Abstract

In the few exceptional cases of total internal reflection phase retarders that are weakly sensitive to variations in the input angle of incidence i, the devices are of increasingly larger size; deviate or translate the emergent beam; are difficult to align in optical systems; or, in coated rhombs, have an impermanent stability of the retardance. Based on new compensating effects, novel devices of high retardance stability and advantageous characteristics are presented. One device is stable to within 0.09° of 90° for i ± 3°. It is a two-reflection quarter-wave retarder that does not alter the path of the compact size light beam, is of compact size (one seventh the size occupied by the achromatic device AD-1 for equal aperture lengths), and can be easily aligned in optical systems or used as a rotating element. The path length of the beam inside the device is less than one third the corresponding length inside the achromatic device AD-1.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. G. Oldham, “Ellipsometry using a retardation plate as compensator,” J. Opt. Soc. Am. 57, 617–624 (1967).
    [CrossRef]
  2. E. A. West, M. H. Smith, “Polarization errors associated with birefringent waveplates,” Opt. Eng. 34, 1574–1580 (1995).
    [CrossRef]
  3. T. F. Thonn, R. M. A. Azzam, “Three-reflection halfwave and quarterwave retarders using dielectric-coated metallic mirrors,” Appl. Opt. 23, 2752–2759 (1984).
    [CrossRef] [PubMed]
  4. J. M. Bennett, “A critical evaluation of rhomb-type quarterwave retarders,” Appl. Opt. 9, 2123–2129 (1970).
    [CrossRef] [PubMed]
  5. I. Filinski, T. Skettrup, “Achromatic phase retarders constructed from right-angled prisms: design,” Appl. Opt. 23, 2747–2751 (1984).
    [CrossRef] [PubMed]
  6. E. Spiller, “Totally reflecting thin-film phase retarders,” Appl. Opt. 23, 3544–3549 (1984).
    [CrossRef] [PubMed]
  7. N. N. Nagib, M. S. El-Bahrawy, “Phase retarders with variable angles of total internal reflection,” Appl. Opt. 33, 1218–1222 (1994).
    [CrossRef] [PubMed]
  8. N. N. Nagib, S. A. Khodier, “Optimization of a rhomb-type quarter-wave phase retarder,” Appl. Opt. 34, 2927–2930 (1995).
    [CrossRef] [PubMed]
  9. N. N. Nagib, M. S. El-Bahrawy, S. E. Demian, S. Khodier, “Oblique incidence in total internal reflection phase retarders. II. Application,” Opt. Pura. Apl. (Spain) 27, 111–116 (1994).
  10. N. N. Nagib, “Theory of oblique incidence phase retarders,” Appl. Opt. 36, 1547–1552 (1997).
    [CrossRef] [PubMed]
  11. R. J. King, M. J. Downs, “Ellipsometry applied to films on dielectric substrates,” Surf. Sci. 16, 288–302 (1969).
    [CrossRef]
  12. P. B. Clapham, M. J. Downs, R. J. King, “Some applications of thin films to polarization devices,” Appl. Opt. 8, 1965–1974 (1969).
    [CrossRef] [PubMed]
  13. D. Clarke, J. F. Grainger, Polarized Light and Optical Measurements (Pergamon, Oxford, 1971), Chap. 3, pp. 110–113.
  14. N. N. Nagib, “Oblique incidence in total internal reflection phase retarders. I. Theory and design considerations,” Opt. Pura. Apl. (Spain) 27, 105–110 (1994).
  15. I. N. Shklyarevskii, V. P. Kostyuk, L. G. Lelyuk, R. G. Yarovaya, “On the magnitude and sign of the phase difference Δ = δp - δs resulting from total internal reflection,” Opt. Spectrosc. 18, 476–478 (1965).
  16. Schott Glaswerke , “The stress-optical coefficients of optical glasses,” Technical Note 15 (Schott Glaswerke, Mainz, Germany, 1984).
  17. K. B. Rochford, A. H. Rose, P. A. Williams, C. M. Wang, I. G. Clarke, P. D. Hale, G. W. Day, “Design and performance of a stable linear retarder,” Appl. Opt. 36, 6458–6465 (1997).
    [CrossRef]

1997 (2)

1995 (2)

E. A. West, M. H. Smith, “Polarization errors associated with birefringent waveplates,” Opt. Eng. 34, 1574–1580 (1995).
[CrossRef]

N. N. Nagib, S. A. Khodier, “Optimization of a rhomb-type quarter-wave phase retarder,” Appl. Opt. 34, 2927–2930 (1995).
[CrossRef] [PubMed]

1994 (3)

N. N. Nagib, M. S. El-Bahrawy, S. E. Demian, S. Khodier, “Oblique incidence in total internal reflection phase retarders. II. Application,” Opt. Pura. Apl. (Spain) 27, 111–116 (1994).

