Abstract

Assumptions of theoretical laser-induced incandescence (LII) models along with possible effects of high-intensity laser light on soot aggregates and the constituent primary particles are discussed in relation to selection of excitation laser fluence. Ex situ visualization of laser-heated soot by use of transmission electron microscopy reveals significant morphological changes (graphitization) induced by pulsed laser heating. Pulsed laser transmission measurements within a premixed laminar sooting flame suggest that soot vaporization occurs for laser fluences greater than 0.5 J/cm2 at 1064 nm. Radial LII intensity profiles at different axial heights in a laminar ethylene gas jet diffusion flame reveal a wide range of signal levels depending on the laser fluence that is varied over an eight fold range. Results of double-pulse excitation experiments in which a second laser pulse heats in situ the same soot that was heated by a prior laser pulse are detailed. These two-pulse measurements suggest varying degrees of soot structural change for fluences below and above a vaporization threshold of 0.5 J/cm2 at 1064 nm. Normalization of the radial-resolved LII signals based on integrated intensities, however, yields self-similar profiles. The self-similarity suggests robustness of LII for accurate relative measurement of soot volume fraction despite the morphological changes induced in the soot, variations in soot aggregate and primary particle size, and local gas temperature. Comparison of LII intensity profiles with soot volume fractions (f v) derived by light extinction validates LII for quantitative determination of f v upon calibration for laser fluences ranging from 0.09 to 0.73 J/cm2.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Vander Wal, “Laser-induced incandescence: detection issues,” Appl. Opt. 35, 6548–6559 (1996).
    [CrossRef] [PubMed]
  2. A. C. Eckbreth, “Effects of laser-modulated particulate incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48, 4473–4483 (1977).
    [CrossRef]
  3. L. A. Melton, “Soot diagnostics based on laser heating,” Appl. Opt. 23, 2201–2208 (1984).
    [CrossRef] [PubMed]
  4. C. J. Dasch, “Continuous-wave probe laser investigation of laser vaporization of small soot particles in a flame,” Appl. Opt. 23, 2209–2215 (1984).
    [CrossRef] [PubMed]
  5. D. L. Hofeldt, “Real-time soot concentration measurement technique for engine exhaust streams,” SAE Tech. Paper 930079 (Society of Automotive Engineers, Warrendale, Pa., 1993).
  6. J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fractions from laser-induced incandescence by comparison with extinction measurements in laminar, premixed, flat flames,” in Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburg, Pa., 1996), pp. 2387–2396.
    [CrossRef]
  7. S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence,” in Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburg, Pa., 1996), pp. 2277–2284.
    [CrossRef]
  8. R. L. Vander Wal, M. Y. Choi, K.-O. Lee, “The effects of rapid heating of soot: implications when using laser-induced incandescence for soot diagnostics,” Combust. Flame 102, 200–204 (1995).
    [CrossRef]
  9. C. M. Megaridis, R. A. Dobbins, “Comparison of soot growth and oxidation in smoking and non-smoking ethylene diffusion flames,” Combust. Sci. Technol. 66, 1–16 (1989).
    [CrossRef]
  10. F. A. Heckman, “Microstructure of carbon black,” J. Rubber Chem. Technol. 37, 1245–1298 (1967).
    [CrossRef]
  11. P.-E. Bengtsson, M. Alden, “Soot visualization strategies using laser techniques,” J. Appl. Phys. B 60, 51–59 (1995).
    [CrossRef]
  12. R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards measurement of soot volume fraction,” J. Appl. Phys. B 59, 445–452 (1994).
    [CrossRef]
  13. T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
    [CrossRef] [PubMed]
  14. C. E. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air flame,” Combust. Flame 99, 723–732 (1994).
    [CrossRef]
  15. B. Quay, T. W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 394–395 (1994).
    [CrossRef]
  16. C. R. Shaddix, K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
    [CrossRef]
  17. M. Y. Choi, K. A. Jensen, “Calibration and correction of laser-induced incandescence for soot volume fraction measurements,” Combust. Flame 112, 485–491 (1998).
    [CrossRef]
  18. P. S. Greenberg, J. C. Ku, “Soot volume fraction imaging,” Appl. Opt. 36, 5514–5522 (1997).
    [CrossRef] [PubMed]
  19. J. M. Khosrofian, B. A. Garetz, “Measurement of a Gaussian beam diameter through the direct inversion of knife edge data,” Appl. Opt. 22, 3406–3410 (1983).
    [CrossRef] [PubMed]
  20. R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).
    [CrossRef]
  21. P. A. Marsh, A. Voet, T. J. Mullens, L. D. Price, “Electron micrography of interplanar spacings in carbon blacks,” J. Rubber Chem. Technol. 43, 470–481 (1970).
    [CrossRef]
  22. D. Ugarte, “Formation mechanisms of quasi-spherical carbon particles induced by electron bombardment,” Chem. Phys. Lett. 207, 474–479 (1993).
    [CrossRef]
  23. Y. Saito, “Nanoparticles and filled nanocapsules,” Carbon 33, 979–988 (1995).
    [CrossRef]
  24. R. Vander Wal, “Pulsed laser heating of soot: morphological changes,” Carbon (to be published).
  25. Z. G. Habib, P. Vervisch, “On the refractive index of soot at flame temperature,” Combust. Sci. Technol. 59, 261–274 (1988).
    [CrossRef]
  26. W. H. Dalzell, A. L. Sarofim, “Optical constants of soot and their application to heat flux calculations,” J. Heat Transfer 91, 100–104 (1969).
    [CrossRef]
  27. J. C. Ku, K.-H. Shim, “A comparison of solutions for light scattering and absorption by agglomerated or arbitrarily shaped particles,” J. Quant. Spectrosc. Radiat. Transfer 47, 201–220 (1992).
    [CrossRef]
  28. C. M. Megardis, R. A. Dobbins, “Comparison of soot growth and oxidation in smoking and nonsmoking ethylene diffusion flames,” Combust. Sci. Technol. 66, 1–16 (1989).
    [CrossRef]
  29. R. J. Santoro, Pennsylvania State University, University Park, Pa. (personal communication, October1996).

