Abstract

Electric-field multiplexing (EFM) results from the tuning of the effective wavelength of the light beam inside a photorefractive crystal. This tuning results from the application of an external electric field to the crystal during holographic recording. We demonstrate the high Bragg selectivity of this multiplexing technique in paraelectric crystals and compare it with the selectivity obtained in the ferroelectric phase. The effects of the two major physical parameters of working in the paraelectric phase, the temperature and the external electric field applied during the writing stage, are investigated. Experimental results of the EFM of three image-bearing holograms recorded in reflection geometry are presented along with a qualitative analysis of the Bragg selectivity in paraelectric crystals.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Kewitch, M. Segev, A. Yariv, R. R. Neurgaonkar, “Electric-field multiplexing/demultiplexing of volume holograms in photorefractive media,” Opt. Lett. 18, 534–536 (1993).
    [CrossRef]
  2. S. I. Stepanov, A. A. Kamshilin, M. P. Petrov, “Electrically controlled optical diffraction by volume holograms in electrooptic crystals,” Pis’ma Zh. Tekh. Fiz. 3, 89–93 (1977) [Sov. Tech. Phys. Lett. 3, 36–38 (1977)].
  3. G. A. Rakuljic, V. Leyva, “Volume holographic narrow-band optical filter,” Opt. Lett. 18, 459–461 (1993).
    [CrossRef] [PubMed]
  4. R. Muller, J. V. Alvarez-Bravo, L. Arizmendi, J. M. Cabrera, “Tuning of photorefractive interference filters in LiNbO3,” J. Phys. D 27, 1628–1632 (1994).
    [CrossRef]
  5. G. A. Rakuljic, V. Leyva, A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471–1473 (1992).
    [CrossRef] [PubMed]
  6. K. Curtis, C. Gu, D. Psaltis, “Cross talk in wavelength-multiplexed holographic memories,” Opt. Lett. 18, 1001–1003 (1993).
    [CrossRef] [PubMed]
  7. J. V. Alvarez-Bravo, R. Muller, L. Arizmendi, “Electric field multiplexing of volume holograms in LiNbO3,” Europhys. Lett. 31, 443–448 (1995).
    [CrossRef]
  8. R. De-Vré, M. Jeganathan, J. P. Wilde, L. Hesselink, “Effect of applied electric fields on the writing and readout of photorefractive gratings,” J. Opt. Soc. Am. B 12, 600–614 (1995).
    [CrossRef]
  9. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993), pp. 33, 97.
  10. A. J. Agranat, R. Hofmeister, A. Yariv, “Characterization of a new photorefractive material: K1-yLyT1-xNx,” Opt. Lett. 17, 713–715 (1992).
    [CrossRef] [PubMed]
  11. A. J. Agranat, V. Leyva, A. Yariv, “Voltage-controlled photorefractive effect in paraelectric KTa1-xNbxO3:Cu, V,” Opt. Lett. 14, 1017–1019 (1989).
    [CrossRef] [PubMed]
  12. J. E. Geusic, S. K. Kurtz, T. J. Nelson, S. H. Wemple, “Nonlinear dielectric properties of KTaO3 near its Curie point,” Appl. Phys. Lett. 2, 185–187 (1963).
    [CrossRef]
  13. M. Balberg, M. Razvag, A. J. Agranat, “Electric-field multiplexing of holograms in paraelectric K1-yLiyTa1-xNbxO3 crystals,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), p. 8.
  14. R. De-Vré, J. F. Heanue, K. Gürkan, L. Hesselink, “Transfer function based on Bragg detuning effects for image-bearing holograms recorded in photorefractive crystals,” J. Opt. Soc. Am. A 13, 1331–1344 (1996).
    [CrossRef]
  15. R. Hofmeister, A. Yariv, A. J. Agranat, “Growth and characterization of the perovskite K1-yLiyTa1-xNbxO3:Cu,” J. Cryst. Growth 131, 486–494 (1993).
    [CrossRef]
  16. H. Shremmer, W. Kleemann, D. Rytz, “Field induced sharp ferroelectric phase transition in K0.937Li0.063TaO3,” Phys. Rev. Lett. 62, 1896–1898 (1989).
    [CrossRef]

