Abstract

We describe a novel design of an inverse Čerenkov accelerator for preinjected relativistic electrons. It utilizes synchronous linearly polarized input pulses focused by relatively small opposing sections of a conical mirror. The focal volume remains centered on the acceleration path throughout its entire length. Several advantages over existing designs are described, including, for any given wavelength, much larger acceleration areas that allow for much simpler preoptics and electron injection geometries and eventual self-compensation of nonlinear optical effects and compensation of Čerenkov material dispersion.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example, P. Schoessow , ed., Advanced Accelerator Concepts, AIP Conf. Proc. 335, (1995).
  2. E. Esarey, P. Sprangle, J. Krall, A. Ting, G. Joyce, “Optically guided laser wake-field acceleration,” Phys. Fluids B 5, 2690–2697 (1993);T. C. Chiou, T. Katsouleas, C. Decker, W. B. Mori, J. S. Wurtele, G. Shvets, J. J. Su, “Laser wake-field acceleration and optical guiding in a hollow plasma channel,” Phys. Plasmas 2, 310–319 (1995).
    [CrossRef]
  3. J. P. Fontana, R. H. Pantell, “A high-energy laser accelerator for electrons using the inverse Cherenkov effect,” J. Appl. Phys. 54, 4285–4288 (1983).
    [CrossRef]
  4. W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74, 546–549 (1995);U. Mohideen, H. W. K. Tom, R. R. Freeman, J. Bokor, P. H. Bucksbaum, “Interaction of free electrons with an intense focused laser pulse in Gaussian and conical axicon geometries,” J. Opt. Soc. Am. B 9, 2190–2195 (1992).
    [CrossRef] [PubMed]
  5. S. C. Tidwell, G. H. Kim, W. D. Kimura, “Efficient radially polarized laser beam generation with a double interferometer,” Appl. Opt. 32, 5222–5229 (1993).
    [CrossRef] [PubMed]
  6. S. A. Self, “Focusing of spherical Gaussian beams,” Appl. Opt. 22, 658–661 (1983).
    [CrossRef] [PubMed]
  7. S. Ruschin, “Modified Bessel nondiffracting beams,” J. Opt. Soc. Am. A 11, 3224–3228 (1994).
    [CrossRef]
  8. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975), pp. 427–432.

1995

See, for example, P. Schoessow , ed., Advanced Accelerator Concepts, AIP Conf. Proc. 335, (1995).

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74, 546–549 (1995);U. Mohideen, H. W. K. Tom, R. R. Freeman, J. Bokor, P. H. Bucksbaum, “Interaction of free electrons with an intense focused laser pulse in Gaussian and conical axicon geometries,” J. Opt. Soc. Am. B 9, 2190–2195 (1992).
[CrossRef] [PubMed]

1994

1993

S. C. Tidwell, G. H. Kim, W. D. Kimura, “Efficient radially polarized laser beam generation with a double interferometer,” Appl. Opt. 32, 5222–5229 (1993).
[CrossRef] [PubMed]

E. Esarey, P. Sprangle, J. Krall, A. Ting, G. Joyce, “Optically guided laser wake-field acceleration,” Phys. Fluids B 5, 2690–2697 (1993);T. C. Chiou, T. Katsouleas, C. Decker, W. B. Mori, J. S. Wurtele, G. Shvets, J. J. Su, “Laser wake-field acceleration and optical guiding in a hollow plasma channel,” Phys. Plasmas 2, 310–319 (1995).
[CrossRef]

1983

J. P. Fontana, R. H. Pantell, “A high-energy laser accelerator for electrons using the inverse Cherenkov effect,” J. Appl. Phys. 54, 4285–4288 (1983).
[CrossRef]

S. A. Self, “Focusing of spherical Gaussian beams,” Appl. Opt. 22, 658–661 (1983).
[CrossRef] [PubMed]

Esarey, E.

E. Esarey, P. Sprangle, J. Krall, A. Ting, G. Joyce, “Optically guided laser wake-field acceleration,” Phys. Fluids B 5, 2690–2697 (1993);T. C. Chiou, T. Katsouleas, C. Decker, W. B. Mori, J. S. Wurtele, G. Shvets, J. J. Su, “Laser wake-field acceleration and optical guiding in a hollow plasma channel,” Phys. Plasmas 2, 310–319 (1995).
[CrossRef]

Fernow, R. C.