1998 (1)

M. Y. Choi, K. A. Jensen, “Calibration and correction of laser-induced incandescence for soot volume fraction measurements,” Combust. Flame 112, 485–491 (1998).
[CrossRef]

1997 (1)

1996 (2)

C. R. Shaddix, K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[CrossRef]

R. L. Vander Wal, “Laser-induced incandescence: detection issues,” Appl. Opt. 35, 6548–6559 (1996).
[CrossRef] [PubMed]

1995 (4)

R. L. Vander Wal, M. Y. Choi, K.-O. Lee, “The effects of rapid heating of soot: implications when using laser-induced incandescence for soot diagnostics,” Combust. Flame 102, 200–204 (1995).
[CrossRef]

P.-E. Bengtsson, M. Alden, “Soot visualization strategies using laser techniques,” J. Appl. Phys. B 60, 51–59 (1995).
[CrossRef]

T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
[CrossRef] [PubMed]

Y. Saito, “Nanoparticles and filled nanocapsules,” Carbon 33, 979–988 (1995).
[CrossRef]

1994 (3)

C. E. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air flame,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

B. Quay, T. W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 394–395 (1994).
[CrossRef]

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards measurement of soot volume fraction,” J. Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

1993 (1)

D. Ugarte, “Formation mechanisms of quasi-spherical carbon particles induced by electron bombardment,” Chem. Phys. Lett. 207, 474–479 (1993).
[CrossRef]

1992 (1)

J. C. Ku, K.-H. Shim, “A comparison of solutions for light scattering and absorption by agglomerated or arbitrarily shaped particles,” J. Quant. Spectrosc. Radiat. Transfer 47, 201–220 (1992).
[CrossRef]

1989 (2)

C. M. Megardis, R. A. Dobbins, “Comparison of soot growth and oxidation in smoking and nonsmoking ethylene diffusion flames,” Combust. Sci. Technol. 66, 1–16 (1989).
[CrossRef]

C. M. Megaridis, R. A. Dobbins, “Comparison of soot growth and oxidation in smoking and non-smoking ethylene diffusion flames,” Combust. Sci. Technol. 66, 1–16 (1989).
[CrossRef]

1988 (1)

Z. G. Habib, P. Vervisch, “On the refractive index of soot at flame temperature,” Combust. Sci. Technol. 59, 261–274 (1988).
[CrossRef]

1984 (2)

1983 (2)

J. M. Khosrofian, B. A. Garetz, “Measurement of a Gaussian beam diameter through the direct inversion of knife edge data,” Appl. Opt. 22, 3406–3410 (1983).
[CrossRef] [PubMed]

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

1977 (1)

A. C. Eckbreth, “Effects of laser-modulated particulate incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48, 4473–4483 (1977).
[CrossRef]

1970 (1)

P. A. Marsh, A. Voet, T. J. Mullens, L. D. Price, “Electron micrography of interplanar spacings in carbon blacks,” J. Rubber Chem. Technol. 43, 470–481 (1970).
[CrossRef]

1969 (1)

W. H. Dalzell, A. L. Sarofim, “Optical constants of soot and their application to heat flux calculations,” J. Heat Transfer 91, 100–104 (1969).
[CrossRef]

1967 (1)

F. A. Heckman, “Microstructure of carbon black,” J. Rubber Chem. Technol. 37, 1245–1298 (1967).
[CrossRef]

Alden, M.

