII, E. Wolf, ed. (North-Holland, Amsterdam, 1990), pp. 1–86.
[CrossRef]

J. Turunen, F. Wyrowski, Diffractive Optics for Industrial and Commercial Applications (Akademie Verlag, Berlin, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Sketch of the transmission function of a binary amplitude element with pixel parameterization.

Fig. 2
Fig. 2

Sketch of a binary metal-stripe grating upon a dielectric substrate.

Fig. 3
Fig. 3

Transmission characteristics of a binary SWPG in chromium upon quartz as a function of the duty cycle for different grating periods.

Fig. 4
Fig. 4

(a) Desired signal intensity and intensity of the simulated far-field diffraction pattern for the calculated element (b) with the binary transmission function, (c) with the calculated transmissions of Table 2, and (d) with the measured transmissions of Table 3 for illumination with polarization P x and P y .

Fig. 5
Fig. 5

Illustration of the fabrication process of the diffractive element with polarization multiplexing.

Fig. 6
Fig. 6

Scanning-electron microscope picture of the element structure etched into the chromium layer.

Fig. 7
Fig. 7

Transmission of the diffractive element for illumination with linearly polarized light: (a) polarization direction P x , (b) polarization direction P y .

Fig. 8
Fig. 8

Intensity in the Fourier plane of the diffractive element for illumination with linearly polarized light: (a) polarization direction P x , (b) polarization direction P y .

Tables (3)

Tables Icon

Table 1 Ideal Transmission Values for the Four Different Pixel Types of the Diffractive Amplitude Element with Polarization Multiplexing

Tables Icon

Table 2 Calculated Transmission Values for the Four Different Pixel Typesa

Tables Icon

Table 3 Measured Intensity Transmission of the Different Types of Pixel for Illumination with Linearly Polarized Light Px and Py of λ = 633 nm

Metrics