Abstract

The performances of a CCD detector have been evaluated in a wide spectral region, which ranges from the near IR to the soft x ray. Four different experimental setups have been used: a Czerny–Turner monochromator for the 1100–250-nm region, a normal-incidence Johnson–Onaka monochromator for the 250–30-nm region, a grazing-incidence Rowland monochromator for the 30–0.27-nm region, and a test facility with broadband filters for the 0.27–0.14-nm region. The CCD is thinned and backilluminated, with a 512 × 512 format and 24 µm × 24 µm pixels. The quantum efficiency was measured in the 1100–0.14-nm (1-eV to 9-keV) region, and the uniformity of response was in the 1100–58-nm (1–21-eV) region. Contamination effects in the vacuum UV range are also discussed.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Janesick, “Scientific charge-coupled devices,” Opt. Eng. 26, 692–715 (1987).
  2. R. A. Stern, R. C. Catura, M. M. Blouke, M. Winzenread, “EUV astronomical spectroscopy with CCD detectors,” in Optical Sensors and Electronic Photography, M. Blouke, D. Pophal, eds., Proc. SPIE1071, 31–42 (1989).
  3. G. Sims, “Improvement in CCD quantum efficiency in the UV and near-UV,” in Optical Sensors and Electronic Photography, M. Blouke, D. Pophal, eds., Proc. SPIE1071, 214–228 (1989).
  4. D. H. Gudehus, D. J. Hegyi, “The design and construction of a charge-coupled device imaging system,” Astrophys. J. 90, 130–138 (1985).
  5. C. A. Klein, “Bandgap dependence and related features of radiation ionization energies in semiconductors,” J. Appl. Phys. 39, 2029–2038 (1968).
    [CrossRef]
  6. G. Bonanno, G. Naletto, G. Tondello, “A test facility to calibrate EUV detectors,” in Proceedings of the European Space Agency Symposium on Photon Detectors for Space Instrumentation, H. Habing, ed., ESA Spec. Publ. 356 (European Space Agency, Estec, The Netherlands, 1992), pp. 233–236.
  7. A. Boscolo, L. Poletto, G. Tondello, “Soft-x-ray (2–6-keV) spectroscopy using gratings at extreme grazing incidence,” in Multilayer and Grazing Incidence X-Ray Optics, R. Hoover, A. Walker, eds., Proc. SPIE2805, 260–266 (1996).
    [CrossRef]
  8. A. Boscolo, L. Poletto, G. Tondello, “Analysis of the soft-x-ray emissions of the Manson source,” (Department of Electronics and Informatics, University of Padova, Istituto Nazionale per la Fisica della Materia, via Gradenigo, 6/A-35131 Padova, Italy, 1995).
  9. R. Korde, J. S. Kable, L. R. Canfield, “One gigarad passivating nitrided oxides for 100% internal quantum efficiency silicon photodiodes,” IEEE Trans. Nucl. Sci. 40, 1655–1669 (1993).
    [CrossRef]
  10. A. Boscolo, L. Placentino, L. Poletto, “Quantum efficiency measurements of an uncoated CEM in the range 0.14–160 nm (9 keV–8 eV),” Pure Appl. Opt. 7, L43–L48 (1998).
    [CrossRef]
  11. G. Naletto, G. Tondello, G. Bonanno, R. Di Benedetto, S. Scuderi, “Response analysis in the 300- to 2500-Å spectral range of ultraviolet-enhanced charge-coupled devices,” Opt. Eng. 33, 2544–2552 (1994).
    [CrossRef]
  12. “Contamination control plan UVCS,” Ball Aerospace, Boulder, Colo. 80309 (internal communication, 1988).

1998

A. Boscolo, L. Placentino, L. Poletto, “Quantum efficiency measurements of an uncoated CEM in the range 0.14–160 nm (9 keV–8 eV),” Pure Appl. Opt. 7, L43–L48 (1998).
[CrossRef]

1994

G. Naletto, G. Tondello, G. Bonanno, R. Di Benedetto, S. Scuderi, “Response analysis in the 300- to 2500-Å spectral range of ultraviolet-enhanced charge-coupled devices,” Opt. Eng. 33, 2544–2552 (1994).
[CrossRef]

1993

R. Korde, J. S. Kable, L. R. Canfield, “One gigarad passivating nitrided oxides for 100% internal quantum efficiency silicon photodiodes,” IEEE Trans. Nucl. Sci. 40, 1655–1669 (1993).
[CrossRef]

1987

J. R. Janesick, “Scientific charge-coupled devices,” Opt. Eng. 26, 692–715 (1987).

1985

D. H. Gudehus, D. J. Hegyi, “The design and construction of a charge-coupled device imaging system,” Astrophys. J. 90, 130–138 (1985).