N. N. Nagib, M. S. El-Bahrawy, “Phase retarders with variable angles of total internal reflection,” Appl. Opt. 33, 1218–1222 (1994).
[CrossRef] [PubMed]

N. N. Nagib, “Oblique incidence in total internal reflection phase retarders. I. Theory and design considerations,” Opt. Pura. Apl. (Spain) 27, 105–110 (1994).

1984 (3)

1970 (1)

1969 (2)

R. J. King, M. J. Downs, “Ellipsometry applied to films on dielectric substrates,” Surf. Sci. 16, 288–302 (1969).
[CrossRef]

P. B. Clapham, M. J. Downs, R. J. King, “Some applications of thin films to polarization devices,” Appl. Opt. 8, 1965–1974 (1969).
[CrossRef] [PubMed]

1967 (1)

1965 (1)

I. N. Shklyarevskii, V. P. Kostyuk, L. G. Lelyuk, R. G. Yarovaya, “On the magnitude and sign of the phase difference Δ = δp - δs resulting from total internal reflection,” Opt. Spectrosc. 18, 476–478 (1965).

Azzam, R. M. A.

Bennett, J. M.

Clapham, P. B.

Clarke, D.

D. Clarke, J. F. Grainger, Polarized Light and Optical Measurements (Pergamon, Oxford, 1971), Chap. 3, pp. 110–113.

Clarke, I. G.

Day, G. W.

Demian, S. E.

N. N. Nagib, M. S. El-Bahrawy, S. E. Demian, S. Khodier, “Oblique incidence in total internal reflection phase retarders. II. Application,” Opt. Pura. Apl. (Spain) 27, 111–116 (1994).

Downs, M. J.

P. B. Clapham, M. J. Downs, R. J. King, “Some applications of thin films to polarization devices,” Appl. Opt. 8, 1965–1974 (1969).
[CrossRef] [PubMed]

R. J. King, M. J. Downs, “Ellipsometry applied to films on dielectric substrates,” Surf. Sci. 16, 288–302 (1969).
[CrossRef]

El-Bahrawy, M. S.

N. N. Nagib, M. S. El-Bahrawy, “Phase retarders with variable angles of total internal reflection,” Appl. Opt. 33, 1218–1222 (1994).
[CrossRef] [PubMed]

N. N. Nagib, M. S. El-Bahrawy, S. E. Demian, S. Khodier, “Oblique incidence in total internal reflection phase retarders. II. Application,” Opt. Pura. Apl. (Spain) 27, 111–116 (1994).

Filinski, I.

Glaswerke, Schott

Schott Glaswerke , “The stress-optical coefficients of optical glasses,” Technical Note 15 (Schott Glaswerke, Mainz, Germany, 1984).

Grainger, J. F.

D. Clarke, J. F. Grainger, Polarized Light and Optical Measurements (Pergamon, Oxford, 1971), Chap. 3, pp. 110–113.

Hale, P. D.

Khodier, S.

N. N. Nagib, M. S. El-Bahrawy, S. E. Demian, S. Khodier, “Oblique incidence in total internal reflection phase retarders. II. Application,” Opt. Pura. Apl. (Spain) 27, 111–116 (1994).

Khodier, S. A.

King, R. J.

P. B. Clapham, M. J. Downs, R. J. King, “Some applications of thin films to polarization devices,” Appl. Opt. 8, 1965–1974 (1969).
[CrossRef] [PubMed]

R. J. King, M. J. Downs, “Ellipsometry applied to films on dielectric substrates,” Surf. Sci. 16, 288–302 (1969).
[CrossRef]

Kostyuk, V. P.

I. N. Shklyarevskii, V. P. Kostyuk, L. G. Lelyuk, R. G. Yarovaya, “On the magnitude and sign of the phase difference Δ = δp - δs resulting from total internal reflection,” Opt. Spectrosc. 18, 476–478 (1965).

Lelyuk, L. G.

I. N. Shklyarevskii, V. P. Kostyuk, L. G. Lelyuk, R. G. Yarovaya, “On the magnitude and sign of the phase difference Δ = δp - δs resulting from total internal reflection,” Opt. Spectrosc. 18, 476–478 (1965).

Nagib, N. N.

N. N. Nagib, “Theory of oblique incidence phase retarders,” Appl. Opt. 36, 1547–1552 (1997).
[CrossRef] [PubMed]

N. N. Nagib, S. A. Khodier, “Optimization of a rhomb-type quarter-wave phase retarder,” Appl. Opt. 34, 2927–2930 (1995).
[CrossRef] [PubMed]

N. N. Nagib, M. S. El-Bahrawy, S. E. Demian, S. Khodier, “Oblique incidence in total internal reflection phase retarders. II. Application,” Opt. Pura. Apl. (Spain) 27, 111–116 (1994).

N. N. Nagib, “Oblique incidence in total internal reflection phase retarders. I. Theory and design considerations,” Opt. Pura. Apl. (Spain) 27, 105–110 (1994).

N. N. Nagib, M. S. El-Bahrawy, “Phase retarders with variable angles of total internal reflection,” Appl. Opt. 33, 1218–1222 (1994).
[CrossRef] [PubMed]

Oldham, W. G.

Rochford, K. B.

Rose, A. H.

Shklyarevskii, I. N.

I. N. Shklyarevskii, V. P. Kostyuk, L. G. Lelyuk, R. G. Yarovaya, “On the magnitude and sign of the phase difference Δ = δp - δs resulting from total internal reflection,” Opt. Spectrosc. 18, 476–478 (1965).

Skettrup, T.

Smith, M. H.

E. A. West, M. H. Smith, “Polarization errors associated with birefringent waveplates,” Opt. Eng. 34, 1574–1580 (1995).
[CrossRef]

Spiller, E.

Thonn, T. F.

Wang, C. M.

West, E. A.

E. A. West, M. H. Smith, “Polarization errors associated with birefringent waveplates,” Opt. Eng. 34, 1574–1580 (1995).
[CrossRef]

Williams, P. A.

Yarovaya, R. G.

I. N. Shklyarevskii, V. P. Kostyuk, L. G. Lelyuk, R. G. Yarovaya, “On the magnitude and sign of the phase difference Δ = δp - δs resulting from total internal reflection,” Opt. Spectrosc. 18, 476–478 (1965).

Appl. Opt. (9)

J. Opt. Soc. Am. (1)

Opt. Eng. (1)

E. A. West, M. H. Smith, “Polarization errors associated with birefringent waveplates,” Opt. Eng. 34, 1574–1580 (1995).
[CrossRef]

Opt. Pura. Apl. (Spain) (2)

N. N. Nagib, M. S. El-Bahrawy, S. E. Demian, S. Khodier, “Oblique incidence in total internal reflection phase retarders. II. Application,” Opt. Pura. Apl. (Spain) 27, 111–116 (1994).

N. N. Nagib, “Oblique incidence in total internal reflection phase retarders. I. Theory and design considerations,” Opt. Pura. Apl. (Spain) 27, 105–110 (1994).

Opt. Spectrosc. (1)

I. N. Shklyarevskii, V. P. Kostyuk, L. G. Lelyuk, R. G. Yarovaya, “On the magnitude and sign of the phase difference Δ = δp - δs resulting from total internal reflection,” Opt. Spectrosc. 18, 476–478 (1965).

Surf. Sci. (1)

R. J. King, M. J. Downs, “Ellipsometry applied to films on dielectric substrates,” Surf. Sci. 16, 288–302 (1969).
[CrossRef]

Other (2)

Schott Glaswerke , “The stress-optical coefficients of optical glasses,” Technical Note 15 (Schott Glaswerke, Mainz, Germany, 1984).

D. Clarke, J. F. Grainger, Polarized Light and Optical Measurements (Pergamon, Oxford, 1971), Chap. 3, pp. 110–113.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Optical paths in (a) the Mooney rhomb, (b) the AD-1, and (c) the modified AD-1. The three devices are drawn to scale for a 10-mm aperture.

Fig. 2
Fig. 2

Retardance δ versus TIR angles θ for refractive-index values n = 1.51 and n = 1.80.

Fig. 3
Fig. 3

(a) Angles and the dimensions of the two-reflection device; (b) the optical path inside the device.

Fig. 4
Fig. 4

Retardances δ1 and δ2 for angles of incidence i ± 1.5: (a) i 1 = 30° and (b) i 2 = 56.3°. (c) The overall retardance for angles of incidence i 1 and i 2. The retardance of the Fresnel rhomb for similar variations in the angle of incidence is drawn for comparison.

Fig. 5
Fig. 5

Variation of the retardance with refractive index for the device of Fig. 3. Similar relation for the Fresnel rhomb is presented.

Fig. 6
Fig. 6

(a) Specifications of the prism for a 45° retardance, (b) two successive elements providing 90° retardance for a correctly aligned incident beam, and (c) the optical path inside the device for an angle of incidence i 1 - 3°.

Fig. 7
Fig. 7

(a) Retardances δ1 and δ2 for angles of incidence i 1 ± 3° and (b) variation of the total retardance with the angle of incidence.

Fig. 8
Fig. 8

Variation of the retardance with wavelength for the device of Fig. 7.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

δ = 2   tan - 1 cos   θ n 2 sin 2   θ - 1 1 / 2 / n   sin 2   θ ; δ = f 1 n ,   θ ,     θ = f 2 n ,     n = f 3 λ .
δ 1 + δ 2 = 90 ° ,
| Δ δ 1 + Δ δ 2 | < ε   for   Δ θ < η ,
θ 1 = α + t ,
θ 2 = θ 1 + α + β - π ,

Metrics