P.-E. Bengtsson, M. Alden, “Soot visualization strategies using laser techniques,” J. Appl. Phys. B 60, 51–59 (1995).
[CrossRef]

Appel, J.

J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fractions from laser-induced incandescence by comparison with extinction measurements in laminar, premixed, flat flames,” in Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburg, Pa., 1996), pp. 2387–2396.
[CrossRef]

Bengtsson, P.-E.

P.-E. Bengtsson, M. Alden, “Soot visualization strategies using laser techniques,” J. Appl. Phys. B 60, 51–59 (1995).
[CrossRef]

Bockhorn, H.

J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fractions from laser-induced incandescence by comparison with extinction measurements in laminar, premixed, flat flames,” in Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburg, Pa., 1996), pp. 2387–2396.
[CrossRef]

Choi, M. Y.

M. Y. Choi, K. A. Jensen, “Calibration and correction of laser-induced incandescence for soot volume fraction measurements,” Combust. Flame 112, 485–491 (1998).
[CrossRef]

R. L. Vander Wal, M. Y. Choi, K.-O. Lee, “The effects of rapid heating of soot: implications when using laser-induced incandescence for soot diagnostics,” Combust. Flame 102, 200–204 (1995).
[CrossRef]

Dalzell, W. H.

W. H. Dalzell, A. L. Sarofim, “Optical constants of soot and their application to heat flux calculations,” J. Heat Transfer 91, 100–104 (1969).
[CrossRef]

Dasch, C. J.

Dobbins, R. A.

C. M. Megaridis, R. A. Dobbins, “Comparison of soot growth and oxidation in smoking and non-smoking ethylene diffusion flames,” Combust. Sci. Technol. 66, 1–16 (1989).
[CrossRef]

C. M. Megardis, R. A. Dobbins, “Comparison of soot growth and oxidation in smoking and nonsmoking ethylene diffusion flames,” Combust. Sci. Technol. 66, 1–16 (1989).
[CrossRef]

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, “Effects of laser-modulated particulate incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48, 4473–4483 (1977).
[CrossRef]

Garetz, B. A.

Greenberg, P. S.

Gupta, S.

Habib, Z. G.

Z. G. Habib, P. Vervisch, “On the refractive index of soot at flame temperature,” Combust. Sci. Technol. 59, 261–274 (1988).
[CrossRef]

Harrington, J. E.

C. E. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air flame,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

Heckman, F. A.

F. A. Heckman, “Microstructure of carbon black,” J. Rubber Chem. Technol. 37, 1245–1298 (1967).
[CrossRef]

Hofeldt, D. L.

D. L. Hofeldt, “Real-time soot concentration measurement technique for engine exhaust streams,” SAE Tech. Paper 930079 (Society of Automotive Engineers, Warrendale, Pa., 1993).

Jensen, K. A.

M. Y. Choi, K. A. Jensen, “Calibration and correction of laser-induced incandescence for soot volume fraction measurements,” Combust. Flame 112, 485–491 (1998).
[CrossRef]

Jungfleisch, B.

J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fractions from laser-induced incandescence by comparison with extinction measurements in laminar, premixed, flat flames,” in Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburg, Pa., 1996), pp. 2387–2396.
[CrossRef]

Khosrofian, J. M.

Ku, J. C.

P. S. Greenberg, J. C. Ku, “Soot volume fraction imaging,” Appl. Opt. 36, 5514–5522 (1997).
[CrossRef] [PubMed]

J. C. Ku, K.-H. Shim, “A comparison of solutions for light scattering and absorption by agglomerated or arbitrarily shaped particles,” J. Quant. Spectrosc. Radiat. Transfer 47, 201–220 (1992).
[CrossRef]

Lee, K.-O.

R. L. Vander Wal, M. Y. Choi, K.-O. Lee, “The effects of rapid heating of soot: implications when using laser-induced incandescence for soot diagnostics,” Combust. Flame 102, 200–204 (1995).
[CrossRef]

Lee, T. W.

B. Quay, T. W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 394–395 (1994).
[CrossRef]

Leipertz, A.

S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence,” in Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburg, Pa., 1996), pp. 2277–2284.
[CrossRef]

Marquardt, M.

J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fractions from laser-induced incandescence by comparison with extinction measurements in laminar, premixed, flat flames,” in Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburg, Pa., 1996), pp. 2387–2396.
[CrossRef]

Marsh, P. A.

P. A. Marsh, A. Voet, T. J. Mullens, L. D. Price, “Electron micrography of interplanar spacings in carbon blacks,” J. Rubber Chem. Technol. 43, 470–481 (1970).
[CrossRef]

Megardis, C. M.

C. M. Megardis, R. A. Dobbins, “Comparison of soot growth and oxidation in smoking and nonsmoking ethylene diffusion flames,” Combust. Sci. Technol. 66, 1–16 (1989).
[CrossRef]

Megaridis, C. M.

C. M. Megaridis, R. A. Dobbins, “Comparison of soot growth and oxidation in smoking and non-smoking ethylene diffusion flames,” Combust. Sci. Technol. 66, 1–16 (1989).
[CrossRef]

Melton, L. A.

Mullens, T. J.

P. A. Marsh, A. Voet, T. J. Mullens, L. D. Price, “Electron micrography of interplanar spacings in carbon blacks,” J. Rubber Chem. Technol. 43, 470–481 (1970).
[CrossRef]

Ni, T.

T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
[CrossRef] [PubMed]

B. Quay, T. W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 394–395 (1994).
[CrossRef]

Pinson, J. A.

Price, L. D.

P. A. Marsh, A. Voet, T. J. Mullens, L. D. Price, “Electron micrography of interplanar spacings in carbon blacks,” J. Rubber Chem. Technol. 43, 470–481 (1970).
[CrossRef]

Quay, B.

B. Quay, T. W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 394–395 (1994).
[CrossRef]

Saito, Y.

Y. Saito, “Nanoparticles and filled nanocapsules,” Carbon 33, 979–988 (1995).
[CrossRef]

Santoro, R. J.

T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
[CrossRef] [PubMed]

B. Quay, T. W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 394–395 (1994).
[CrossRef]

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

R. J. Santoro, Pennsylvania State University, University Park, Pa. (personal communication, October1996).

Sarofim, A. L.

W. H. Dalzell, A. L. Sarofim, “Optical constants of soot and their application to heat flux calculations,” J. Heat Transfer 91, 100–104 (1969).
[CrossRef]

Schraml, S.

S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence,” in Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburg, Pa., 1996), pp. 2277–2284.
[CrossRef]

Semerjian, H. G.

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

Shaddix, C. E.

C. E. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air flame,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

Shaddix, C. R.

C. R. Shaddix, K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[CrossRef]

Shim, K.-H.

J. C. Ku, K.-H. Shim, “A comparison of solutions for light scattering and absorption by agglomerated or arbitrarily shaped particles,” J. Quant. Spectrosc. Radiat. Transfer 47, 201–220 (1992).
[CrossRef]

Smyth, K. C.

C. R. Shaddix, K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[CrossRef]

C. E. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air flame,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

Suntz, R.

J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fractions from laser-induced incandescence by comparison with extinction measurements in laminar, premixed, flat flames,” in Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburg, Pa., 1996), pp. 2387–2396.
[CrossRef]

Ugarte, D.

D. Ugarte, “Formation mechanisms of quasi-spherical carbon particles induced by electron bombardment,” Chem. Phys. Lett. 207, 474–479 (1993).
[CrossRef]

Vander Wal, R.

R. Vander Wal, “Pulsed laser heating of soot: morphological changes,” Carbon (to be published).

Vander Wal, R. L.

R. L. Vander Wal, “Laser-induced incandescence: detection issues,” Appl. Opt. 35, 6548–6559 (1996).
[CrossRef] [PubMed]

R. L. Vander Wal, M. Y. Choi, K.-O. Lee, “The effects of rapid heating of soot: implications when using laser-induced incandescence for soot diagnostics,” Combust. Flame 102, 200–204 (1995).
[CrossRef]

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards measurement of soot volume fraction,” J. Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

Vervisch, P.

Z. G. Habib, P. Vervisch, “On the refractive index of soot at flame temperature,” Combust. Sci. Technol. 59, 261–274 (1988).
[CrossRef]

Voet, A.

P. A. Marsh, A. Voet, T. J. Mullens, L. D. Price, “Electron micrography of interplanar spacings in carbon blacks,” J. Rubber Chem. Technol. 43, 470–481 (1970).
[CrossRef]

Weiland, K. J.

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards measurement of soot volume fraction,” J. Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

Will, S.

