Abstract

A real-time, in situ fixing method by use of heating with a CO2 laser beam is suggested for thermal fixing of a small local hologram in the bulk of a Fe:LiNbO3 photorefractive crystal. For heating up to 100 °C–200 °C a volume with a shape similar to that of the laser beam a heat-guiding technique is developed. On the basis of the heat-transfer equations, different heating modes—with or without metal absorbers for heat guiding—obtained by use of a continuous or pulsed laser beam are analyzed. The optimal mode may be pulsed heating with absorbers. On this basis experiments have been designed and demonstrated. It is seen that the fixing process with CO2 laser beam is short compared with the process by use of an oven, and the fixing efficiency is quite high.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnects for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
    [CrossRef]
  2. P. Yeh, A. E. T. Chiou, J. Hong, “Optical interconnection using photorefractive dynamic holograms,” Appl. Opt. 27, 2093–2095 (1988).
    [CrossRef] [PubMed]
  3. D. Psaltis, D. Brady, K. Wagner, “Adaptive optical networks using photorefractive crystals,” Appl. Opt. 27, 1752–1759 (1988).
    [CrossRef]
  4. J. E. Ford, Y. Fainman, S. H. Lee, “Reconfigurable array interconnection by photorefractive correction,” Appl. Opt. 33, 5363–5377 (1994).
    [CrossRef] [PubMed]
  5. J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
    [CrossRef]
  6. V. V. Kulikov, S. I. Stepanov, “Mechanisms of holographic recording and thermal fixing in photorefractive LiNbO3:Fe,” Sov. Phys. Solid State 21, 1849–1851 (1979).
  7. J. F. Heanue, M. C. Bashaw, A. J. Daiber, R. Snyder, L. Hesselink, “Digital holographic storage system incorporating thermal fixing in lithium niobate,” Opt. Lett. 21, 1615–1617 (1996).
    [CrossRef] [PubMed]
  8. D. Psaltis, G. Barbastathis, A. Pu, “Holographic memories,” in Seventeenth Congress of the International Commission for Optics: Optics for Science and New Technology, J. Chang, J. Lee, C. Nam, eds., Proc. SPIE2778, 418–421 (1996).
  9. L. Hesselink, J. Heanue, M. C. Bashaw, “Holographic digital data storage system,” in Seventeenth Congress of the International Commission for Optics: Optics for Science and New Technology, J. Chang, J. Lee, C. Nam, eds., Proc. SPIE2778, 410–413 (1996).
  10. M. Mansuripur, G. A. Neville Connell, J. Goodman, “Laser-induced local heating of multilayers,” Appl. Opt. 21, 1106–1114 (1982).
    [CrossRef] [PubMed]
  11. V. V. Zhdanova, V. P. Klyuev, V. V. Lemanov, I. A. Smirnov, V. V. Tikhonov, “Thermal properties of lithium niobate crystals,” Sov. Phys. Solid State 10, 1360–1364 (1968).
  12. P. Gunter, J.-P. Huignard, Photorefractive Materials and Their Applications (Springer-Verlag, Berlin, 1988), Vols. 1 and 2.
    [CrossRef]
  13. H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids (Oxford U. Press, London, 1954).
  14. R. A. Morgan, K. I. Kang, C. C. Hsu, C. L. Koliopoulos, N. Peyghambarian, “Measurement of the thermal diffusivity of nonlinear anisotropic crystals using optical interferometry,” Appl. Opt. 26, 5266–5271 (1987).
    [CrossRef] [PubMed]
  15. K. L. Saenger, J. Gupta, “Laser interferometric thermometry for substrate temperature measurement,” Appl. Opt. 30, 1221–1226 (1991).
    [CrossRef] [PubMed]

1996 (1)

1994 (1)

1991 (1)

1988 (2)

1987 (1)

1984 (1)

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnects for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

1982 (1)

1979 (1)

V. V. Kulikov, S. I. Stepanov, “Mechanisms of holographic recording and thermal fixing in photorefractive LiNbO3:Fe,” Sov. Phys. Solid State 21, 1849–1851 (1979).

1971 (1)

J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

1968 (1)

V. V. Zhdanova, V. P. Klyuev, V. V. Lemanov, I. A. Smirnov, V. V. Tikhonov, “Thermal properties of lithium niobate crystals,” Sov. Phys. Solid State 10, 1360–1364 (1968).

Amodei, J. J.

J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

Athale, R. A.

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnects for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Barbastathis, G.

D. Psaltis, G. Barbastathis, A. Pu, “Holographic memories,” in Seventeenth Congress of the International Commission for Optics: Optics for Science and New Technology, J. Chang, J. Lee, C. Nam, eds., Proc. SPIE2778, 418–421 (1996).

Bashaw, M. C.

J. F. Heanue, M. C. Bashaw, A. J. Daiber, R. Snyder, L. Hesselink, “Digital holographic storage system incorporating thermal fixing in lithium niobate,” Opt. Lett. 21, 1615–1617 (1996).
[CrossRef] [PubMed]

L. Hesselink, J. Heanue, M. C. Bashaw, “Holographic digital data storage system,” in Seventeenth Congress of the International Commission for Optics: Optics for Science and New Technology, J. Chang, J. Lee, C. Nam, eds., Proc. SPIE2778, 410–413 (1996).