1968

C. A. Klein, “Bandgap dependence and related features of radiation ionization energies in semiconductors,” J. Appl. Phys. 39, 2029–2038 (1968).
[CrossRef]

Blouke, M. M.

R. A. Stern, R. C. Catura, M. M. Blouke, M. Winzenread, “EUV astronomical spectroscopy with CCD detectors,” in Optical Sensors and Electronic Photography, M. Blouke, D. Pophal, eds., Proc. SPIE1071, 31–42 (1989).

Bonanno, G.

G. Naletto, G. Tondello, G. Bonanno, R. Di Benedetto, S. Scuderi, “Response analysis in the 300- to 2500-Å spectral range of ultraviolet-enhanced charge-coupled devices,” Opt. Eng. 33, 2544–2552 (1994).
[CrossRef]

G. Bonanno, G. Naletto, G. Tondello, “A test facility to calibrate EUV detectors,” in Proceedings of the European Space Agency Symposium on Photon Detectors for Space Instrumentation, H. Habing, ed., ESA Spec. Publ. 356 (European Space Agency, Estec, The Netherlands, 1992), pp. 233–236.

Boscolo, A.

A. Boscolo, L. Placentino, L. Poletto, “Quantum efficiency measurements of an uncoated CEM in the range 0.14–160 nm (9 keV–8 eV),” Pure Appl. Opt. 7, L43–L48 (1998).
[CrossRef]

A. Boscolo, L. Poletto, G. Tondello, “Soft-x-ray (2–6-keV) spectroscopy using gratings at extreme grazing incidence,” in Multilayer and Grazing Incidence X-Ray Optics, R. Hoover, A. Walker, eds., Proc. SPIE2805, 260–266 (1996).
[CrossRef]

A. Boscolo, L. Poletto, G. Tondello, “Analysis of the soft-x-ray emissions of the Manson source,” (Department of Electronics and Informatics, University of Padova, Istituto Nazionale per la Fisica della Materia, via Gradenigo, 6/A-35131 Padova, Italy, 1995).

Canfield, L. R.

R. Korde, J. S. Kable, L. R. Canfield, “One gigarad passivating nitrided oxides for 100% internal quantum efficiency silicon photodiodes,” IEEE Trans. Nucl. Sci. 40, 1655–1669 (1993).
[CrossRef]

Catura, R. C.

R. A. Stern, R. C. Catura, M. M. Blouke, M. Winzenread, “EUV astronomical spectroscopy with CCD detectors,” in Optical Sensors and Electronic Photography, M. Blouke, D. Pophal, eds., Proc. SPIE1071, 31–42 (1989).

Di Benedetto, R.

G. Naletto, G. Tondello, G. Bonanno, R. Di Benedetto, S. Scuderi, “Response analysis in the 300- to 2500-Å spectral range of ultraviolet-enhanced charge-coupled devices,” Opt. Eng. 33, 2544–2552 (1994).
[CrossRef]

Gudehus, D. H.

D. H. Gudehus, D. J. Hegyi, “The design and construction of a charge-coupled device imaging system,” Astrophys. J. 90, 130–138 (1985).

Hegyi, D. J.

D. H. Gudehus, D. J. Hegyi, “The design and construction of a charge-coupled device imaging system,” Astrophys. J. 90, 130–138 (1985).

Janesick, J. R.

J. R. Janesick, “Scientific charge-coupled devices,” Opt. Eng. 26, 692–715 (1987).

Kable, J. S.

R. Korde, J. S. Kable, L. R. Canfield, “One gigarad passivating nitrided oxides for 100% internal quantum efficiency silicon photodiodes,” IEEE Trans. Nucl. Sci. 40, 1655–1669 (1993).
[CrossRef]

Klein, C. A.

C. A. Klein, “Bandgap dependence and related features of radiation ionization energies in semiconductors,” J. Appl. Phys. 39, 2029–2038 (1968).
[CrossRef]

Korde, R.

R. Korde, J. S. Kable, L. R. Canfield, “One gigarad passivating nitrided oxides for 100% internal quantum efficiency silicon photodiodes,” IEEE Trans. Nucl. Sci. 40, 1655–1669 (1993).
[CrossRef]

Naletto, G.

G. Naletto, G. Tondello, G. Bonanno, R. Di Benedetto, S. Scuderi, “Response analysis in the 300- to 2500-Å spectral range of ultraviolet-enhanced charge-coupled devices,” Opt. Eng. 33, 2544–2552 (1994).
[CrossRef]

G. Bonanno, G. Naletto, G. Tondello, “A test facility to calibrate EUV detectors,” in Proceedings of the European Space Agency Symposium on Photon Detectors for Space Instrumentation, H. Habing, ed., ESA Spec. Publ. 356 (European Space Agency, Estec, The Netherlands, 1992), pp. 233–236.