1996

1995

R. De-Vré, M. Jeganathan, J. P. Wilde, L. Hesselink, “Effect of applied electric fields on the writing and readout of photorefractive gratings,” J. Opt. Soc. Am. B 12, 600–614 (1995).
[CrossRef]

J. V. Alvarez-Bravo, R. Muller, L. Arizmendi, “Electric field multiplexing of volume holograms in LiNbO3,” Europhys. Lett. 31, 443–448 (1995).
[CrossRef]

1994

R. Muller, J. V. Alvarez-Bravo, L. Arizmendi, J. M. Cabrera, “Tuning of photorefractive interference filters in LiNbO3,” J. Phys. D 27, 1628–1632 (1994).
[CrossRef]

1993

1992

1989

H. Shremmer, W. Kleemann, D. Rytz, “Field induced sharp ferroelectric phase transition in K0.937Li0.063TaO3,” Phys. Rev. Lett. 62, 1896–1898 (1989).
[CrossRef]

A. J. Agranat, V. Leyva, A. Yariv, “Voltage-controlled photorefractive effect in paraelectric KTa1-xNbxO3:Cu, V,” Opt. Lett. 14, 1017–1019 (1989).
[CrossRef] [PubMed]

1977

S. I. Stepanov, A. A. Kamshilin, M. P. Petrov, “Electrically controlled optical diffraction by volume holograms in electrooptic crystals,” Pis’ma Zh. Tekh. Fiz. 3, 89–93 (1977) [Sov. Tech. Phys. Lett. 3, 36–38 (1977)].

1963

J. E. Geusic, S. K. Kurtz, T. J. Nelson, S. H. Wemple, “Nonlinear dielectric properties of KTaO3 near its Curie point,” Appl. Phys. Lett. 2, 185–187 (1963).
[CrossRef]

Agranat, A. J.

R. Hofmeister, A. Yariv, A. J. Agranat, “Growth and characterization of the perovskite K1-yLiyTa1-xNbxO3:Cu,” J. Cryst. Growth 131, 486–494 (1993).
[CrossRef]

A. J. Agranat, R. Hofmeister, A. Yariv, “Characterization of a new photorefractive material: K1-yLyT1-xNx,” Opt. Lett. 17, 713–715 (1992).
[CrossRef] [PubMed]

A. J. Agranat, V. Leyva, A. Yariv, “Voltage-controlled photorefractive effect in paraelectric KTa1-xNbxO3:Cu, V,” Opt. Lett. 14, 1017–1019 (1989).
[CrossRef] [PubMed]

M. Balberg, M. Razvag, A. J. Agranat, “Electric-field multiplexing of holograms in paraelectric K1-yLiyTa1-xNbxO3 crystals,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), p. 8.

Alvarez-Bravo, J. V.

J. V. Alvarez-Bravo, R. Muller, L. Arizmendi, “Electric field multiplexing of volume holograms in LiNbO3,” Europhys. Lett. 31, 443–448 (1995).
[CrossRef]

R. Muller, J. V. Alvarez-Bravo, L. Arizmendi, J. M. Cabrera, “Tuning of photorefractive interference filters in LiNbO3,” J. Phys. D 27, 1628–1632 (1994).
[CrossRef]

Arizmendi, L.

J. V. Alvarez-Bravo, R. Muller, L. Arizmendi, “Electric field multiplexing of volume holograms in LiNbO3,” Europhys. Lett. 31, 443–448 (1995).
[CrossRef]

R. Muller, J. V. Alvarez-Bravo, L. Arizmendi, J. M. Cabrera, “Tuning of photorefractive interference filters in LiNbO3,” J. Phys. D 27, 1628–1632 (1994).
[CrossRef]

Balberg, M.

M. Balberg, M. Razvag, A. J. Agranat, “Electric-field multiplexing of holograms in paraelectric K1-yLiyTa1-xNbxO3 crystals,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), p. 8.

Cabrera, J. M.

R. Muller, J. V. Alvarez-Bravo, L. Arizmendi, J. M. Cabrera, “Tuning of photorefractive interference filters in LiNbO3,” J. Phys. D 27, 1628–1632 (1994).
[CrossRef]

Curtis, K.

De-Vré, R.

Geusic, J. E.