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74, 546–549 (1995);U. Mohideen, H. W. K. Tom, R. R. Freeman, J. Bokor, P. H. Bucksbaum, “Interaction of free electrons with an intense focused laser pulse in Gaussian and conical axicon geometries,” J. Opt. Soc. Am. B 9, 2190–2195 (1992).
[CrossRef] [PubMed]

Fontana, J. P.

J. P. Fontana, R. H. Pantell, “A high-energy laser accelerator for electrons using the inverse Cherenkov effect,” J. Appl. Phys. 54, 4285–4288 (1983).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975), pp. 427–432.

Joyce, G.

E. Esarey, P. Sprangle, J. Krall, A. Ting, G. Joyce, “Optically guided laser wake-field acceleration,” Phys. Fluids B 5, 2690–2697 (1993);T. C. Chiou, T. Katsouleas, C. Decker, W. B. Mori, J. S. Wurtele, G. Shvets, J. J. Su, “Laser wake-field acceleration and optical guiding in a hollow plasma channel,” Phys. Plasmas 2, 310–319 (1995).
[CrossRef]

Kim, G. H.

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74, 546–549 (1995);U. Mohideen, H. W. K. Tom, R. R. Freeman, J. Bokor, P. H. Bucksbaum, “Interaction of free electrons with an intense focused laser pulse in Gaussian and conical axicon geometries,” J. Opt. Soc. Am. B 9, 2190–2195 (1992).
[CrossRef] [PubMed]

S. C. Tidwell, G. H. Kim, W. D. Kimura, “Efficient radially polarized laser beam generation with a double interferometer,” Appl. Opt. 32, 5222–5229 (1993).
[CrossRef] [PubMed]

Kimura, W. D.

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74, 546–549 (1995);U. Mohideen, H. W. K. Tom, R. R. Freeman, J. Bokor, P. H. Bucksbaum, “Interaction of free electrons with an intense focused laser pulse in Gaussian and conical axicon geometries,” J. Opt. Soc. Am. B 9, 2190–2195 (1992).
[CrossRef] [PubMed]

S. C. Tidwell, G. H. Kim, W. D. Kimura, “Efficient radially polarized laser beam generation with a double interferometer,” Appl. Opt. 32, 5222–5229 (1993).
[CrossRef] [PubMed]

Krall, J.

E. Esarey, P. Sprangle, J. Krall, A. Ting, G. Joyce, “Optically guided laser wake-field acceleration,” Phys. Fluids B 5, 2690–2697 (1993);T. C. Chiou, T. Katsouleas, C. Decker, W. B. Mori, J. S. Wurtele, G. Shvets, J. J. Su, “Laser wake-field acceleration and optical guiding in a hollow plasma channel,” Phys. Plasmas 2, 310–319 (1995).
[CrossRef]

Kusche, K. P.

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74, 546–549 (1995);U. Mohideen, H. W. K. Tom, R. R. Freeman, J. Bokor, P. H. Bucksbaum, “Interaction of free electrons with an intense focused laser pulse in Gaussian and conical axicon geometries,” J. Opt. Soc. Am. B 9, 2190–2195 (1992).
[CrossRef] [PubMed]

Pantell, R. H.

J. P. Fontana, R. H. Pantell, “A high-energy laser accelerator for electrons using the inverse Cherenkov effect,” J. Appl. Phys. 54, 4285–4288 (1983).
[CrossRef]

Pogorelsky, I. V.

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74, 546–549 (1995);U. Mohideen, H. W. K. Tom, R. R. Freeman, J. Bokor, P. H. Bucksbaum, “Interaction of free electrons with an intense focused laser pulse in Gaussian and conical axicon geometries,” J. Opt. Soc. Am. B 9, 2190–2195 (1992).
[CrossRef] [PubMed]

Romea, R. D.

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74, 546–549 (1995);U. Mohideen, H. W. K. Tom, R. R. Freeman, J. Bokor, P. H. Bucksbaum, “Interaction of free electrons with an intense focused laser pulse in Gaussian and conical axicon geometries,” J. Opt. Soc. Am. B 9, 2190–2195 (1992).
[CrossRef] [PubMed]

Ruschin, S.

Self, S. A.

Sprangle, P.

E. Esarey, P. Sprangle, J. Krall, A. Ting, G. Joyce, “Optically guided laser wake-field acceleration,” Phys. Fluids B 5, 2690–2697 (1993);T. C. Chiou, T. Katsouleas, C. Decker, W. B. Mori, J. S. Wurtele, G. Shvets, J. J. Su, “Laser wake-field acceleration and optical guiding in a hollow plasma channel,” Phys. Plasmas 2, 310–319 (1995).
[CrossRef]

Steinhauer, L. C.