Brady, D.

Carslaw, H. S.

H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids (Oxford U. Press, London, 1954).

Chiou, A. E. T.

Daiber, A. J.

Fainman, Y.

Ford, J. E.

Goodman, J.

Goodman, J. W.

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnects for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Gunter, P.

P. Gunter, J.-P. Huignard, Photorefractive Materials and Their Applications (Springer-Verlag, Berlin, 1988), Vols. 1 and 2.
[CrossRef]

Gupta, J.

Heanue, J.

L. Hesselink, J. Heanue, M. C. Bashaw, “Holographic digital data storage system,” in Seventeenth Congress of the International Commission for Optics: Optics for Science and New Technology, J. Chang, J. Lee, C. Nam, eds., Proc. SPIE2778, 410–413 (1996).

Heanue, J. F.

Hesselink, L.

J. F. Heanue, M. C. Bashaw, A. J. Daiber, R. Snyder, L. Hesselink, “Digital holographic storage system incorporating thermal fixing in lithium niobate,” Opt. Lett. 21, 1615–1617 (1996).
[CrossRef] [PubMed]

L. Hesselink, J. Heanue, M. C. Bashaw, “Holographic digital data storage system,” in Seventeenth Congress of the International Commission for Optics: Optics for Science and New Technology, J. Chang, J. Lee, C. Nam, eds., Proc. SPIE2778, 410–413 (1996).

Hong, J.

Hsu, C. C.

Huignard, J.-P.

P. Gunter, J.-P. Huignard, Photorefractive Materials and Their Applications (Springer-Verlag, Berlin, 1988), Vols. 1 and 2.
[CrossRef]

Jaeger, J. C.

H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids (Oxford U. Press, London, 1954).

Kang, K. I.

Klyuev, V. P.

V. V. Zhdanova, V. P. Klyuev, V. V. Lemanov, I. A. Smirnov, V. V. Tikhonov, “Thermal properties of lithium niobate crystals,” Sov. Phys. Solid State 10, 1360–1364 (1968).

Koliopoulos, C. L.

Kulikov, V. V.

V. V. Kulikov, S. I. Stepanov, “Mechanisms of holographic recording and thermal fixing in photorefractive LiNbO3:Fe,” Sov. Phys. Solid State 21, 1849–1851 (1979).

Kung, S. Y.

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnects for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Lee, S. H.

Lemanov, V. V.

V. V. Zhdanova, V. P. Klyuev, V. V. Lemanov, I. A. Smirnov, V. V. Tikhonov, “Thermal properties of lithium niobate crystals,” Sov. Phys. Solid State 10, 1360–1364 (1968).

Leonberger, F. I.

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnects for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Mansuripur, M.

Morgan, R. A.

Neville Connell, G. A.

Peyghambarian, N.

Psaltis, D.

D. Psaltis, D. Brady, K. Wagner, “Adaptive optical networks using photorefractive crystals,” Appl. Opt. 27, 1752–1759 (1988).
[CrossRef]

D. Psaltis, G. Barbastathis, A. Pu, “Holographic memories,” in Seventeenth Congress of the International Commission for Optics: Optics for Science and New Technology, J. Chang, J. Lee, C. Nam, eds., Proc. SPIE2778, 418–421 (1996).

Pu, A.

D. Psaltis, G. Barbastathis, A. Pu, “Holographic memories,” in Seventeenth Congress of the International Commission for Optics: Optics for Science and New Technology, J. Chang, J. Lee, C. Nam, eds., Proc. SPIE2778, 418–421 (1996).

Saenger, K. L.

Smirnov, I. A.

V. V. Zhdanova, V. P. Klyuev, V. V. Lemanov, I. A. Smirnov, V. V. Tikhonov, “Thermal properties of lithium niobate crystals,” Sov. Phys. Solid State 10, 1360–1364 (1968).

Snyder, R.

Staebler, D. L.

J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

Stepanov, S. I.

V. V. Kulikov, S. I. Stepanov, “Mechanisms of holographic recording and thermal fixing in photorefractive LiNbO3:Fe,” Sov. Phys. Solid State 21, 1849–1851 (1979).

Tikhonov, V. V.

V. V. Zhdanova, V. P. Klyuev, V. V. Lemanov, I. A. Smirnov, V. V. Tikhonov, “Thermal properties of lithium niobate crystals,” Sov. Phys. Solid State 10, 1360–1364 (1968).

Wagner, K.

Yeh, P.

Zhdanova, V. V.

V. V. Zhdanova, V. P. Klyuev, V. V. Lemanov, I. A. Smirnov, V. V. Tikhonov, “Thermal properties of lithium niobate crystals,” Sov. Phys. Solid State 10, 1360–1364 (1968).

Appl. Opt. (6)

Appl. Phys. Lett. (1)

J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

Opt. Lett. (1)

Proc. IEEE (1)

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnects for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Sov. Phys. Solid State (2)

V. V. Kulikov, S. I. Stepanov, “Mechanisms of holographic recording and thermal fixing in photorefractive LiNbO3:Fe,” Sov. Phys. Solid State 21, 1849–1851 (1979).

V. V. Zhdanova, V. P. Klyuev, V. V. Lemanov, I. A. Smirnov, V. V. Tikhonov, “Thermal properties of lithium niobate crystals,” Sov. Phys. Solid State 10, 1360–1364 (1968).

Other (4)

P. Gunter, J.-P. Huignard, Photorefractive Materials and Their Applications (Springer-Verlag, Berlin, 1988), Vols. 1 and 2.
[CrossRef]

H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids (Oxford U. Press, London, 1954).

D. Psaltis, G. Barbastathis, A. Pu, “Holographic memories,” in Seventeenth Congress of the International Commission for Optics: Optics for Science and New Technology, J. Chang, J. Lee, C. Nam, eds., Proc. SPIE2778, 418–421 (1996).

L. Hesselink, J. Heanue, M. C. Bashaw, “Holographic digital data storage system,” in Seventeenth Congress of the International Commission for Optics: Optics for Science and New Technology, J. Chang, J. Lee, C. Nam, eds., Proc. SPIE2778, 410–413 (1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic diagram of the local-heating arrangement.

Fig. 2
Fig. 2

Temperature distributions in a crystal at different radii as a result of continuous laser heating without thermal absorbers.

Fig. 3
Fig. 3

Time-dependent heating at the crystal center as a result of continuous heating without thermal absorbers.

Fig. 4
Fig. 4

Intensity profile of a pulsed laser beam.

Fig. 5
Fig. 5

Temperature distributions in a crystal at different radii as a result of pulsed laser heating without thermal absorbers.

Fig. 6
Fig. 6

Time-dependent heating at the crystal center as a result of repeated heating. The dashed curve represents the average temperature.

Fig. 7
Fig. 7

Temperature distributions in the crystal at different radii as a result of continuous laser heating with thermal absorbers.

Fig. 8
Fig. 8

Temperature distributions in the crystal at different radii as a result of pulsed laser heating with thermal absorbers.

Fig. 9
Fig. 9

Radius-dependent temperature distribution on the front (dashed curve) and back (solid curve) surfaces of the crystal as a result of pulsed laser heating with thermal absorbers.

Fig. 10
Fig. 10

Experimental arrangement. M, mirror; BS, beam splitter; S, the signal beam; R, the reference beam; PBS, polarizing beam splitter.

Fig. 11
Fig. 11

Readout of a hologram thermally fixed by means of a continuous laser beam with absorbers at (a) 10 min, (b) 12 min, and (c) 20 min.

Fig. 12
Fig. 12

Readout of a hologram thermally fixed by a pulsed laser beam for a duration of 12 min: (a) T = 16 ms and T 1 = 8 ms, (b) T = 8 ms and T 1 = 4 ms, (c) T = 1 ms and T 1 = 0.5 s, (d) T = 2 ms and T 1 = 1 ms, and (e) T = 4 ms and T 1 = 2 ms.

Fig. 13
Fig. 13

Readout of a hologram thermally fixed by a pulsed laser beam with absorbers at (a) 10 min and (b) 20 min.

Fig. 14
Fig. 14

Photographs of interference fringes used for temperature detection: (a) Before heating. (b) After heating for 10 ms with a CO2 laser beam.

Tables (1)

Tables Icon

Table 1 Comparison of Four Laser Local-Heating Modes

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I r ,   t = [ P 0 ( t ) / ( π r 0 2 ) ] exp [ - r / r 0 2 ] ,
/ t θ r ,   z ,   t - K / C 2 θ x ,   y ,   z ,   t = 1 / C g r ,   z ,   t , θ r ,   z ,   t = 0 = 0 .
/ x θ x = 0 orx = X ,   y ,   z ,   t = γ θ ,   / y θ x ,   y = 0 ory = Y ,   z ,   t = γ θ ,   / z θ x ,   y ,   z = 0 orz = d ,   t = γ θ ,
g r ,   z ,   t = - d / d z I r ,   t exp - α z ,
g x ,   y ,   z ,   t = - 0 rect t - T 1 2 - nT / T 1 × d / d z I x ,   y ,   t exp - α z .
/ z θ [ ( x 2 + y 2 ) < r h 2 ,   z = 0 orz = d ,   t ] = γ θ , θ [ ( x 2 + y 2 ) > r h 2 ,   z = 0 orz = d ,   t ] = 0 , θ x = 0 orx = X ,   y ,   z ,   t = θ x ,   y = 0 ory = Y ,   z ,   t = 0 .
ϕ = 2 π 2 nd / λ t ,
d ϕ d T = 2 π λ   2 nd α + β ,
Δ T / fringe = d ϕ / d T 2 π - 1 = λ 2 nd α + β .

Metrics