J. E. Geusic, S. K. Kurtz, T. J. Nelson, S. H. Wemple, “Nonlinear dielectric properties of KTaO3 near its Curie point,” Appl. Phys. Lett. 2, 185–187 (1963).
[CrossRef]

Gu, C.

Gürkan, K.

Heanue, J. F.

Hesselink, L.

Hofmeister, R.

R. Hofmeister, A. Yariv, A. J. Agranat, “Growth and characterization of the perovskite K1-yLiyTa1-xNbxO3:Cu,” J. Cryst. Growth 131, 486–494 (1993).
[CrossRef]

A. J. Agranat, R. Hofmeister, A. Yariv, “Characterization of a new photorefractive material: K1-yLyT1-xNx,” Opt. Lett. 17, 713–715 (1992).
[CrossRef] [PubMed]

Jeganathan, M.

Kamshilin, A. A.

S. I. Stepanov, A. A. Kamshilin, M. P. Petrov, “Electrically controlled optical diffraction by volume holograms in electrooptic crystals,” Pis’ma Zh. Tekh. Fiz. 3, 89–93 (1977) [Sov. Tech. Phys. Lett. 3, 36–38 (1977)].

Kewitch, A.

Kleemann, W.

H. Shremmer, W. Kleemann, D. Rytz, “Field induced sharp ferroelectric phase transition in K0.937Li0.063TaO3,” Phys. Rev. Lett. 62, 1896–1898 (1989).
[CrossRef]

Kurtz, S. K.

J. E. Geusic, S. K. Kurtz, T. J. Nelson, S. H. Wemple, “Nonlinear dielectric properties of KTaO3 near its Curie point,” Appl. Phys. Lett. 2, 185–187 (1963).
[CrossRef]

Leyva, V.

Muller, R.

J. V. Alvarez-Bravo, R. Muller, L. Arizmendi, “Electric field multiplexing of volume holograms in LiNbO3,” Europhys. Lett. 31, 443–448 (1995).
[CrossRef]

R. Muller, J. V. Alvarez-Bravo, L. Arizmendi, J. M. Cabrera, “Tuning of photorefractive interference filters in LiNbO3,” J. Phys. D 27, 1628–1632 (1994).
[CrossRef]

Nelson, T. J.

J. E. Geusic, S. K. Kurtz, T. J. Nelson, S. H. Wemple, “Nonlinear dielectric properties of KTaO3 near its Curie point,” Appl. Phys. Lett. 2, 185–187 (1963).
[CrossRef]

Neurgaonkar, R. R.

Petrov, M. P.

S. I. Stepanov, A. A. Kamshilin, M. P. Petrov, “Electrically controlled optical diffraction by volume holograms in electrooptic crystals,” Pis’ma Zh. Tekh. Fiz. 3, 89–93 (1977) [Sov. Tech. Phys. Lett. 3, 36–38 (1977)].

Psaltis, D.

Rakuljic, G. A.

Razvag, M.

M. Balberg, M. Razvag, A. J. Agranat, “Electric-field multiplexing of holograms in paraelectric K1-yLiyTa1-xNbxO3 crystals,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), p. 8.

Rytz, D.

H. Shremmer, W. Kleemann, D. Rytz, “Field induced sharp ferroelectric phase transition in K0.937Li0.063TaO3,” Phys. Rev. Lett. 62, 1896–1898 (1989).
[CrossRef]

Segev, M.

Shremmer, H.

H. Shremmer, W. Kleemann, D. Rytz, “Field induced sharp ferroelectric phase transition in K0.937Li0.063TaO3,” Phys. Rev. Lett. 62, 1896–1898 (1989).
[CrossRef]

Stepanov, S. I.

S. I. Stepanov, A. A. Kamshilin, M. P. Petrov, “Electrically controlled optical diffraction by volume holograms in electrooptic crystals,” Pis’ma Zh. Tekh. Fiz. 3, 89–93 (1977) [Sov. Tech. Phys. Lett. 3, 36–38 (1977)].

Wemple, S. H.

J. E. Geusic, S. K. Kurtz, T. J. Nelson, S. H. Wemple, “Nonlinear dielectric properties of KTaO3 near its Curie point,” Appl. Phys. Lett. 2, 185–187 (1963).
[CrossRef]

Wilde, J. P.