Placentino, L.

A. Boscolo, L. Placentino, L. Poletto, “Quantum efficiency measurements of an uncoated CEM in the range 0.14–160 nm (9 keV–8 eV),” Pure Appl. Opt. 7, L43–L48 (1998).
[CrossRef]

Poletto, L.

A. Boscolo, L. Placentino, L. Poletto, “Quantum efficiency measurements of an uncoated CEM in the range 0.14–160 nm (9 keV–8 eV),” Pure Appl. Opt. 7, L43–L48 (1998).
[CrossRef]

A. Boscolo, L. Poletto, G. Tondello, “Soft-x-ray (2–6-keV) spectroscopy using gratings at extreme grazing incidence,” in Multilayer and Grazing Incidence X-Ray Optics, R. Hoover, A. Walker, eds., Proc. SPIE2805, 260–266 (1996).
[CrossRef]

A. Boscolo, L. Poletto, G. Tondello, “Analysis of the soft-x-ray emissions of the Manson source,” (Department of Electronics and Informatics, University of Padova, Istituto Nazionale per la Fisica della Materia, via Gradenigo, 6/A-35131 Padova, Italy, 1995).

Scuderi, S.

G. Naletto, G. Tondello, G. Bonanno, R. Di Benedetto, S. Scuderi, “Response analysis in the 300- to 2500-Å spectral range of ultraviolet-enhanced charge-coupled devices,” Opt. Eng. 33, 2544–2552 (1994).
[CrossRef]

Sims, G.

G. Sims, “Improvement in CCD quantum efficiency in the UV and near-UV,” in Optical Sensors and Electronic Photography, M. Blouke, D. Pophal, eds., Proc. SPIE1071, 214–228 (1989).

Stern, R. A.

R. A. Stern, R. C. Catura, M. M. Blouke, M. Winzenread, “EUV astronomical spectroscopy with CCD detectors,” in Optical Sensors and Electronic Photography, M. Blouke, D. Pophal, eds., Proc. SPIE1071, 31–42 (1989).

Tondello, G.

G. Naletto, G. Tondello, G. Bonanno, R. Di Benedetto, S. Scuderi, “Response analysis in the 300- to 2500-Å spectral range of ultraviolet-enhanced charge-coupled devices,” Opt. Eng. 33, 2544–2552 (1994).
[CrossRef]

A. Boscolo, L. Poletto, G. Tondello, “Analysis of the soft-x-ray emissions of the Manson source,” (Department of Electronics and Informatics, University of Padova, Istituto Nazionale per la Fisica della Materia, via Gradenigo, 6/A-35131 Padova, Italy, 1995).

A. Boscolo, L. Poletto, G. Tondello, “Soft-x-ray (2–6-keV) spectroscopy using gratings at extreme grazing incidence,” in Multilayer and Grazing Incidence X-Ray Optics, R. Hoover, A. Walker, eds., Proc. SPIE2805, 260–266 (1996).
[CrossRef]

G. Bonanno, G. Naletto, G. Tondello, “A test facility to calibrate EUV detectors,” in Proceedings of the European Space Agency Symposium on Photon Detectors for Space Instrumentation, H. Habing, ed., ESA Spec. Publ. 356 (European Space Agency, Estec, The Netherlands, 1992), pp. 233–236.

Winzenread, M.

R. A. Stern, R. C. Catura, M. M. Blouke, M. Winzenread, “EUV astronomical spectroscopy with CCD detectors,” in Optical Sensors and Electronic Photography, M. Blouke, D. Pophal, eds., Proc. SPIE1071, 31–42 (1989).

Astrophys. J.

D. H. Gudehus, D. J. Hegyi, “The design and construction of a charge-coupled device imaging system,” Astrophys. J. 90, 130–138 (1985).

IEEE Trans. Nucl. Sci.

R. Korde, J. S. Kable, L. R. Canfield, “One gigarad passivating nitrided oxides for 100% internal quantum efficiency silicon photodiodes,” IEEE Trans. Nucl. Sci. 40, 1655–1669 (1993).
[CrossRef]

J. Appl. Phys.

C. A. Klein, “Bandgap dependence and related features of radiation ionization energies in semiconductors,” J. Appl. Phys. 39, 2029–2038 (1968).
[CrossRef]

Opt. Eng.

