Abstract

A precision spectrometer was used to measure the spectral reflectance of a silicon photodiode over the wavelength range from 250 to 850 nm. The results were compared with the corresponding values predicted by a model based on thin-film Fresnel formulas and the known refractive indices of silicon and silicon dioxide. The good agreement at the level of 2 × 10-3 in the visible wavelength range verifies that the reflection model can be used for accurate extrapolation of the spectral reflectance and responsivity of silicon photodiode devices. In addition, characterization of the photodiode reflectance in the ultraviolet region improves the accuracy of the spectral irradiance measurements when filter radiometers based on trap detectors are used.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. F. Zalewski, C. R. Duda, “Silicon photodiode device with 100% external quantum efficiency,” Appl. Opt. 22, 2867–2873 (1983).
    [CrossRef] [PubMed]
  2. N. P. Fox, “Trap detectors and their properties,” Metrologia 28, 197–202 (1991).
    [CrossRef]
  3. D. H. Nettleton, T. R. Prior, T. H. Ward, “Improved spectral responsivity scales at the NPL, 400 nm to 20 μm,” Metrologia 30, 425–432 (1993).
    [CrossRef]
  4. T. R. Gentile, J. M. Houston, C. L. Cromer, “Realization of a scale of absolute spectral response using the National Institute of Standards and Technology high-accuracy cryogenic radiometer,” Appl. Opt. 35, 4392–4403 (1996).
    [CrossRef] [PubMed]
  5. P. Kärhä, A. Lassila, H. Ludvigsen, F. Manoochehri, H. Fagerlund, E. Ikonen, “Optical power and transmittance measurements and their use in detector-based realization of the luminous intensity scale,” Opt. Eng. 34, 2611–2618 (1995).
    [CrossRef]
  6. C. L. Cromer, G. Eppeldauer, J. E. Hardis, T. C. Larason, Y. Ohno, A. C. Parr, “The NIST detector-based luminous intensity scale,” J. Res. Natl. Inst. Stand. Technol. 101, 109–132 (1996).
    [CrossRef]
  7. B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, G. Dezsi, “A method for realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
    [CrossRef]
  8. P. Kärhä, P. Toivanen, F. Manoochehri, E. Ikonen, “Development of a detector-based absolute spectral irradiance scale in the 380–900 nm spectral range,” Appl. Opt. 36, 8909–8918 (1997).
    [CrossRef]
  9. M. Born, E. Wolf, Principles of Optics, 3rd ed. (Pergamon, Oxford, 1965), pp. 40, 632–633.
  10. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1209 (1965).
    [CrossRef]
  11. G. E. Jellison, “Optical functions of silicon determined by two-channel polarization modulation ellipsometry,” Opt. Mater. 1, 41–47 (1992).
    [CrossRef]
  12. P. Kärhä, R. Visuri, K. Leszcynski, F. Manoochehri, K. Jokela, E. Ikonen, “Detector-based calibration method for high-accuracy solar UV measurements,” Photochem. Photobiol. 64, 340–343 (1996).
    [CrossRef]
  13. J. J. Hsia, V. R. Weidner, “NBS specular reflectometer–spectrophotometer,” Appl. Opt. 19, 1268–1273 (1994).
  14. F. Manoochehri, E. Ikonen, “High-accuracy spectrometer for measurement of regular spectral transmittance,” Appl. Opt. 34, 3686–3692 (1995).
    [CrossRef] [PubMed]
  15. F. Manoochehri, A. Haapalinna, E. Ikonen, “High-accuracy measurement of regular spectral transmittance and reflectance in UV–visible–NIR,” in Proceedings of the XIV IMEKO World Congress, Vol. 2, J. Halttunen, ed. (Finnish Society of Automation, Helsinki, Finland, 1997), pp. 108–113.