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74, 546–549 (1995);U. Mohideen, H. W. K. Tom, R. R. Freeman, J. Bokor, P. H. Bucksbaum, “Interaction of free electrons with an intense focused laser pulse in Gaussian and conical axicon geometries,” J. Opt. Soc. Am. B 9, 2190–2195 (1992).
[CrossRef] [PubMed]

Tidwell, S. C.

Ting, A.

E. Esarey, P. Sprangle, J. Krall, A. Ting, G. Joyce, “Optically guided laser wake-field acceleration,” Phys. Fluids B 5, 2690–2697 (1993);T. C. Chiou, T. Katsouleas, C. Decker, W. B. Mori, J. S. Wurtele, G. Shvets, J. J. Su, “Laser wake-field acceleration and optical guiding in a hollow plasma channel,” Phys. Plasmas 2, 310–319 (1995).
[CrossRef]

Wang, X.

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74, 546–549 (1995);U. Mohideen, H. W. K. Tom, R. R. Freeman, J. Bokor, P. H. Bucksbaum, “Interaction of free electrons with an intense focused laser pulse in Gaussian and conical axicon geometries,” J. Opt. Soc. Am. B 9, 2190–2195 (1992).
[CrossRef] [PubMed]

AIP Conf. Proc.

See, for example, P. Schoessow , ed., Advanced Accelerator Concepts, AIP Conf. Proc. 335, (1995).

Appl. Opt.

J. Appl. Phys.

J. P. Fontana, R. H. Pantell, “A high-energy laser accelerator for electrons using the inverse Cherenkov effect,” J. Appl. Phys. 54, 4285–4288 (1983).
[CrossRef]

J. Opt. Soc. Am. A

Phys. Fluids B

E. Esarey, P. Sprangle, J. Krall, A. Ting, G. Joyce, “Optically guided laser wake-field acceleration,” Phys. Fluids B 5, 2690–2697 (1993);T. C. Chiou, T. Katsouleas, C. Decker, W. B. Mori, J. S. Wurtele, G. Shvets, J. J. Su, “Laser wake-field acceleration and optical guiding in a hollow plasma channel,” Phys. Plasmas 2, 310–319 (1995).
[CrossRef]

Phys. Rev. Lett.

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74, 546–549 (1995);U. Mohideen, H. W. K. Tom, R. R. Freeman, J. Bokor, P. H. Bucksbaum, “Interaction of free electrons with an intense focused laser pulse in Gaussian and conical axicon geometries,” J. Opt. Soc. Am. B 9, 2190–2195 (1992).
[CrossRef] [PubMed]

Other

J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975), pp. 427–432.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Defining cone for conical mirrors: (a) appropriately chosen cone, (b) opposite mirror sections, (c) optical axis.

Fig. 2
Fig. 2

Input beam having (slightly) wedge-shaped Gaussian behavior in the y direction and constant y-integrated intensity as a function of x: (a) projection of conical section mirror in a plane perpendicular to the z direction, (b) linear polarization indicators.

Fig. 3
Fig. 3

Schematic illustration of the accelerator: (a) acceleration path, (b) input beams polarized in the x direction, (c) accelerator housing with variable insertion injection needle, (d) extraction system, (e) conical section mirrors, (f) optically flat glass windows, (g) Čerenkov liquid container, (h) Čerenkov liquid medium, (k) optical axis (electron path).

Fig. 4
Fig. 4

Coordinates and parameters describing the optical fields as reflected from the upper conical section mirror: (a) Incoming beam of beam height L; (b) outgoing beam, also of height L; (c) tangent plane having lateral dimensions of the conical reflector, with ϕ = 0 points representing the conical ray of tangency. The cone angle is (π - 2α); (d) normal to the tangent plane passing through the central point (ρ0, ϕ = 0, ζ = -f 0); (e) optical axis. Laboratory coordinates (x, y, z) and optical field coordinates (ξ, y, ζ), with ζ = -f 0 at point ρ0, ϕ = 0 on the tangent plane, and focal distances f(ρ) are shown.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