J. R. Janesick, “Scientific charge-coupled devices,” Opt. Eng. 26, 692–715 (1987).

G. Naletto, G. Tondello, G. Bonanno, R. Di Benedetto, S. Scuderi, “Response analysis in the 300- to 2500-Å spectral range of ultraviolet-enhanced charge-coupled devices,” Opt. Eng. 33, 2544–2552 (1994).
[CrossRef]

Pure Appl. Opt.

A. Boscolo, L. Placentino, L. Poletto, “Quantum efficiency measurements of an uncoated CEM in the range 0.14–160 nm (9 keV–8 eV),” Pure Appl. Opt. 7, L43–L48 (1998).
[CrossRef]

Other

R. A. Stern, R. C. Catura, M. M. Blouke, M. Winzenread, “EUV astronomical spectroscopy with CCD detectors,” in Optical Sensors and Electronic Photography, M. Blouke, D. Pophal, eds., Proc. SPIE1071, 31–42 (1989).

G. Sims, “Improvement in CCD quantum efficiency in the UV and near-UV,” in Optical Sensors and Electronic Photography, M. Blouke, D. Pophal, eds., Proc. SPIE1071, 214–228 (1989).

G. Bonanno, G. Naletto, G. Tondello, “A test facility to calibrate EUV detectors,” in Proceedings of the European Space Agency Symposium on Photon Detectors for Space Instrumentation, H. Habing, ed., ESA Spec. Publ. 356 (European Space Agency, Estec, The Netherlands, 1992), pp. 233–236.

A. Boscolo, L. Poletto, G. Tondello, “Soft-x-ray (2–6-keV) spectroscopy using gratings at extreme grazing incidence,” in Multilayer and Grazing Incidence X-Ray Optics, R. Hoover, A. Walker, eds., Proc. SPIE2805, 260–266 (1996).
[CrossRef]

A. Boscolo, L. Poletto, G. Tondello, “Analysis of the soft-x-ray emissions of the Manson source,” (Department of Electronics and Informatics, University of Padova, Istituto Nazionale per la Fisica della Materia, via Gradenigo, 6/A-35131 Padova, Italy, 1995).

“Contamination control plan UVCS,” Ball Aerospace, Boulder, Colo. 80309 (internal communication, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Experimental setup in the 1100–250-nm spectral region.

Fig. 2
Fig. 2

Experimental setup in the 250–30-nm spectral region.

Fig. 3
Fig. 3

Experimental setup in the 25–0.3-nm spectral region.

Fig. 4
Fig. 4

Experimental setup in the 0.3–0.14-nm spectral region.

Fig. 5
Fig. 5

Ti and Cu filtered spectra acquired with the Si-PIN photodiode.

Fig. 6
Fig. 6

Effective quantum efficiency in the 1100–230-nm spectral range.

Fig. 7
Fig. 7

Effective quantum efficiency in the 250–30-nm spectral range.

Fig. 8
Fig. 8

Effective quantum efficiency in the 25–0.14-nm spectral range: (a) measured values, (b) comparison between experimental data and the theoretical transmission curve of 12-µm silicon thickness.

Fig. 9
Fig. 9

Quantum efficiency decreasing in time in the VUV spectral region.

Fig. 10
Fig. 10

Absorption of a layer as large as 200 Å of a general condensable molecular contaminant at wavelengths of 121.6 and 200 nm.

Fig. 11
Fig. 11

Histograms of uniformity of response.

Fig. 12
Fig. 12

Effective quantum efficiency in the 1-eV to 10-keV spectral range.

Tables (4)

Tables Icon

Table 1 Available Anodes, Spectral Lines, and Characteristics of Filters in the 4.5–9-keV Spectral Region

Tables Icon

Table 2 Correction for the Contribution of Continuum in the 4.5–9-keV Spectral Region

Tables Icon

Table 3 Decrease in Quantum Efficiency 1 h after Cooling Takes Place at -30 °C at a Wavelength of 121.6 nm and an Estimated Layer of Contaminants on the Surface of the CCD

Tables Icon

Table 4 Areas on which the Deviations from Uniformity are Lower than 2.5% and 5%

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ηCCD=SCCDFtexpeEPPh R,
QECCD=ηCCD,E<3.65 eVλ>340 nm,QECCD=3.65E ηCCD,E>3.65 eV,
ηCCD=SCCDFtexpeηPhIPh,
ηCCD=SCCDFtexpηCEMSCEM,
IPh=Φ Eλ3.65 e+ΦαEc3.65 e,
SCCD=texpFΦ Eλ3.65 QECCDEλ+ΦαEc3.65 QECCDEc,
QECCDEλ=SCCDFtexpeIPh-EcEλα×QECCDEc-SCCDFtexpeIPh.

Metrics