1997 (1)

1996 (3)

T. R. Gentile, J. M. Houston, C. L. Cromer, “Realization of a scale of absolute spectral response using the National Institute of Standards and Technology high-accuracy cryogenic radiometer,” Appl. Opt. 35, 4392–4403 (1996).
[CrossRef] [PubMed]

C. L. Cromer, G. Eppeldauer, J. E. Hardis, T. C. Larason, Y. Ohno, A. C. Parr, “The NIST detector-based luminous intensity scale,” J. Res. Natl. Inst. Stand. Technol. 101, 109–132 (1996).
[CrossRef]

P. Kärhä, R. Visuri, K. Leszcynski, F. Manoochehri, K. Jokela, E. Ikonen, “Detector-based calibration method for high-accuracy solar UV measurements,” Photochem. Photobiol. 64, 340–343 (1996).
[CrossRef]

1995 (2)

P. Kärhä, A. Lassila, H. Ludvigsen, F. Manoochehri, H. Fagerlund, E. Ikonen, “Optical power and transmittance measurements and their use in detector-based realization of the luminous intensity scale,” Opt. Eng. 34, 2611–2618 (1995).
[CrossRef]

F. Manoochehri, E. Ikonen, “High-accuracy spectrometer for measurement of regular spectral transmittance,” Appl. Opt. 34, 3686–3692 (1995).
[CrossRef] [PubMed]

1994 (1)

1993 (2)

D. H. Nettleton, T. R. Prior, T. H. Ward, “Improved spectral responsivity scales at the NPL, 400 nm to 20 μm,” Metrologia 30, 425–432 (1993).
[CrossRef]

B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, G. Dezsi, “A method for realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
[CrossRef]

1992 (1)

G. E. Jellison, “Optical functions of silicon determined by two-channel polarization modulation ellipsometry,” Opt. Mater. 1, 41–47 (1992).
[CrossRef]

1991 (1)

N. P. Fox, “Trap detectors and their properties,” Metrologia 28, 197–202 (1991).
[CrossRef]

1983 (1)

1965 (1)

Born, M.

M. Born, E. Wolf, Principles of Optics, 3rd ed. (Pergamon, Oxford, 1965), pp. 40, 632–633.

Cromer, C. L.

C. L. Cromer, G. Eppeldauer, J. E. Hardis, T. C. Larason, Y. Ohno, A. C. Parr, “The NIST detector-based luminous intensity scale,” J. Res. Natl. Inst. Stand. Technol. 101, 109–132 (1996).
[CrossRef]

T. R. Gentile, J. M. Houston, C. L. Cromer, “Realization of a scale of absolute spectral response using the National Institute of Standards and Technology high-accuracy cryogenic radiometer,” Appl. Opt. 35, 4392–4403 (1996).
[CrossRef] [PubMed]

B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, G. Dezsi, “A method for realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
[CrossRef]

Dezsi, G.

B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, G. Dezsi, “A method for realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
[CrossRef]

Duda, C. R.

Eppeldauer, G.

C. L. Cromer, G. Eppeldauer, J. E. Hardis, T. C. Larason, Y. Ohno, A. C. Parr, “The NIST detector-based luminous intensity scale,” J. Res. Natl. Inst. Stand. Technol. 101, 109–132 (1996).
[CrossRef]

B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, G. Dezsi, “A method for realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
[CrossRef]

Fagerlund, H.

P. Kärhä, A. Lassila, H. Ludvigsen, F. Manoochehri, H. Fagerlund, E. Ikonen, “Optical power and transmittance measurements and their use in detector-based realization of the luminous intensity scale,” Opt. Eng. 34, 2611–2618 (1995).
[CrossRef]

Fowler, J.

B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, G. Dezsi, “A method for realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
[CrossRef]

Fox, N. P.

N. P. Fox, “Trap detectors and their properties,” Metrologia 28, 197–202 (1991).
[CrossRef]

Gentile, T. R.

Haapalinna, A.

F. Manoochehri, A. Haapalinna, E. Ikonen, “High-accuracy measurement of regular spectral transmittance and reflectance in UV–visible–NIR,” in Proceedings of the XIV IMEKO World Congress, Vol. 2, J. Halttunen, ed. (Finnish Society of Automation, Helsinki, Finland, 1997), pp. 108–113.

