Abstract

The process-parameter-dependent optical and structural properties of ZrO2MgO mixed-composite material have been investigated. Optical properties were derived from spectrophotometric measurements. By use of atomic force microscopy, x-ray diffraction analysis, and energy-dispersive x-ray (EDX) analysis, the surface morphology, grain size distributions, crystallographic phases, and process-dependent material composition of films have been investigated. EDX analysis made evident the correlation between the oxygen enrichment in the films prepared at a high level of oxygen pressure and the very low refractive index. Since oxygen pressure can be dynamically varied during a deposition process, coatings constructed of suitable mixed-composite thin films can benefit from continuous modulation of the index of refraction. A step modulation approach is used to develop various multilayer-equivalent thin-film devices.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Dobrowoloski, R. A. Kemp, “Refinement of optical multilayer systems with different optimization procedure,” Appl. Opt. 29, 2876–2893 (1990).
    [CrossRef]
  2. N. K. Sahoo, K. V. S. R. Apparao, “Modified complex method for constrained design and optimization of optical multilayer thin-film devices,” Appl. Phys. A 59, 317–326 (1994).
    [CrossRef]
  3. J.-S. Chen, S. Chao, J.-S. Kao, H. Niu, C.-H. Chen, “Mixed films of TiO2-SiO2 deposited by double electron-beam coevaporation,” Appl. Opt. 35, 90–96 (1996).
    [CrossRef] [PubMed]
  4. H. Zhang, S. Liu, “Optical compound film deposited by double e-gun,” Thin Solid Films 209, 148–149 (1992).
    [CrossRef]
  5. S. B. Qadri, E. F. Skelton, P. Lubitz, N. V. Nguyen, H. R. Khan, “Electron beam deposition of ZrO2-ZnO films,” Thin Solid Films 290–291, 80–83 (1996).
  6. R. Bertram, M. F. Ouellette, P. Y. Tse, “Inhomogeneous optical coatings: an experimental study of a new approach,” Appl. Opt. 28, 2935–2939 (1989).
    [CrossRef] [PubMed]
  7. W. J. Gunning, R. L. Hall, F. J. Woodberry, W. H. Southwell, N. S. Gluck, “Codeposition of continuous composition rugate filters,” Appl. Opt. 28, 2945–2948 (1989).
    [CrossRef] [PubMed]
  8. R. Jacobsson, “Inhomogeneous and coevaporated homogeneous films for optical applications,” Phys. Thin Films 8, 51–98 (1975).
  9. R. Jacobsson, “Optical properties of a class of inhomogeneous thin films,” Opt. Acta 10, 309–323 (1963).
    [CrossRef]
  10. A. Feldman, E. N. Farabaugh, W. K. Haller, D. M. Sanders, R. A. Stempniak, “Modifying structure and properties of optical films by co-evaporation,” J. Vac. Sci. Technol. A 4, 2969–2974 (1986).
    [CrossRef]
  11. J. P. Cheron, F. Tcheliebou, A. Boyer, “Structural properties of Y2O3 stabilized ZrO2 films deposited by reactive thermal coevaporation,” J. Vac. Sci. Technol. A 10, 3207–3209 (1992).
    [CrossRef]
  12. M. Mesbah, A. Boyer, E. Groubert, L. Martin, “Crystallographic and optical study of ZrO2 partially and totally stabilized with Y2O3,” J. Vac. Sci. Technol. A 8, 3961–3966 (1990).
    [CrossRef]
  13. C. M. Gilmore, C. Quinn, S. B. Qadri, C. R. Gosset, E. F. Skelton, “Stabilization of tetragonal ZrO2 with Al2O3 in reactive magnetron sputtered thin films,” J. Vac. Sci. Technol. A 5, 2085–2087 (1987).
    [CrossRef]
  14. Y. Tsou, F. C. Ho, “Optical properties of hafnia and co-evaporated hafnia magnesium fluoride thin films,” Appl. Opt. 35, 5091–5094 (1996).
    [CrossRef] [PubMed]
  15. S. B. Qadri, E. F. Skelton, M. Z. Harford, R. Jones, P. Lubitz, “e--beam deposition of In2O3 stabilized ZrO2 films,” J. Vac. Sci Technol. A 9, 510–511 (1991).
    [CrossRef]
  16. F. Tcheliebou, A. Boyer, L. Martin, “Studies on MgO-stabilized zirconia thin films in the UV-visible region,” Thin Solid Films 249, 86–90 (1994).
    [CrossRef]
  17. D. M. Sanders, E. N. Farabaugh, W. K. Haller, “Glassy optical coatings by multisource evaporation,” in Thin Film Technologies and Special Applications, W. R. Hunter, ed., Proc. SPIE346, 31–38 (1982).
    [CrossRef]
  18. E. N. Farabaugh, D. M. Sanders, “Microstructure of dielectric thin films formed by e-beam coevaporation,” J. Vac. Sci. Technol. A 1, 356–359 (1983).
    [CrossRef]
  19. D. L. Porter, A. H. Heuer, “Microstructural development in MgO-stabilized zirconia (Mg-PSZ),” J. Am. Ceram. Soc. 62, 298–305 (1979).
    [CrossRef]
  20. M. M. El-Nahass, B. A. Khalifa, A. M. Abd El-Rahman, R. El-Ariny, “Structural and optical properties of ZnSexTe1-x solid solution in thin film form,” Appl. Phys. A 63, 81–86 (1996).
    [CrossRef]
  21. R. H. Hannink, “Microstructural development of sub-eutectoid aged MgO–ZrO2 alloys,” J. Mater. Sci 18, 457–470 (1983).
    [CrossRef]
  22. M. J. Readey, A. H. Heuer, R. W. Steinbrech, “Annealing of test specimens of high-toughness magnesia-partially-stabilized zirconia,” J. Am. Ceram. Soc. 71, c2–c6 (1988).
    [CrossRef]
  23. M. L. Balmer, F. F. Lange, C. G. Levi, “Metastable phase selection and partitioning in ZrO2-MgO processed from liquid precursors,” J. Am. Ceram. Soc. 75, 946–952 (1992).
    [CrossRef]
  24. C. F. Grain, “Phase relations in the ZrO2-MgO system,” J. Am. Ceram. Soc. 50, 288–290 (1967).
    [CrossRef]
  25. N. H. Brett, M. Gonzalez, J. Bouillot, J. C. Niepce, “Neutron and x-ray diffraction studies on pure and magnesia-doped zirconia gels decomposed in vacuo,” J. Mater. Sci 19, 1349–1358 (1984).
    [CrossRef]
  26. O. Ruff, F. Ebert, “Ceramics of highly refractory materials,” Z. Anorg. Allgem. Chem. 180, 19–41 (1929).
    [CrossRef]
  27. H. J. Rossel, R. H. J. Hannink, “The phase Mg2Zr5O12 in MgO partially stabilized zirconia,” in Science and Technology of Zirconia II, Vol. 12 of Advances in Ceramics, N. Claussen, M. Rühle, A. H. Heuer, eds. (The American Ceramic Society, Inc., Columbus, Ohio, 1984), pp. 139–151.
  28. D. L. Wood, K. Nassau, “Refractive index of cubic zirconia stabilized with yttria,” Appl. Opt. 21, 2978–2981 (1982).
    [CrossRef] [PubMed]
  29. N. K. Sahoo, K. V. S. R. Apparao, “Process-parameter optimization of Sb2O3 films in the ultraviolet and visible region for interferometric applications,” Appl. Phys. A 63, 195–202 (1996).
  30. B. Bovard, F. J. Van Milligen, M. J. Messerly, S. G. Saxe, H. A. Macleod, “Optical constants derivation for an inhomogeneous thin film from in situ transmission measurements,” Appl. Opt. 24, 1803–1807 (1985).
    [CrossRef] [PubMed]
  31. D. P. Arndt, R. M. A. Azzam, J. M. Bennett, J. P. Borgogno, C. K. Carniglia, W. E. Case, J. A. Dobrowolski, U. J. Gibson, T. Tuttle Hart, F. C. Ho, V. A. Hodgkin, W. P. Klapp, H. A. Macleod, E. Pelletier, M. K. Purvis, D. M. Quinn, D. H. Strome, R. Swenson, P. A. Temple, T. F. Thonn, “Multiple determination of the constants of thin-film coating materials,” Appl. Opt. 23, 3571–3596 (1984).
    [CrossRef] [PubMed]
  32. M. Nowak, “Determination of optical constants and average thickness of inhomogeneous-rough thin films using spectral dependence of optical transmittance,” Thin Solid Films 254, 200–210 (1995).
    [CrossRef]
  33. J. P. Borgogno, B. Lazarides, E. Pelletier, “Automatic determination of the optical constants of inhomogeneous thin films,” Appl. Opt. 21, 4020–4029 (1982).
    [CrossRef] [PubMed]
  34. E. E. Khawaja, “The determination of the refractive index and thickness of a transparent film,” J. Phys. D. 9, 1939–1943 (1976).
    [CrossRef]
  35. R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E 16, 1214–1222 (1983).
    [CrossRef]
  36. J. P. Borgogno, P. Bousquet, F. Flory, B. Lazarides, E. Pelletier, P. Roche, “Inhomogeneity in films: limitation of the accuracy of optical monitoring of thin films,” Appl. Opt. 20, 90–94 (1981).
    [CrossRef] [PubMed]
  37. M. Harris, H. A. Macleod, S. Ogura, E. Pelletier, B. Vidal, “The relationship between optical inhomogeneity and film structure,” Thin Solid Films 57, 173–178 (1979).
    [CrossRef]
  38. S. Ogura, “Dynamic characteristics in optically inhomogeneous films,” in Thin Films for Optical Systems, K. H. Guenther, ed., Proc. SPIE1782, 377–388 (1992).
    [CrossRef]
  39. G. Ghosh, “Sellmeier coefficients and dispersion of thermo-optic coefficients for some optical glasses,” Appl. Opt. 36, 1540–1546 (1997).
    [CrossRef] [PubMed]
  40. C.-K. Kwok, C. R. Aita, “The transition from αZr to αZrO2 growth in sputter-deposited films as a function of gas O2 content, rare-gas type and cathode voltage,” J. Vac. Sci Technol. A 7, 1235–1239 (1989).
    [CrossRef]
  41. C.-K. Kwok, C. R. Aita, “Near-bandgap optical behavior of sputter deposited α- and α + β- ZrO2 films,” J. Appl. Phys. 66, 2756–2758 (1989).
    [CrossRef]
  42. C.-K. Kwok, C. R. Aita, “Indirect band gap in α-ZrO2,” J. Vac. Sci Technol. A 8, 3345–3346 (1990).
    [CrossRef]
  43. A. V. Tikhonravov, M. K. Trubetskov, A. N. Tikhonov, O. B. Tcsherednichenko, B. G. Lysoi, K. V. Mikhailova, B. T. Sullivan, J. A. Dobrowolski, “Study of thin film inhomogeneity with a fast-scanning acoustooptic spectrophotometer,” in Developments in Optical Component Coatings, I. Reid, ed., Proc. SPIE2776, 212–220 (1996).
    [CrossRef]
  44. A. F. Hebard, A. T. Fiory, S. Nakahara, R. H. Eick, “Oxygen-rich polycrystalline magnesium oxide—a high quality thin-film dielectric,” Appl. Phys. Lett. 48, 520–522 (1986).
    [CrossRef]
  45. A. Kucírková, K. Navrátil, L. Pajasová, V. Vorlícek, “Influence of oxygen concentration on optical properties of semi-insulating polycrystalline silicon films,” Appl. Phys. A 63, 495–503 (1996).
    [CrossRef]
  46. F. Jones, “High-rate reactive sputter deposition of zirconium dioxide,” J. Vac. Sci. Technol. A 6, 3088–3097 (1988).
    [CrossRef]
  47. E. E. Khawaja, F. Bouamrane, A. B. Hallak, M. A. Daous, M. A. Salim, “Observation of oxygen enrichment in zirconium oxide films,” J. Vac. Sci Technol. A 11, 580–587 (1993).
    [CrossRef]
  48. M. Yoshitake, K. Takiguchi, Y. Suzuki, S. Ogawa, “Effect of oxygen pressure in reactive ion-beam sputter deposition of zirconium oxides,” J. Vac. Sci. Technol. A 6, 2326–2332 (1988).
    [CrossRef]
  49. P. J. Martin, R. P. Netterfield, W. G. Sainty, “Modification of the optical and structural properties of dielectric ZrO2 films by ion-assisted deposition,” J. Appl. Phys. 55, 235–241 (1984).
    [CrossRef]
  50. H. J. Cho, C. K. Hwangbo, “Optical inhomogeneity and microstructure of ZrO2 thin films prepared by ion-assisted deposition,” Appl. Opt. 35, 5545–5552 (1996).
    [CrossRef] [PubMed]
  51. R. E. Klinger, C. K. Carniglia, “Optical and crystalline inhomogeneity in evaporated zirconia films,” Appl. Opt. 24, 3184–3187 (1985).
    [CrossRef] [PubMed]
  52. J. A. Dobrowolski, P. D. Grant, R. Simpson, A. J. Waldorf, “Investigation of the evaporation process conditions on the optical constants of zirconia films,” Appl. Opt. 28, 3997–4005 (1989).
    [CrossRef] [PubMed]
  53. P. Vuoristo, T. Mäntylä, P. Kettunen, R. Lappalainen, “RBS analysis of sputter-deposited MgO films,” Vacuum 42, 1001–1004 (1991).
    [CrossRef]
  54. C. Deumié, R. Richier, P. Dumas, C. Amra, “Multiscale roughness in optical multilayers: atomic force microscopy and light scattering,” Appl. Opt. 35, 5583–5594 (1996).
    [CrossRef]
  55. F. Biscarini, P. Samorí, A. Lauria, P. Ostoja, R. Zamboni, C. Taliani, P. Viville, R. Lazzaroni, J. L. Brédas, “Morphology and roughness of high-vacuum sublimed oligomer thin films,” Thin Solid Films 284-285, 439–443 (1996).
    [CrossRef]
  56. C. Amra, C. Deumié, D. Torricini, P. Roche, R. Galindo, P. Dumas, F. Salvan, “Overlapping of roughness spectra measured in macroscopic (optical) and microscopic (AFM) bandwidths,” in Optical Interference Coatings, F. Abeles, ed., Proc. SPIE2253, 614–630 (1994).
    [CrossRef]
  57. A. Duparré, S. Jakobs, “Combination of surface characterization techniques for investigating optical thin-film components,” Appl. Opt. 35, 5052–5058 (1996).
    [CrossRef]
  58. T. K. S. Wong, W. K. Man, “Scanning probe microscopy and tunneling measurements of polycrystalline tin oxide films,” Thin Solid Films 287, 45–50 (1996).
    [CrossRef]
  59. I. Y. Sokolov, “On the recovery of the spectroscopic image in atomic force microscopy,” J. Vac. Sci. Technol. A 14, 2901–2904 (1996).
    [CrossRef]
  60. U. Kaiser, M. Adamik, G. Sáfrán, P. B. Barna, S. Laux, W. Richter, “Growth structure investigation of MgF2 and NdF3 films grown by molecular beam deposition on CaF2 (111) substrates,” Thin Solid Films 280, 5–15 (1996).
    [CrossRef]
  61. P. Duwez, F. Odell, “Phase relationships in the system zirconia-ceria,” J. Am. Ceram. Soc. 33, 274–283 (1950).
    [CrossRef]
  62. W. H. Hall, “X-ray line broadening in metals,” Proc. Phys. Soc. London Sec. A 62, 741–743 (1949).
    [CrossRef]
  63. R. Jenkins, R. L. Snyder, Introduction to X-ray Powder Diffractometry (Wiley-Interscience, New York, 1996).
    [CrossRef]
  64. B. Lewis, J. C. Anderson, Nucleation and Growth of Thin Films (Academic, New York, 1978).
  65. H. A. Macleod, Thin Film Optical Filters, 2nd ed. (Macmillan, New York, 1986), Chap. 6, p. 194.

1997 (1)

1996 (13)

J.-S. Chen, S. Chao, J.-S. Kao, H. Niu, C.-H. Chen, “Mixed films of TiO2-SiO2 deposited by double electron-beam coevaporation,” Appl. Opt. 35, 90–96 (1996).
[CrossRef] [PubMed]

A. Duparré, S. Jakobs, “Combination of surface characterization techniques for investigating optical thin-film components,” Appl. Opt. 35, 5052–5058 (1996).
[CrossRef]

Y. Tsou, F. C. Ho, “Optical properties of hafnia and co-evaporated hafnia magnesium fluoride thin films,” Appl. Opt. 35, 5091–5094 (1996).
[CrossRef] [PubMed]

H. J. Cho, C. K. Hwangbo, “Optical inhomogeneity and microstructure of ZrO2 thin films prepared by ion-assisted deposition,” Appl. Opt. 35, 5545–5552 (1996).
[CrossRef] [PubMed]

C. Deumié, R. Richier, P. Dumas, C. Amra, “Multiscale roughness in optical multilayers: atomic force microscopy and light scattering,” Appl. Opt. 35, 5583–5594 (1996).
[CrossRef]

T. K. S. Wong, W. K. Man, “Scanning probe microscopy and tunneling measurements of polycrystalline tin oxide films,” Thin Solid Films 287, 45–50 (1996).
[CrossRef]

I. Y. Sokolov, “On the recovery of the spectroscopic image in atomic force microscopy,” J. Vac. Sci. Technol. A 14, 2901–2904 (1996).
[CrossRef]

U. Kaiser, M. Adamik, G. Sáfrán, P. B. Barna, S. Laux, W. Richter, “Growth structure investigation of MgF2 and NdF3 films grown by molecular beam deposition on CaF2 (111) substrates,” Thin Solid Films 280, 5–15 (1996).
[CrossRef]

F. Biscarini, P. Samorí, A. Lauria, P. Ostoja, R. Zamboni, C. Taliani, P. Viville, R. Lazzaroni, J. L. Brédas, “Morphology and roughness of high-vacuum sublimed oligomer thin films,” Thin Solid Films 284-285, 439–443 (1996).
[CrossRef]

S. B. Qadri, E. F. Skelton, P. Lubitz, N. V. Nguyen, H. R. Khan, “Electron beam deposition of ZrO2-ZnO films,” Thin Solid Films 290–291, 80–83 (1996).

M. M. El-Nahass, B. A. Khalifa, A. M. Abd El-Rahman, R. El-Ariny, “Structural and optical properties of ZnSexTe1-x solid solution in thin film form,” Appl. Phys. A 63, 81–86 (1996).
[CrossRef]

N. K. Sahoo, K. V. S. R. Apparao, “Process-parameter optimization of Sb2O3 films in the ultraviolet and visible region for interferometric applications,” Appl. Phys. A 63, 195–202 (1996).

A. Kucírková, K. Navrátil, L. Pajasová, V. Vorlícek, “Influence of oxygen concentration on optical properties of semi-insulating polycrystalline silicon films,” Appl. Phys. A 63, 495–503 (1996).
[CrossRef]

1995 (1)

M. Nowak, “Determination of optical constants and average thickness of inhomogeneous-rough thin films using spectral dependence of optical transmittance,” Thin Solid Films 254, 200–210 (1995).
[CrossRef]

1994 (2)

N. K. Sahoo, K. V. S. R. Apparao, “Modified complex method for constrained design and optimization of optical multilayer thin-film devices,” Appl. Phys. A 59, 317–326 (1994).
[CrossRef]

F. Tcheliebou, A. Boyer, L. Martin, “Studies on MgO-stabilized zirconia thin films in the UV-visible region,” Thin Solid Films 249, 86–90 (1994).
[CrossRef]

1993 (1)

E. E. Khawaja, F. Bouamrane, A. B. Hallak, M. A. Daous, M. A. Salim, “Observation of oxygen enrichment in zirconium oxide films,” J. Vac. Sci Technol. A 11, 580–587 (1993).
[CrossRef]

1992 (3)

J. P. Cheron, F. Tcheliebou, A. Boyer, “Structural properties of Y2O3 stabilized ZrO2 films deposited by reactive thermal coevaporation,” J. Vac. Sci. Technol. A 10, 3207–3209 (1992).
[CrossRef]

H. Zhang, S. Liu, “Optical compound film deposited by double e-gun,” Thin Solid Films 209, 148–149 (1992).
[CrossRef]

M. L. Balmer, F. F. Lange, C. G. Levi, “Metastable phase selection and partitioning in ZrO2-MgO processed from liquid precursors,” J. Am. Ceram. Soc. 75, 946–952 (1992).
[CrossRef]

1991 (2)

S. B. Qadri, E. F. Skelton, M. Z. Harford, R. Jones, P. Lubitz, “e--beam deposition of In2O3 stabilized ZrO2 films,” J. Vac. Sci Technol. A 9, 510–511 (1991).
[CrossRef]

P. Vuoristo, T. Mäntylä, P. Kettunen, R. Lappalainen, “RBS analysis of sputter-deposited MgO films,” Vacuum 42, 1001–1004 (1991).
[CrossRef]

1990 (3)

C.-K. Kwok, C. R. Aita, “Indirect band gap in α-ZrO2,” J. Vac. Sci Technol. A 8, 3345–3346 (1990).
[CrossRef]

M. Mesbah, A. Boyer, E. Groubert, L. Martin, “Crystallographic and optical study of ZrO2 partially and totally stabilized with Y2O3,” J. Vac. Sci. Technol. A 8, 3961–3966 (1990).
[CrossRef]

J. A. Dobrowoloski, R. A. Kemp, “Refinement of optical multilayer systems with different optimization procedure,” Appl. Opt. 29, 2876–2893 (1990).
[CrossRef]

1989 (5)

1988 (3)

F. Jones, “High-rate reactive sputter deposition of zirconium dioxide,” J. Vac. Sci. Technol. A 6, 3088–3097 (1988).
[CrossRef]

M. Yoshitake, K. Takiguchi, Y. Suzuki, S. Ogawa, “Effect of oxygen pressure in reactive ion-beam sputter deposition of zirconium oxides,” J. Vac. Sci. Technol. A 6, 2326–2332 (1988).
[CrossRef]

M. J. Readey, A. H. Heuer, R. W. Steinbrech, “Annealing of test specimens of high-toughness magnesia-partially-stabilized zirconia,” J. Am. Ceram. Soc. 71, c2–c6 (1988).
[CrossRef]

1987 (1)

C. M. Gilmore, C. Quinn, S. B. Qadri, C. R. Gosset, E. F. Skelton, “Stabilization of tetragonal ZrO2 with Al2O3 in reactive magnetron sputtered thin films,” J. Vac. Sci. Technol. A 5, 2085–2087 (1987).
[CrossRef]

1986 (2)

A. Feldman, E. N. Farabaugh, W. K. Haller, D. M. Sanders, R. A. Stempniak, “Modifying structure and properties of optical films by co-evaporation,” J. Vac. Sci. Technol. A 4, 2969–2974 (1986).
[CrossRef]

A. F. Hebard, A. T. Fiory, S. Nakahara, R. H. Eick, “Oxygen-rich polycrystalline magnesium oxide—a high quality thin-film dielectric,” Appl. Phys. Lett. 48, 520–522 (1986).
[CrossRef]

1985 (2)

1984 (3)

D. P. Arndt, R. M. A. Azzam, J. M. Bennett, J. P. Borgogno, C. K. Carniglia, W. E. Case, J. A. Dobrowolski, U. J. Gibson, T. Tuttle Hart, F. C. Ho, V. A. Hodgkin, W. P. Klapp, H. A. Macleod, E. Pelletier, M. K. Purvis, D. M. Quinn, D. H. Strome, R. Swenson, P. A. Temple, T. F. Thonn, “Multiple determination of the constants of thin-film coating materials,” Appl. Opt. 23, 3571–3596 (1984).
[CrossRef] [PubMed]

P. J. Martin, R. P. Netterfield, W. G. Sainty, “Modification of the optical and structural properties of dielectric ZrO2 films by ion-assisted deposition,” J. Appl. Phys. 55, 235–241 (1984).
[CrossRef]

N. H. Brett, M. Gonzalez, J. Bouillot, J. C. Niepce, “Neutron and x-ray diffraction studies on pure and magnesia-doped zirconia gels decomposed in vacuo,” J. Mater. Sci 19, 1349–1358 (1984).
[CrossRef]

1983 (3)

R. H. Hannink, “Microstructural development of sub-eutectoid aged MgO–ZrO2 alloys,” J. Mater. Sci 18, 457–470 (1983).
[CrossRef]

E. N. Farabaugh, D. M. Sanders, “Microstructure of dielectric thin films formed by e-beam coevaporation,” J. Vac. Sci. Technol. A 1, 356–359 (1983).
[CrossRef]

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E 16, 1214–1222 (1983).
[CrossRef]

1982 (2)

1981 (1)

1979 (2)

M. Harris, H. A. Macleod, S. Ogura, E. Pelletier, B. Vidal, “The relationship between optical inhomogeneity and film structure,” Thin Solid Films 57, 173–178 (1979).
[CrossRef]

D. L. Porter, A. H. Heuer, “Microstructural development in MgO-stabilized zirconia (Mg-PSZ),” J. Am. Ceram. Soc. 62, 298–305 (1979).
[CrossRef]

1976 (1)

E. E. Khawaja, “The determination of the refractive index and thickness of a transparent film,” J. Phys. D. 9, 1939–1943 (1976).
[CrossRef]

1975 (1)

R. Jacobsson, “Inhomogeneous and coevaporated homogeneous films for optical applications,” Phys. