Abstract

Optoelectronic structures utilizing switched fiber delays and switched metal–semiconductor–metal photodetectors for signal processing over a 1.25-GHz bandwidth are presented. Fully tunable finite-impulse-response and infinite-impulse-response structures were synthesized with internal compensation for bias dependency of photodetectors. The application of such filter structures to the equalization of modal dispersion in a multimode fiber is also described.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. Cutler, J. W. Goodman, H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microwave Theory Tech. MTT-33, 193–210 (1985).
    [CrossRef]
  2. P. Paparao, A. Ghosh, S. D. Allen, “Design and performance optimization of fiber optic adaptive filters,” Appl. Opt. 30, 1826–1838 (1991).
    [CrossRef] [PubMed]
  3. M. Tur, J. W. Goodman, B. Moslehi, J. E. Bowers, H. J. Shaw, “Fiber optic signal processor with applications to matrix-vector multiplication and lattice filtering,” Opt. Lett. 27, 463–465 (1982).
    [CrossRef]
  4. B. Moslehi, J. W. Goodman, M. Tur, H. J. Shaw, “Fiber-optic lattice signal processing,” Proc. IEEE 27, 909–930 (1984).
    [CrossRef]
  5. R. I. MacDonald, “Switched optical delay line signal processors,” IEEE J. Lightwave Technol. LT-5, 856–861 (1987).
    [CrossRef]
  6. D. K. W. Lam, B. A. Syrett, “Gigahertz signal processing using reflex optoelectronic switching matrices,” IEEE J. Lightwave Technol. LT-5, 398–402 (1987).
    [CrossRef]
  7. D. M. Gookin, M. H. Berry, “Finite impulse response filter with large dynamic range and high sampling rate,” Appl. Opt. 29, 1061–1062 (1990).
    [CrossRef] [PubMed]
  8. B. E. Swekla, R. I. MacDonald, “Optoelectronic transversal filter,” Electron. Lett. 27, 1769–1770 (1991).
    [CrossRef]
  9. R. I. MacDonald, “Optoelectronic filter with variable gain bi-polar taps,” U.S. patent5,376,786 (27December1994).
  10. R. I. MacDonald, S. Lee, “Photodetector sensitivity control for weight setting in optoelectronic neural networks,” Appl. Opt. 30, 176–178 (1991).
    [CrossRef] [PubMed]
  11. Y. Nitta, J. Ohta, S. Tai, K. Kyuma, “Variable-sensitivity photodetector that uses a metal–semiconductor–metal structure for optical neural networks,” Opt. Lett. 16, 611–613 (1991).
    [CrossRef] [PubMed]
  12. D. Lam, “Reflex optoelectronic signal processor,” M.S. thesis (University of Alberta, Edmonton, Canada, 1994).
  13. R. Sharma, R. I. MacDonald, D. Lam, D. Clegg, R. Tholl, L. Zmeko, “Broadband optoelectronic switch for digital and analog signals,” in Optical Interconnects in Broadband Switching Architectures, T. J. Cloonan, ed., Proc. SPIE2692, 190–193 (1996).
    [CrossRef]
  14. R. Sharma, R. I. MacDonald, “A signal transparent, distributed optical interconnect based optoelectronic switch,” in Proceedings of the International Conference on Applications of Photonics Technology, Montreal, Canada, 1996 (Plenum, New York, to be published).
  15. R. Sharma, R. I. MacDonald, “A signal transparent 10 × 10 space division optoelectronic switch core for virtual-transparent-path based multiwavelength networks,” IEEE J. Lightwave Technol. 15, 1522–1529 (1997).
    [CrossRef]
  16. A. Antoniou, Digital Filters: Analysis and Design, 3rd ed. (McGraw-Hill, New York, 1988), pp. 137–250.
  17. R. I. MacDonald, “Optoelectronic equalization,” IEEE Photon. Technol. Lett. 6, 565–567 (1994).
    [CrossRef]
  18. S. U. H. Qureshi, “Adaptive equalization,” Proc. IEEE 73, 1349–1387 (1985).
    [CrossRef]

1997 (1)

R. Sharma, R. I. MacDonald, “A signal transparent 10 × 10 space division optoelectronic switch core for virtual-transparent-path based multiwavelength networks,” IEEE J. Lightwave Technol. 15, 1522–1529 (1997).
[CrossRef]

1994 (1)

R. I. MacDonald, “Optoelectronic equalization,” IEEE Photon. Technol. Lett. 6, 565–567 (1994).
[CrossRef]

1991 (4)

1990 (1)

1987 (2)

R. I. MacDonald, “Switched optical delay line signal processors,” IEEE J. Lightwave Technol. LT-5, 856–861 (1987).
[CrossRef]

D. K. W. Lam, B. A. Syrett, “Gigahertz signal processing using reflex optoelectronic switching matrices,” IEEE J. Lightwave Technol. LT-5, 398–402 (1987).
[CrossRef]

1985 (2)

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. Cutler, J. W. Goodman, H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microwave Theory Tech. MTT-33, 193–210 (1985).
[CrossRef]

S. U. H. Qureshi, “Adaptive equalization,” Proc. IEEE 73, 1349–1387 (1985).
[CrossRef]

1984 (1)

B. Moslehi, J. W. Goodman, M. Tur, H. J. Shaw, “Fiber-optic lattice signal processing,” Proc. IEEE 27, 909–930 (1984).
[CrossRef]

1982 (1)

M. Tur, J. W. Goodman, B. Moslehi, J. E. Bowers, H. J. Shaw, “Fiber optic signal processor with applications to matrix-vector multiplication and lattice filtering,” Opt. Lett. 27, 463–465 (1982).
[CrossRef]

Allen, S. D.

Antoniou, A.

A. Antoniou, Digital Filters: Analysis and Design, 3rd ed. (McGraw-Hill, New York, 1988), pp. 137–250.

Berry, M. H.

Bowers, J. E.

M. Tur, J. W. Goodman, B. Moslehi, J. E. Bowers, H. J. Shaw, “Fiber optic signal processor with applications to matrix-vector multiplication and lattice filtering,” Opt. Lett. 27, 463–465 (1982).
[CrossRef]

Clegg, D.

R. Sharma, R. I. MacDonald, D. Lam, D. Clegg, R. Tholl, L. Zmeko, “Broadband optoelectronic switch for digital and analog signals,” in Optical Interconnects in Broadband Switching Architectures, T. J. Cloonan, ed., Proc. SPIE2692, 190–193 (1996).
[CrossRef]

Cutler, C.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. Cutler, J. W. Goodman, H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microwave Theory Tech. MTT-33, 193–210 (1985).
[CrossRef]

Ghosh, A.

Goodman, J. W.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. Cutler, J. W. Goodman, H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microwave Theory Tech. MTT-33, 193–210 (1985).
[CrossRef]

B. Moslehi, J. W. Goodman, M. Tur, H. J. Shaw, “Fiber-optic lattice signal processing,” Proc. IEEE 27, 909–930 (1984).
[CrossRef]

M. Tur, J. W. Goodman, B. Moslehi, J. E. Bowers, H. J. Shaw, “Fiber optic signal processor with applications to matrix-vector multiplication and lattice filtering,” Opt. Lett. 27, 463–465 (1982).
[CrossRef]

Gookin, D. M.

Jackson, K. P.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. Cutler, J. W. Goodman, H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microwave Theory Tech. MTT-33, 193–210 (1985).
[CrossRef]

Kyuma, K.

Lam, D.

D. Lam, “Reflex optoelectronic signal processor,” M.S. thesis (University of Alberta, Edmonton, Canada, 1994).

R. Sharma, R. I. MacDonald, D. Lam, D. Clegg, R. Tholl, L. Zmeko, “Broadband optoelectronic switch for digital and analog signals,” in Optical Interconnects in Broadband Switching Architectures, T. J. Cloonan, ed., Proc. SPIE2692, 190–193 (1996).
[CrossRef]

Lam, D. K. W.

D. K. W. Lam, B. A. Syrett, “Gigahertz signal processing using reflex optoelectronic switching matrices,” IEEE J. Lightwave Technol. LT-5, 398–402 (1987).
[CrossRef]

Lee, S.

MacDonald, R. I.

R. Sharma, R. I. MacDonald, “A signal transparent 10 × 10 space division optoelectronic switch core for virtual-transparent-path based multiwavelength networks,” IEEE J. Lightwave Technol. 15, 1522–1529 (1997).
[CrossRef]

R. I. MacDonald, “Optoelectronic equalization,” IEEE Photon. Technol. Lett. 6, 565–567 (1994).
[CrossRef]

R. I. MacDonald, S. Lee, “Photodetector sensitivity control for weight setting in optoelectronic neural networks,” Appl. Opt. 30, 176–178 (1991).
[CrossRef] [PubMed]

B. E. Swekla, R. I. MacDonald, “Optoelectronic transversal filter,” Electron. Lett. 27, 1769–1770 (1991).
[CrossRef]

R. I. MacDonald, “Switched optical delay line signal processors,” IEEE J. Lightwave Technol. LT-5, 856–861 (1987).
[CrossRef]

R. I. MacDonald, “Optoelectronic filter with variable gain bi-polar taps,” U.S. patent5,376,786 (27December1994).

R. Sharma, R. I. MacDonald, D. Lam, D. Clegg, R. Tholl, L. Zmeko, “Broadband optoelectronic switch for digital and analog signals,” in Optical Interconnects in Broadband Switching Architectures, T. J. Cloonan, ed., Proc. SPIE2692, 190–193 (1996).
[CrossRef]

R. Sharma, R. I. MacDonald, “A signal transparent, distributed optical interconnect based optoelectronic switch,” in Proceedings of the International Conference on Applications of Photonics Technology, Montreal, Canada, 1996 (Plenum, New York, to be published).

Moslehi, B.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. Cutler, J. W. Goodman, H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microwave Theory Tech. MTT-33, 193–210 (1985).
[CrossRef]

B. Moslehi, J. W. Goodman, M. Tur, H. J. Shaw, “Fiber-optic lattice signal processing,” Proc. IEEE 27, 909–930 (1984).
[CrossRef]

M. Tur, J. W. Goodman, B. Moslehi, J. E. Bowers, H. J. Shaw, “Fiber optic signal processor with applications to matrix-vector multiplication and lattice filtering,” Opt. Lett. 27, 463–465 (1982).
[CrossRef]

Newton, S. A.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. Cutler, J. W. Goodman, H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microwave Theory Tech. MTT-33, 193–210 (1985).
[CrossRef]

Nitta, Y.

Ohta, J.

Paparao, P.

Qureshi, S. U. H.

S. U. H. Qureshi, “Adaptive equalization,” Proc. IEEE 73, 1349–1387 (1985).
[CrossRef]

Sharma, R.

R. Sharma, R. I. MacDonald, “A signal transparent 10 × 10 space division optoelectronic switch core for virtual-transparent-path based multiwavelength networks,” IEEE J. Lightwave Technol. 15, 1522–1529 (1997).
[CrossRef]

R. Sharma, R. I. MacDonald, “A signal transparent, distributed optical interconnect based optoelectronic switch,” in Proceedings of the International Conference on Applications of Photonics Technology, Montreal, Canada, 1996 (Plenum, New York, to be published).

R. Sharma, R. I. MacDonald, D. Lam, D. Clegg, R. Tholl, L. Zmeko, “Broadband optoelectronic switch for digital and analog signals,” in Optical Interconnects in Broadband Switching Architectures, T. J. Cloonan, ed., Proc. SPIE2692, 190–193 (1996).
[CrossRef]

Shaw, H. J.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. Cutler, J. W. Goodman, H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microwave Theory Tech. MTT-33, 193–210 (1985).
[CrossRef]

B. Moslehi, J. W. Goodman, M. Tur, H. J. Shaw, “Fiber-optic lattice signal processing,” Proc. IEEE 27, 909–930 (1984).
[CrossRef]

M. Tur, J. W. Goodman, B. Moslehi, J. E. Bowers, H. J. Shaw, “Fiber optic signal processor with applications to matrix-vector multiplication and lattice filtering,” Opt. Lett. 27, 463–465 (1982).
[CrossRef]

Swekla, B. E.

B. E. Swekla, R. I. MacDonald, “Optoelectronic transversal filter,” Electron. Lett. 27, 1769–1770 (1991).
[CrossRef]

Syrett, B. A.

D. K. W. Lam, B. A. Syrett, “Gigahertz signal processing using reflex optoelectronic switching matrices,” IEEE J. Lightwave Technol. LT-5, 398–402 (1987).
[CrossRef]

Tai, S.

Tholl, R.

R. Sharma, R. I. MacDonald, D. Lam, D. Clegg, R. Tholl, L. Zmeko, “Broadband optoelectronic switch for digital and analog signals,” in Optical Interconnects in Broadband Switching Architectures, T. J. Cloonan, ed., Proc. SPIE2692, 190–193 (1996).
[CrossRef]

Tur, M.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. Cutler, J. W. Goodman, H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microwave Theory Tech. MTT-33, 193–210 (1985).
[CrossRef]

B. Moslehi, J. W. Goodman, M. Tur, H. J. Shaw, “Fiber-optic lattice signal processing,” Proc. IEEE 27, 909–930 (1984).
[CrossRef]

M. Tur, J. W. Goodman, B. Moslehi, J. E. Bowers, H. J. Shaw, “Fiber optic signal processor with applications to matrix-vector multiplication and lattice filtering,” Opt. Lett. 27, 463–465 (1982).
[CrossRef]

Zmeko, L.

R. Sharma, R. I. MacDonald, D. Lam, D. Clegg, R. Tholl, L. Zmeko, “Broadband optoelectronic switch for digital and analog signals,” in Optical Interconnects in Broadband Switching Architectures, T. J. Cloonan, ed., Proc. SPIE2692, 190–193 (1996).
[CrossRef]

Appl. Opt. (3)

Electron. Lett. (1)

B. E. Swekla, R. I. MacDonald, “Optoelectronic transversal filter,” Electron. Lett. 27, 1769–1770 (1991).
[CrossRef]

IEEE J. Lightwave Technol. (3)

R. Sharma, R. I. MacDonald, “A signal transparent 10 × 10 space division optoelectronic switch core for virtual-transparent-path based multiwavelength networks,” IEEE J. Lightwave Technol. 15, 1522–1529 (1997).
[CrossRef]

R. I. MacDonald, “Switched optical delay line signal processors,” IEEE J. Lightwave Technol. LT-5, 856–861 (1987).
[CrossRef]

D. K. W. Lam, B. A. Syrett, “Gigahertz signal processing using reflex optoelectronic switching matrices,” IEEE J. Lightwave Technol. LT-5, 398–402 (1987).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

R. I. MacDonald, “Optoelectronic equalization,” IEEE Photon. Technol. Lett. 6, 565–567 (1994).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. Cutler, J. W. Goodman, H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microwave Theory Tech. MTT-33, 193–210 (1985).
[CrossRef]

Opt. Lett. (2)

M. Tur, J. W. Goodman, B. Moslehi, J. E. Bowers, H. J. Shaw, “Fiber optic signal processor with applications to matrix-vector multiplication and lattice filtering,” Opt. Lett. 27, 463–465 (1982).
[CrossRef]

Y. Nitta, J. Ohta, S. Tai, K. Kyuma, “Variable-sensitivity photodetector that uses a metal–semiconductor–metal structure for optical neural networks,” Opt. Lett. 16, 611–613 (1991).
[CrossRef] [PubMed]

Proc. IEEE (2)

B. Moslehi, J. W. Goodman, M. Tur, H. J. Shaw, “Fiber-optic lattice signal processing,” Proc. IEEE 27, 909–930 (1984).
[CrossRef]

S. U. H. Qureshi, “Adaptive equalization,” Proc. IEEE 73, 1349–1387 (1985).
[CrossRef]

Other (5)

A. Antoniou, Digital Filters: Analysis and Design, 3rd ed. (McGraw-Hill, New York, 1988), pp. 137–250.

R. I. MacDonald, “Optoelectronic filter with variable gain bi-polar taps,” U.S. patent5,376,786 (27December1994).

D. Lam, “Reflex optoelectronic signal processor,” M.S. thesis (University of Alberta, Edmonton, Canada, 1994).

R. Sharma, R. I. MacDonald, D. Lam, D. Clegg, R. Tholl, L. Zmeko, “Broadband optoelectronic switch for digital and analog signals,” in Optical Interconnects in Broadband Switching Architectures, T. J. Cloonan, ed., Proc. SPIE2692, 190–193 (1996).
[CrossRef]

R. Sharma, R. I. MacDonald, “A signal transparent, distributed optical interconnect based optoelectronic switch,” in Proceedings of the International Conference on Applications of Photonics Technology, Montreal, Canada, 1996 (Plenum, New York, to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

FIR filter (20 taps) realization with a matrix processor. The circles represent controlled bias photodetectors.

Fig. 2
Fig. 2

DC responsivity versus the voltage: Measured MSM bipolar responsivity.

Fig. 3
Fig. 3

Direct form I and direct form II IIR filter realization.

Fig. 4
Fig. 4

Measured crosspoint frequency response. The lowest trace corresponds to -0.004 V.

Fig. 5
Fig. 5

Adaptive calculation of filter coefficients.

Fig. 6
Fig. 6

Modeled crosspoint frequency response.

Fig. 7
Fig. 7

Compensated frequency response.

Fig. 8
Fig. 8

Tunable FIR filter implementations: simulated and measured results. (a) Simulated frequency response (9-tap FIR). (b) Measured frequency response (9-tap FIR).

Fig. 9
Fig. 9

IIR configuration with the matrix processor.

Fig. 10
Fig. 10

Adaptive equalization with 19- and 9-tap filters over 4- and 8-km fiber channels. (a) Received signal (unequalized) fiber length, 4 km. (b) Equalized signal fiber length, 4 km; number of taps, 19. (c) Equalized signal fiber length, 4 km; number of taps, 9. (d) Equalized signal fiber length, 8 km; number of taps, 19.

Fig. 11
Fig. 11

Equalizing filter response implementation.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

O j = i = 1 10   W ij ,     i = 1 ,   2 , , 10 .
y n = k = 0 19   a k x n - k .
H z = k = 0 N a   a k z - k 1 + k = 1 Nb   b k z - k ,   a k = - A k B 0 ,     b k = B k B 0 ,     N a = 7 ,   N b = 7 .
a k = - A k 1 - B 0 ,     b k = B k 1 - B 0 ,     N a = 4 ,   N b = 3 .
y t = H 0 K 0 A 0 x t - 2 T + H 0 K 1 A 1 x t - 3 T + + H 0 K 7 A 7 x t - 9 T + B 1 y t - T + K 0 B 2 y t - 2 T + + K 7 B 9 y t - 9 T ,
H z = k = 0 N a   a k z - k 1 + k = 1 Nb   b k z - k   H 0 z - 2 ,
a k = K k A k ,   b k = - K k - 2 B k ,   except   b 1 = - B 1 , N a = 7 ,   N b = 9 .

Metrics