Hardis, J. E.

C. L. Cromer, G. Eppeldauer, J. E. Hardis, T. C. Larason, Y. Ohno, A. C. Parr, “The NIST detector-based luminous intensity scale,” J. Res. Natl. Inst. Stand. Technol. 101, 109–132 (1996).
[CrossRef]

Houston, J. M.

Hsia, J. J.

Ikonen, E.

P. Kärhä, P. Toivanen, F. Manoochehri, E. Ikonen, “Development of a detector-based absolute spectral irradiance scale in the 380–900 nm spectral range,” Appl. Opt. 36, 8909–8918 (1997).
[CrossRef]

P. Kärhä, R. Visuri, K. Leszcynski, F. Manoochehri, K. Jokela, E. Ikonen, “Detector-based calibration method for high-accuracy solar UV measurements,” Photochem. Photobiol. 64, 340–343 (1996).
[CrossRef]

F. Manoochehri, E. Ikonen, “High-accuracy spectrometer for measurement of regular spectral transmittance,” Appl. Opt. 34, 3686–3692 (1995).
[CrossRef] [PubMed]

P. Kärhä, A. Lassila, H. Ludvigsen, F. Manoochehri, H. Fagerlund, E. Ikonen, “Optical power and transmittance measurements and their use in detector-based realization of the luminous intensity scale,” Opt. Eng. 34, 2611–2618 (1995).
[CrossRef]

F. Manoochehri, A. Haapalinna, E. Ikonen, “High-accuracy measurement of regular spectral transmittance and reflectance in UV–visible–NIR,” in Proceedings of the XIV IMEKO World Congress, Vol. 2, J. Halttunen, ed. (Finnish Society of Automation, Helsinki, Finland, 1997), pp. 108–113.

Jellison, G. E.

G. E. Jellison, “Optical functions of silicon determined by two-channel polarization modulation ellipsometry,” Opt. Mater. 1, 41–47 (1992).
[CrossRef]

Johnson, B. C.

B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, G. Dezsi, “A method for realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
[CrossRef]

Jokela, K.

P. Kärhä, R. Visuri, K. Leszcynski, F. Manoochehri, K. Jokela, E. Ikonen, “Detector-based calibration method for high-accuracy solar UV measurements,” Photochem. Photobiol. 64, 340–343 (1996).
[CrossRef]

Kärhä, P.

P. Kärhä, P. Toivanen, F. Manoochehri, E. Ikonen, “Development of a detector-based absolute spectral irradiance scale in the 380–900 nm spectral range,” Appl. Opt. 36, 8909–8918 (1997).
[CrossRef]

P. Kärhä, R. Visuri, K. Leszcynski, F. Manoochehri, K. Jokela, E. Ikonen, “Detector-based calibration method for high-accuracy solar UV measurements,” Photochem. Photobiol. 64, 340–343 (1996).
[CrossRef]

P. Kärhä, A. Lassila, H. Ludvigsen, F. Manoochehri, H. Fagerlund, E. Ikonen, “Optical power and transmittance measurements and their use in detector-based realization of the luminous intensity scale,” Opt. Eng. 34, 2611–2618 (1995).
[CrossRef]

Larason, T. C.

C. L. Cromer, G. Eppeldauer, J. E. Hardis, T. C. Larason, Y. Ohno, A. C. Parr, “The NIST detector-based luminous intensity scale,” J. Res. Natl. Inst. Stand. Technol. 101, 109–132 (1996).
[CrossRef]

Lassila, A.

P. Kärhä, A. Lassila, H. Ludvigsen, F. Manoochehri, H. Fagerlund, E. Ikonen, “Optical power and transmittance measurements and their use in detector-based realization of the luminous intensity scale,” Opt. Eng. 34, 2611–2618 (1995).
[CrossRef]

Leszcynski, K.

P. Kärhä, R. Visuri, K. Leszcynski, F. Manoochehri, K. Jokela, E. Ikonen, “Detector-based calibration method for high-accuracy solar UV measurements,” Photochem. Photobiol. 64, 340–343 (1996).
[CrossRef]

Ludvigsen, H.

P. Kärhä, A. Lassila, H. Ludvigsen, F. Manoochehri, H. Fagerlund, E. Ikonen, “Optical power and transmittance measurements and their use in detector-based realization of the luminous intensity scale,” Opt. Eng. 34, 2611–2618 (1995).
[CrossRef]

Malitson, I. H.

Manoochehri, F.

P. Kärhä, P. Toivanen, F. Manoochehri, E. Ikonen, “Development of a detector-based absolute spectral irradiance scale in the 380–900 nm spectral range,” Appl. Opt. 36, 8909–8918 (1997).
[CrossRef]

P. Kärhä, R. Visuri, K. Leszcynski, F. Manoochehri, K. Jokela, E. Ikonen, “Detector-based calibration method for high-accuracy solar UV measurements,” Photochem. Photobiol. 64, 340–343 (1996).
[CrossRef]

F. Manoochehri, E. Ikonen, “High-accuracy spectrometer for measurement of regular spectral transmittance,” Appl. Opt. 34, 3686–3692 (1995).
[CrossRef] [PubMed]

P. Kärhä, A. Lassila, H. Ludvigsen, F. Manoochehri, H. Fagerlund, E. Ikonen, “Optical power and transmittance measurements and their use in detector-based realization of the luminous intensity scale,” Opt. Eng. 34, 2611–2618 (1995).
[CrossRef]

F. Manoochehri, A. Haapalinna, E. Ikonen, “High-accuracy measurement of regular spectral transmittance and reflectance in UV–visible–NIR,” in Proceedings of the XIV IMEKO World Congress, Vol. 2, J. Halttunen, ed. (Finnish Society of Automation, Helsinki, Finland, 1997), pp. 108–113.

Nettleton, D. H.

D. H. Nettleton, T. R. Prior, T. H. Ward, “Improved spectral responsivity scales at the NPL, 400 nm to 20 μm,” Metrologia 30, 425–432 (1993).
[CrossRef]

Ohno, Y.

C. L. Cromer, G. Eppeldauer, J. E. Hardis, T. C. Larason, Y. Ohno, A. C. Parr, “The NIST detector-based luminous intensity scale,” J. Res. Natl. Inst. Stand. Technol. 101, 109–132 (1996).
[CrossRef]

Parr, A. C.

C. L. Cromer, G. Eppeldauer, J. E. Hardis, T. C. Larason, Y. Ohno, A. C. Parr, “The NIST detector-based luminous intensity scale,” J. Res. Natl. Inst. Stand. Technol. 101, 109–132 (1996).
[CrossRef]

Prior, T. R.

D. H. Nettleton, T. R. Prior, T. H. Ward, “Improved spectral responsivity scales at the NPL, 400 nm to 20 μm,” Metrologia 30, 425–432 (1993).
[CrossRef]

Sapritsky, V. I.

B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, G. Dezsi, “A method for realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
[CrossRef]

Saunders, R. D.

B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, G. Dezsi, “A method for realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
[CrossRef]

Toivanen, P.

Visuri, R.

P. Kärhä, R. Visuri, K. Leszcynski, F. Manoochehri, K. Jokela, E. Ikonen, “Detector-based calibration method for high-accuracy solar UV measurements,” Photochem. Photobiol. 64, 340–343 (1996).
[CrossRef]

Ward, T. H.

D. H. Nettleton, T. R. Prior, T. H. Ward, “Improved spectral responsivity scales at the NPL, 400 nm to 20 μm,” Metrologia 30, 425–432 (1993).
[CrossRef]

Weidner, V. R.

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 3rd ed. (Pergamon, Oxford, 1965), pp. 40, 632–633.

Zalewski, E. F.

Appl. Opt. (5)

J. Opt. Soc. Am. (1)

J. Res. Natl. Inst. Stand. Technol. (1)

C. L. Cromer, G. Eppeldauer, J. E. Hardis, T. C. Larason, Y. Ohno, A. C. Parr, “The NIST detector-based luminous intensity scale,” J. Res. Natl. Inst. Stand. Technol. 101, 109–132 (1996).
[CrossRef]

Metrologia (3)

B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, G. Dezsi, “A method for realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
[CrossRef]

N. P. Fox, “Trap detectors and their properties,” Metrologia 28, 197–202 (1991).
[CrossRef]

D. H. Nettleton, T. R. Prior, T. H. Ward, “Improved spectral responsivity scales at the NPL, 400 nm to 20 μm,” Metrologia 30, 425–432 (1993).
[CrossRef]

Opt. Eng. (1)

P. Kärhä, A. Lassila, H. Ludvigsen, F. Manoochehri, H. Fagerlund, E. Ikonen, “Optical power and transmittance measurements and their use in detector-based realization of the luminous intensity scale,” Opt. Eng. 34, 2611–2618 (1995).
[CrossRef]

Opt. Mater. (1)

G. E. Jellison, “Optical functions of silicon determined by two-channel polarization modulation ellipsometry,” Opt. Mater. 1, 41–47 (1992).
[CrossRef]

Photochem. Photobiol. (1)

P. Kärhä, R. Visuri, K. Leszcynski, F. Manoochehri, K. Jokela, E. Ikonen, “Detector-based calibration method for high-accuracy solar UV measurements,” Photochem. Photobiol. 64, 340–343 (1996).
[CrossRef]

Other (2)

F. Manoochehri, A. Haapalinna, E. Ikonen, “High-accuracy measurement of regular spectral transmittance and reflectance in UV–visible–NIR,” in Proceedings of the XIV IMEKO World Congress, Vol. 2, J. Halttunen, ed. (Finnish Society of Automation, Helsinki, Finland, 1997), pp. 108–113.

M. Born, E. Wolf, Principles of Optics, 3rd ed. (Pergamon, Oxford, 1965), pp. 40, 632–633.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Reflectance measuring accessory of the reference spectrometer. The turntable assembly, including the tracking mirrors and the integrating sphere detector, is shown in both the sample measurement position (turned to the left) and the reference measurement position (turned to the right). In the reference measurement position, the sample is removed from the beam.

Fig. 2
Fig. 2

Spectral reflectance of an S6337 photodiode for light polarized in the s plane. The solid curves denote reflectance values calculated with thin-film Fresnel formulas. The oxide layer thickness (28.5 nm) used in the calculation was determined by least-squares fitting.

Fig. 3
Fig. 3

Spectral reflectance of an S6337 photodiode for light polarized in the p plane. The solid curves denote reflectance values calculated with thin-film Fresnel formulas. The oxide layer thickness (28.5 nm) used in the calculation was determined by least-squares fitting.

Fig. 4
Fig. 4

Relative deviation between the calculated and the measured spectral reflectance values of the S6337 photodiode sample. The symbols are as in Figs. 2 and 3.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

n ¯ 3 = n 3 - ik 3 ,
r mn = n n   cos   θ m - n m   cos   θ n n n   cos   θ m + n m   cos   θ n ,
t mn = 2 n m   cos   θ m n n   cos   θ m + n m   cos   θ n ,
r mn = n m   cos   θ m - n n   cos   θ n n m   cos   θ m + n n   cos   θ n ,
t mn = 2 n m   cos   θ m n m   cos   θ m + n n   cos   θ n .
θ 2 = arcsin n 1 sin   θ 1 n 2 ,
θ ¯ 3 = arcsin n 1 sin   θ 1 n ¯ 3 .
β = 2 π λ 1   n 2 t   cos   θ 2 ,
r ¯ = r 12 + t 12 t 21 r ¯ 23 exp - 2 i β 1 + r 12 r ¯ 23 exp - 2 i β .
ρ s , p θ 1 = | r ¯ | 2 .
ρ trap = ρ 0 ° ρ s 2 45 ° ρ p 2 45 ° .

Metrics