Yariv, A.

Yeh, P.

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993), pp. 33, 97.

Appl. Phys. Lett.

J. E. Geusic, S. K. Kurtz, T. J. Nelson, S. H. Wemple, “Nonlinear dielectric properties of KTaO3 near its Curie point,” Appl. Phys. Lett. 2, 185–187 (1963).
[CrossRef]

Europhys. Lett.

J. V. Alvarez-Bravo, R. Muller, L. Arizmendi, “Electric field multiplexing of volume holograms in LiNbO3,” Europhys. Lett. 31, 443–448 (1995).
[CrossRef]

J. Cryst. Growth

R. Hofmeister, A. Yariv, A. J. Agranat, “Growth and characterization of the perovskite K1-yLiyTa1-xNbxO3:Cu,” J. Cryst. Growth 131, 486–494 (1993).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

J. Phys. D

R. Muller, J. V. Alvarez-Bravo, L. Arizmendi, J. M. Cabrera, “Tuning of photorefractive interference filters in LiNbO3,” J. Phys. D 27, 1628–1632 (1994).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

H. Shremmer, W. Kleemann, D. Rytz, “Field induced sharp ferroelectric phase transition in K0.937Li0.063TaO3,” Phys. Rev. Lett. 62, 1896–1898 (1989).
[CrossRef]

Pis’ma Zh. Tekh. Fiz.

S. I. Stepanov, A. A. Kamshilin, M. P. Petrov, “Electrically controlled optical diffraction by volume holograms in electrooptic crystals,” Pis’ma Zh. Tekh. Fiz. 3, 89–93 (1977) [Sov. Tech. Phys. Lett. 3, 36–38 (1977)].

Other

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993), pp. 33, 97.

M. Balberg, M. Razvag, A. J. Agranat, “Electric-field multiplexing of holograms in paraelectric K1-yLiyTa1-xNbxO3 crystals,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), p. 8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Low-frequency (dc) dielectric constant of a KLTN crystal as a function of the temperature.

Fig. 2
Fig. 2

Recording setup. During reconstruction the shutter is closed and the diffracted beam is monitored by the detector.

Fig. 3
Fig. 3

Normalized diffraction efficiency of three different holograms versus the external reading field. Each hologram was recorded with a different writing field, as shown in the legend.

Fig. 4
Fig. 4

FWHM of the diffraction efficiency versus the writing field for holograms recorded for 5 s, with different writing fields used. The solid curve is a fit based on the FWHM calculated according to Eq. (5).

Fig. 5
Fig. 5

Normalized diffraction efficiency versus the external reading field for three holograms, recorded at three temperatures—25 °C, 30 °C, and 35 °C—with E 0W = 3.5 kV/cm.

Fig. 6
Fig. 6

Calculation of parameter A {derived from the fit to the function f(x) =sinc2[A(x 2 - B)]} for three different temperatures versus the square of the dielectric constant.

Fig. 7
Fig. 7

Selective reconstruction of three images recorded with E 0W = 2.3, 3.5, and 4.7 kV/cm when the external reading field was (a) 2.3 kV/cm, (b) 3.5 kV/cm, (c) 4.7 kV/cm, and (d) 3 kV/cm.

Fig. 8
Fig. 8

FWHM of reflection holograms versus the temperature and the external field applied during the writing stage in a 1.7-mm-thick KLTN sample with T c = 13 °C.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

η = π Δ n 1 d λ   cos   θ 2 sinc 2 ξ ,
ξ Δ n = π d ( cos   ϕ 1 - cos   ϕ 2 ) λ   cos   ϕ 1 cos   ϕ 2 Δ n 0 E 0 W - Δ n 0 E 0 R ,
Δ n E Δ n 0 E + Δ n 1 E 2 / 8 n 3 r 33 E 0 + E sc ,
Δ n E Δ n 0 E + Δ n 1 E + Δ n 2 E = 1 2 n 3 g 0 2 2 E 0 2 + 2 E 0 E sc r ¯ + E sc 2 r ¯ ,
ξ Δ n = 1 2 f ( ϕ 1 ,   ϕ 2 ) n 3 0 2 2 g ( E 0 R 2 E ¯ 0 W 2 ) ,

Metrics