Abstract

Two regression techniques, a multivariate technique and a subtracted component technique, were applied to two-wavelength response functions of mixtures of terbium (III) dipicolinate and insoluble bacterial particles. Two wavelength pairs were analyzed: a pair of neighboring wavelengths (450/490 nm) and a pair of widely spaced wavelengths (490/622 nm). The analysis shows that two emission-wavelength spectra from terbium-treated endospores can be distinguished from the vegetative bacteria spectrum above a limit of detection for endospores, which depends on the regression algorithm used to analyze the spectra. The subtracted component method for the neighboring wavelength pair had far lower limits of detection than the other methods.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. W. Farris, R. A. Copeland, K. Mortelmans, B. V. Bronk, “Spectrally resolved fluorescence cross sections for the bacillus spores,” Appl. Opt. 36, 958–967 (1996).
    [CrossRef]
  2. B. V. Bronk, L. Reinisch, “Variability of steady-state bacterial fluorescence with respect to growth conditions,” Appl. Spectrosc. 47, 436–440 (1993).
    [CrossRef]
  3. P. Nachman, G. Chen, R. G. Pinnick, S. C. Hill, R. K. Chang, M. W. Mayo, G. L. Fernandez, “Conditional-sampling spectrograph detection system for fluorescence measurements of airborne biological particles,” Appl. Opt. 35, 1069–1075 (1996).
    [CrossRef] [PubMed]
  4. D. L. Rosen, C. Sharpless, L. B. McGown, “Bacterial spore detection and determination by use of terbium dipicolinate photoluminescence,” Anal. Chem. 69, 1082–1085 (1997).
    [CrossRef]
  5. F. S. Richardson, “Terbium (III) and europium (III) ions as luminescent probes and stains for biomolecular systems,” Chem. Rev. 82, 541–552 (1982).
    [CrossRef]
  6. S. Cotton, Lanthanides and Actinides (Oxford U. Press, New York, 1991) p. 31.
  7. E. Ghiamati, R. Manoharan, W. H. Nelson, J. F. Sperry, “UV resonance Raman spectra of bacillus spores,” Appl. Spectrosc. 46, 357–364 (1992).
    [CrossRef]
  8. I Wieder, “Method and apparatus for background correction in photoluminescent analysis,” U.S. patent4,150,295 (17April1979).
  9. A. Lorber, K. Faber, B. Kowalski, “Net analyte signal calculation in multivariate calibration,” Anal. Chem. 69, 1620–1626 (1997).
    [CrossRef]

1997

A. Lorber, K. Faber, B. Kowalski, “Net analyte signal calculation in multivariate calibration,” Anal. Chem. 69, 1620–1626 (1997).
[CrossRef]

D. L. Rosen, C. Sharpless, L. B. McGown, “Bacterial spore detection and determination by use of terbium dipicolinate photoluminescence,” Anal. Chem. 69, 1082–1085 (1997).
[CrossRef]

1996

1993

1992

1982

F. S. Richardson, “Terbium (III) and europium (III) ions as luminescent probes and stains for biomolecular systems,” Chem. Rev. 82, 541–552 (1982).
[CrossRef]

Bronk, B. V.

Chang, R. K.

Chen, G.

Copeland, R. A.

Cotton, S.

S. Cotton, Lanthanides and Actinides (Oxford U. Press, New York, 1991) p. 31.

Faber, K.

A. Lorber, K. Faber, B. Kowalski, “Net analyte signal calculation in multivariate calibration,” Anal. Chem. 69, 1620–1626 (1997).
[CrossRef]

Farris, G. W.

Fernandez, G. L.

Ghiamati, E.

Hill, S. C.

Kowalski, B.

A. Lorber, K. Faber, B. Kowalski, “Net analyte signal calculation in multivariate calibration,” Anal. Chem. 69, 1620–1626 (1997).
[CrossRef]

Lorber, A.

A. Lorber, K. Faber, B. Kowalski, “Net analyte signal calculation in multivariate calibration,” Anal. Chem. 69, 1620–1626 (1997).
[CrossRef]

Manoharan, R.

Mayo, M. W.

McGown, L. B.

D. L. Rosen, C. Sharpless, L. B. McGown, “Bacterial spore detection and determination by use of terbium dipicolinate photoluminescence,” Anal. Chem. 69, 1082–1085 (1997).
[CrossRef]

Mortelmans, K.

Nachman, P.

Nelson, W. H.

Pinnick, R. G.

Reinisch, L.

Richardson, F. S.

F. S. Richardson, “Terbium (III) and europium (III) ions as luminescent probes and stains for biomolecular systems,” Chem. Rev. 82, 541–552 (1982).
[CrossRef]

Rosen, D. L.

D. L. Rosen, C. Sharpless, L. B. McGown, “Bacterial spore detection and determination by use of terbium dipicolinate photoluminescence,” Anal. Chem. 69, 1082–1085 (1997).
[CrossRef]

Sharpless, C.

D. L. Rosen, C. Sharpless, L. B. McGown, “Bacterial spore detection and determination by use of terbium dipicolinate photoluminescence,” Anal. Chem. 69, 1082–1085 (1997).
[CrossRef]

Sperry, J. F.

Wieder, I

I Wieder, “Method and apparatus for background correction in photoluminescent analysis,” U.S. patent4,150,295 (17April1979).

Anal. Chem.

D. L. Rosen, C. Sharpless, L. B. McGown, “Bacterial spore detection and determination by use of terbium dipicolinate photoluminescence,” Anal. Chem. 69, 1082–1085 (1997).
[CrossRef]

A. Lorber, K. Faber, B. Kowalski, “Net analyte signal calculation in multivariate calibration,” Anal. Chem. 69, 1620–1626 (1997).
[CrossRef]

Appl. Opt.

Appl. Spectrosc.

Chem. Rev.

F. S. Richardson, “Terbium (III) and europium (III) ions as luminescent probes and stains for biomolecular systems,” Chem. Rev. 82, 541–552 (1982).
[CrossRef]

Other

S. Cotton, Lanthanides and Actinides (Oxford U. Press, New York, 1991) p. 31.

I Wieder, “Method and apparatus for background correction in photoluminescent analysis,” U.S. patent4,150,295 (17April1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Functional dependence of the limit of detection for [Tb(dpa)3]3- on the contribution, c P , of the insoluble bacterial particle photoluminescence.

Tables (1)

Tables Icon

Table 1 Relative Emission Intensities of Substances at Three Wavelengths

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I R λ = c A I A λ + c P I P λ ,
I R λ = m c A I A λ + b .
I R 490 = m c A I A 490 + I R 450 .

Metrics