S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence,” in Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburg, Pa., 1996), pp. 2277–2284.
[CrossRef]

Appl. Opt. (6)

Carbon (1)

Y. Saito, “Nanoparticles and filled nanocapsules,” Carbon 33, 979–988 (1995).
[CrossRef]

Chem. Phys. Lett. (1)

D. Ugarte, “Formation mechanisms of quasi-spherical carbon particles induced by electron bombardment,” Chem. Phys. Lett. 207, 474–479 (1993).
[CrossRef]

Combust. Flame (6)

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

C. E. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air flame,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

B. Quay, T. W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 394–395 (1994).
[CrossRef]

C. R. Shaddix, K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[CrossRef]

M. Y. Choi, K. A. Jensen, “Calibration and correction of laser-induced incandescence for soot volume fraction measurements,” Combust. Flame 112, 485–491 (1998).
[CrossRef]

R. L. Vander Wal, M. Y. Choi, K.-O. Lee, “The effects of rapid heating of soot: implications when using laser-induced incandescence for soot diagnostics,” Combust. Flame 102, 200–204 (1995).
[CrossRef]

Combust. Sci. Technol. (3)

C. M. Megaridis, R. A. Dobbins, “Comparison of soot growth and oxidation in smoking and non-smoking ethylene diffusion flames,” Combust. Sci. Technol. 66, 1–16 (1989).
[CrossRef]

Z. G. Habib, P. Vervisch, “On the refractive index of soot at flame temperature,” Combust. Sci. Technol. 59, 261–274 (1988).
[CrossRef]

C. M. Megardis, R. A. Dobbins, “Comparison of soot growth and oxidation in smoking and nonsmoking ethylene diffusion flames,” Combust. Sci. Technol. 66, 1–16 (1989).
[CrossRef]

J. Appl. Phys. (1)

A. C. Eckbreth, “Effects of laser-modulated particulate incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48, 4473–4483 (1977).
[CrossRef]

J. Appl. Phys. B (2)

P.-E. Bengtsson, M. Alden, “Soot visualization strategies using laser techniques,” J. Appl. Phys. B 60, 51–59 (1995).
[CrossRef]

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards measurement of soot volume fraction,” J. Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

J. Heat Transfer (1)

W. H. Dalzell, A. L. Sarofim, “Optical constants of soot and their application to heat flux calculations,” J. Heat Transfer 91, 100–104 (1969).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

J. C. Ku, K.-H. Shim, “A comparison of solutions for light scattering and absorption by agglomerated or arbitrarily shaped particles,” J. Quant. Spectrosc. Radiat. Transfer 47, 201–220 (1992).
[CrossRef]

J. Rubber Chem. Technol. (2)

F. A. Heckman, “Microstructure of carbon black,” J. Rubber Chem. Technol. 37, 1245–1298 (1967).
[CrossRef]

P. A. Marsh, A. Voet, T. J. Mullens, L. D. Price, “Electron micrography of interplanar spacings in carbon blacks,” J. Rubber Chem. Technol. 43, 470–481 (1970).
[CrossRef]

Other (5)

D. L. Hofeldt, “Real-time soot concentration measurement technique for engine exhaust streams,” SAE Tech. Paper 930079 (Society of Automotive Engineers, Warrendale, Pa., 1993).

J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fractions from laser-induced incandescence by comparison with extinction measurements in laminar, premixed, flat flames,” in Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburg, Pa., 1996), pp. 2387–2396.
[CrossRef]

S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence,” in Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburg, Pa., 1996), pp. 2277–2284.
[CrossRef]

R. J. Santoro, Pennsylvania State University, University Park, Pa. (personal communication, October1996).

R. Vander Wal, “Pulsed laser heating of soot: morphological changes,” Carbon (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental diagram. PMT, photomultiplier tube; H. V., high voltage.

Fig. 2
Fig. 2

TEM images of soot heated in situ by the laser and subsequently thermophoretically sampled.

Fig. 3
Fig. 3

High-resolution image of laser-heated soot (in situ) by the laser and subsequently thermophoretically sampled.

Fig. 4
Fig. 4

(a) Pulsed laser transmission through the premixed sooting flame. (b) LII signal variation with incident laser energy.

Fig. 5
Fig. 5

Radial LII intensity profiles obtained at the indicated heights above the burner.

Fig. 6
Fig. 6

Normalized radial LII intensity profiles from Fig. 5. See text for details.

Fig. 7
Fig. 7

Comparison between radial LII intensity profiles from Fig. 5 with those determined from previous extinction measurements. See text for details.

Tables (1)

Tables Icon

Table 1 Similarity in Soot Particle Size, Structure, and Local Temperature

Metrics