Abstract

Previous research on highly reflective multilayer optical coatings has shown that varying the thickness of layers from their traditional quarter-wave values gives the potential for greater damage thresholds without sacrificing the desired optical properties. We numerically investigate the influence of unintended layer thickness fluctuations in these nontraditional designs, concluding that such fluctuations should have minimal effect on the optical properties of the coating. This result makes the prospect of producing nontraditional designs more promising.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Thomsen, Z. L. Wu, “Polarizing and reflective coatings based on half-wave layer pairs,” Appl. Opt. 36, 307–313 (1997).
    [CrossRef] [PubMed]
  2. J. F. DeFord, M. R. Kozlowski, “Modeling of electric-field enhancements at nodular defects in dielectric mirror coatings,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newman, M. J. Soileau, eds., Proc. SPIE1848, 455–469 (1992).
  3. R. J. Tench, R. Chow, M. R. Kozlowski, “Characterization of defect geometries in multilayer optical coatings,” J Vac. Sci. Technol. A12, 2808–2813 (1994).
    [CrossRef]
  4. R. J. Tench, M. R. Kozlowski, R. Chow, “Investigation of the microstructure of coatings for high-power lasers by non-optical techniques,” in Optical Interference Coatings, F. Abeleès, ed., Proc. SPIE2253, 596–602 (1994).
    [CrossRef]
  5. Z. L. Wu, M. Thomsen, P. K. Kuo, Y. Lu, C. Stolz, M. Kozlowski, “Photothermal characterization of optical thin film coatings,” Opt. Eng. 36, 251–262 (1997).
    [CrossRef]
  6. D. G. Cahill, T. H. Allen, “Thermal conductivity of sputtered and evaporated SiO2 and TiO2 optical coatings,” Appl. Phys. Lett. 65, 309–311 (1994).
    [CrossRef]
  7. Z. L. Wu, P. K. Kuo, L. Wei, S. L. Gu, R. L. Thomas, “Photothermal characterization of optical thin films,” Thin Solid Films 236, 191–198 (1993).
    [CrossRef]
  8. D. Ristau, J. Ebert, “Development of a thermographic laser calorimeter,” Appl. Opt. 25, 4571–4578 (1986).
    [CrossRef] [PubMed]
  9. J. C. Lambropoulos, M. R. Jolly, C. A. Amsden, S. E. Gillman, M. J. Sinicropi, D. Diakomihalis, S. D. Jacobs, “Thermal conductivity of dielectric thin films,” J. Appl. Phys. 66, 4230–4242 (1989).
    [CrossRef]
  10. H. A. Macleod, Thin-Film Optical Filters, 2nd ed. (McGraw-Hill, New York, 1989).

1997 (2)

Z. L. Wu, M. Thomsen, P. K. Kuo, Y. Lu, C. Stolz, M. Kozlowski, “Photothermal characterization of optical thin film coatings,” Opt. Eng. 36, 251–262 (1997).
[CrossRef]

M. Thomsen, Z. L. Wu, “Polarizing and reflective coatings based on half-wave layer pairs,” Appl. Opt. 36, 307–313 (1997).
[CrossRef] [PubMed]

1994 (2)

R. J. Tench, R. Chow, M. R. Kozlowski, “Characterization of defect geometries in multilayer optical coatings,” J Vac. Sci. Technol. A12, 2808–2813 (1994).
[CrossRef]

D. G. Cahill, T. H. Allen, “Thermal conductivity of sputtered and evaporated SiO2 and TiO2 optical coatings,” Appl. Phys. Lett. 65, 309–311 (1994).
[CrossRef]

1993 (1)

Z. L. Wu, P. K. Kuo, L. Wei, S. L. Gu, R. L. Thomas, “Photothermal characterization of optical thin films,” Thin Solid Films 236, 191–198 (1993).
[CrossRef]

1989 (1)

J. C. Lambropoulos, M. R. Jolly, C. A. Amsden, S. E. Gillman, M. J. Sinicropi, D. Diakomihalis, S. D. Jacobs, “Thermal conductivity of dielectric thin films,” J. Appl. Phys. 66, 4230–4242 (1989).
[CrossRef]

1986 (1)

Allen, T. H.

D. G. Cahill, T. H. Allen, “Thermal conductivity of sputtered and evaporated SiO2 and TiO2 optical coatings,” Appl. Phys. Lett. 65, 309–311 (1994).
[CrossRef]

Amsden, C. A.

J. C. Lambropoulos, M. R. Jolly, C. A. Amsden, S. E. Gillman, M. J. Sinicropi, D. Diakomihalis, S. D. Jacobs, “Thermal conductivity of dielectric thin films,” J. Appl. Phys. 66, 4230–4242 (1989).
[CrossRef]

Cahill, D. G.

D. G. Cahill, T. H. Allen, “Thermal conductivity of sputtered and evaporated SiO2 and TiO2 optical coatings,” Appl. Phys. Lett. 65, 309–311 (1994).
[CrossRef]

Chow, R.

R. J. Tench, R. Chow, M. R. Kozlowski, “Characterization of defect geometries in multilayer optical coatings,” J Vac. Sci. Technol. A12, 2808–2813 (1994).
[CrossRef]

R. J. Tench, M. R. Kozlowski, R. Chow, “Investigation of the microstructure of coatings for high-power lasers by non-optical techniques,” in Optical Interference Coatings, F. Abeleès, ed., Proc. SPIE2253, 596–602 (1994).
[CrossRef]

DeFord, J. F.

J. F. DeFord, M. R. Kozlowski, “Modeling of electric-field enhancements at nodular defects in dielectric mirror coatings,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newman, M. J. Soileau, eds., Proc. SPIE1848, 455–469 (1992).

Diakomihalis, D.

J. C. Lambropoulos, M. R. Jolly, C. A. Amsden, S. E. Gillman, M. J. Sinicropi, D. Diakomihalis, S. D. Jacobs, “Thermal conductivity of dielectric thin films,” J. Appl. Phys. 66, 4230–4242 (1989).
[CrossRef]

Ebert, J.

Gillman, S. E.

J. C. Lambropoulos, M. R. Jolly, C. A. Amsden, S. E. Gillman, M. J. Sinicropi, D. Diakomihalis, S. D. Jacobs, “Thermal conductivity of dielectric thin films,” J. Appl. Phys. 66, 4230–4242 (1989).
[CrossRef]

Gu, S. L.

Z. L. Wu, P. K. Kuo, L. Wei, S. L. Gu, R. L. Thomas, “Photothermal characterization of optical thin films,” Thin Solid Films 236, 191–198 (1993).
[CrossRef]

Jacobs, S. D.

J. C. Lambropoulos, M. R. Jolly, C. A. Amsden, S. E. Gillman, M. J. Sinicropi, D. Diakomihalis, S. D. Jacobs, “Thermal conductivity of dielectric thin films,” J. Appl. Phys. 66, 4230–4242 (1989).
[CrossRef]

Jolly, M. R.

J. C. Lambropoulos, M. R. Jolly, C. A. Amsden, S. E. Gillman, M. J. Sinicropi, D. Diakomihalis, S. D. Jacobs, “Thermal conductivity of dielectric thin films,” J. Appl. Phys. 66, 4230–4242 (1989).
[CrossRef]

Kozlowski, M.

Z. L. Wu, M. Thomsen, P. K. Kuo, Y. Lu, C. Stolz, M. Kozlowski, “Photothermal characterization of optical thin film coatings,” Opt. Eng. 36, 251–262 (1997).
[CrossRef]

Kozlowski, M. R.

R. J. Tench, R. Chow, M. R. Kozlowski, “Characterization of defect geometries in multilayer optical coatings,” J Vac. Sci. Technol. A12, 2808–2813 (1994).
[CrossRef]

J. F. DeFord, M. R. Kozlowski, “Modeling of electric-field enhancements at nodular defects in dielectric mirror coatings,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newman, M. J. Soileau, eds., Proc. SPIE1848, 455–469 (1992).

R. J. Tench, M. R. Kozlowski, R. Chow, “Investigation of the microstructure of coatings for high-power lasers by non-optical techniques,” in Optical Interference Coatings, F. Abeleès, ed., Proc. SPIE2253, 596–602 (1994).
[CrossRef]

Kuo, P. K.

Z. L. Wu, M. Thomsen, P. K. Kuo, Y. Lu, C. Stolz, M. Kozlowski, “Photothermal characterization of optical thin film coatings,” Opt. Eng. 36, 251–262 (1997).
[CrossRef]

Z. L. Wu, P. K. Kuo, L. Wei, S. L. Gu, R. L. Thomas, “Photothermal characterization of optical thin films,” Thin Solid Films 236, 191–198 (1993).
[CrossRef]

Lambropoulos, J. C.

J. C. Lambropoulos, M. R. Jolly, C. A. Amsden, S. E. Gillman, M. J. Sinicropi, D. Diakomihalis, S. D. Jacobs, “Thermal conductivity of dielectric thin films,” J. Appl. Phys. 66, 4230–4242 (1989).
[CrossRef]

Lu, Y.

Z. L. Wu, M. Thomsen, P. K. Kuo, Y. Lu, C. Stolz, M. Kozlowski, “Photothermal characterization of optical thin film coatings,” Opt. Eng. 36, 251–262 (1997).
[CrossRef]

Macleod, H. A.

H. A. Macleod, Thin-Film Optical Filters, 2nd ed. (McGraw-Hill, New York, 1989).

Ristau, D.

Sinicropi, M. J.

J. C. Lambropoulos, M. R. Jolly, C. A. Amsden, S. E. Gillman, M. J. Sinicropi, D. Diakomihalis, S. D. Jacobs, “Thermal conductivity of dielectric thin films,” J. Appl. Phys. 66, 4230–4242 (1989).
[CrossRef]

Stolz, C.

Z. L. Wu, M. Thomsen, P. K. Kuo, Y. Lu, C. Stolz, M. Kozlowski, “Photothermal characterization of optical thin film coatings,” Opt. Eng. 36, 251–262 (1997).
[CrossRef]

Tench, R. J.

R. J. Tench, R. Chow, M. R. Kozlowski, “Characterization of defect geometries in multilayer optical coatings,” J Vac. Sci. Technol. A12, 2808–2813 (1994).
[CrossRef]

R. J. Tench, M. R. Kozlowski, R. Chow, “Investigation of the microstructure of coatings for high-power lasers by non-optical techniques,” in Optical Interference Coatings, F. Abeleès, ed., Proc. SPIE2253, 596–602 (1994).
[CrossRef]

Thomas, R. L.

Z. L. Wu, P. K. Kuo, L. Wei, S. L. Gu, R. L. Thomas, “Photothermal characterization of optical thin films,” Thin Solid Films 236, 191–198 (1993).
[CrossRef]

Thomsen, M.

M. Thomsen, Z. L. Wu, “Polarizing and reflective coatings based on half-wave layer pairs,” Appl. Opt. 36, 307–313 (1997).
[CrossRef] [PubMed]

Z. L. Wu, M. Thomsen, P. K. Kuo, Y. Lu, C. Stolz, M. Kozlowski, “Photothermal characterization of optical thin film coatings,” Opt. Eng. 36, 251–262 (1997).
[CrossRef]

Wei, L.

Z. L. Wu, P. K. Kuo, L. Wei, S. L. Gu, R. L. Thomas, “Photothermal characterization of optical thin films,” Thin Solid Films 236, 191–198 (1993).
[CrossRef]

Wu, Z. L.

Z. L. Wu, M. Thomsen, P. K. Kuo, Y. Lu, C. Stolz, M. Kozlowski, “Photothermal characterization of optical thin film coatings,” Opt. Eng. 36, 251–262 (1997).
[CrossRef]

M. Thomsen, Z. L. Wu, “Polarizing and reflective coatings based on half-wave layer pairs,” Appl. Opt. 36, 307–313 (1997).
[CrossRef] [PubMed]

Z. L. Wu, P. K. Kuo, L. Wei, S. L. Gu, R. L. Thomas, “Photothermal characterization of optical thin films,” Thin Solid Films 236, 191–198 (1993).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

D. G. Cahill, T. H. Allen, “Thermal conductivity of sputtered and evaporated SiO2 and TiO2 optical coatings,” Appl. Phys. Lett. 65, 309–311 (1994).
[CrossRef]

J Vac. Sci. Technol. (1)

R. J. Tench, R. Chow, M. R. Kozlowski, “Characterization of defect geometries in multilayer optical coatings,” J Vac. Sci. Technol. A12, 2808–2813 (1994).
[CrossRef]

J. Appl. Phys. (1)

J. C. Lambropoulos, M. R. Jolly, C. A. Amsden, S. E. Gillman, M. J. Sinicropi, D. Diakomihalis, S. D. Jacobs, “Thermal conductivity of dielectric thin films,” J. Appl. Phys. 66, 4230–4242 (1989).
[CrossRef]

Opt. Eng. (1)

Z. L. Wu, M. Thomsen, P. K. Kuo, Y. Lu, C. Stolz, M. Kozlowski, “Photothermal characterization of optical thin film coatings,” Opt. Eng. 36, 251–262 (1997).
[CrossRef]

Thin Solid Films (1)

Z. L. Wu, P. K. Kuo, L. Wei, S. L. Gu, R. L. Thomas, “Photothermal characterization of optical thin films,” Thin Solid Films 236, 191–198 (1993).
[CrossRef]

Other (3)

H. A. Macleod, Thin-Film Optical Filters, 2nd ed. (McGraw-Hill, New York, 1989).

J. F. DeFord, M. R. Kozlowski, “Modeling of electric-field enhancements at nodular defects in dielectric mirror coatings,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newman, M. J. Soileau, eds., Proc. SPIE1848, 455–469 (1992).

R. J. Tench, M. R. Kozlowski, R. Chow, “Investigation of the microstructure of coatings for high-power lasers by non-optical techniques,” in Optical Interference Coatings, F. Abeleès, ed., Proc. SPIE2253, 596–602 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Scatter plot of reflectance versus 〈ε〉 for 20 different simulated coatings, each with 11 layer pairs and a target value of ε = 0.13. The solid curve shows the reflectance as a function of ε in the absence of fluctuations.

Tables (1)

Tables Icon

Table 1 Comparison of the Reflectances of Two Different Film Designs with Fluctuationsa

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

dhaf=0.5-ελ2Nhaf, dsil=0.5+ελ2Nsil,

Metrics