E ( x ,   y ,   z ,   t ) 8 𝒫 2 - n 2 cLw t 1 / 2 × exp - t - z / c τ p 2 + y w t 2 × ˆ z cos   θ   cos   k t x   cos   ω ( z / c - t ) - ˆ x sin   θ   sin   kx   sin   ω ( z / c - t )
k = n ω / c sin   θ , k t = n ω / c cos   θ ,
k = ω / c .
Z t = k t w t 2 / 2 .
E ( ξ ,   y ,   ζ ) = ˆ ξ ρ 0 - L / 2   cos   α ρ 0 + L / 2   cos   α d ρ   - ρ d ϕ × ik 2 π [ ζ + f 0 + ( ρ - ρ 0 ) sin   α ] E ( ρ ,   ϕ ) × exp ik ζ + f 0 - ( ρ ϕ ) 2 2 f ( ρ ) + ( ρ ϕ - y ) 2 + [ ( ρ - ρ 0 ) cos   α - ξ ] 2 2 [ ζ + f 0 + ( ρ - ρ 0 ) sin   α ] ,
E ρ ,   ϕ = 0 exp - ρ ϕ 2 w ρ / ρ 0 2 = 0   exp - ρ 0 ϕ 2 w 2
0 = 0 ρ = 8 2 π 𝒫 ρ 0 cos 2   α cL ρ w 1 / 2 .
ρ ξ = ρ 0 + ξ / cos   α
E ξ ,   y ,   ξ = ˆ ξ - d ϕ ρ ξ ik 2 π [ ζ + f 0 + ( ρ ξ - ρ 0 ) sin   α ] 1 / 2 × E ( ρ ξ ,   ϕ ) exp ik ζ + f 0 - ( ρ ξ ϕ ) 2 2 f ξ + ( ρ ξ ϕ - y ) 2 2 [ ζ + f 0 + ( ρ ξ - ρ 0 ) sin   α ] .
1 [ ζ + f 0 + ( ρ ξ - ρ 0 ) sin   α ] - 1 f ξ f ξ - [ ζ + f 0 + ( ρ ξ - ρ 0 ) sin   α ] f ξ 2 ,
E ξ , y , ζ = ˆ ξ ρ ξ k 2 π f ξ 1 / 2 0 ( ρ ξ ) exp ik ζ + y 2 2 f ξ × - d ϕ   exp - ρ 0 ϕ 2 w 2 + ik ϕ 2 ρ ξ 2 x / sin   2 α 2 f ξ 2 - ϕ ρ ξ y f ξ ,
- d ϕ = π ( ρ 0 / w ) 2 - ik ρ ξ 2 x / 2 f ξ 2 sin   2 α 1 / 2 × exp ( ky ρ ξ / 2 f ξ ) 2 ( ρ 0 / w ) 2 - ik ρ ξ 2 x / 2 f ξ 2 sin   2 α ,
E ( ξ ,   y ,   ζ ) = ˆ ξ 4 2 π 𝒫 kw ρ ξ cLf ξ ρ 0 1 / 2 × 1 1 - i ( k ρ ξ 2 w 2 x ) / ( 2 f ξ 2 ρ 0 2 sin   2 α ) 1 / 2 × exp ik ζ + ( kw ρ ξ y / 2 f ξ ρ 0 ) 2 1 - i ( k ρ ξ 2 w 2 x ) / ( 2 f ξ 2 ρ 0 2 sin   2 α ) .
k t = k   sin   2 α .
w t = 2 ρ 0 cos   α k t w ,
Z t = kw t 2 2
ζ = z   cos   2 α - x   sin   2 α ,
k ζ = k z - k t x ,
k = k   cos   2 α .
E x ,   y ,   z = ˆ ξ 8 2 π 𝒫 cLw t 1 / 2 1 - ix / Z t - 1 / 2 × exp ik z - ik t x - y 2 w t 2 1 - ix / Z t ,
k n   ω c cos   2 α ,
2 π 1 / 4 exp - i ω t - t - n ζ c 2 τ p 2
E x ,   y ,   z ,   t = ( ˆ x sin   θ + ˆ z cos   θ ) 16 𝒫 2 - n 2 cLw t 1 / 2 × exp i   ω c ( z - ct ) - i   n ω c cos   θ x - y 2 ω t 2 1 - ix / Z t 1 - i   x Z t - 1 / 2 × exp - t - z - nx   cos   θ c 2 / τ p 2 .
E x ,   y ,   z ,   t 8 𝒫 2 - n 2 cL ω t 1 / 2 × exp - t - z / c τ p 1 / 2 + y ω t 2 × ˆ z cos   θ   cos   k t x   cos   ω z / c - t - ˆ x sin   θ   sin   kx   sin   ω z / c - t ,

Metrics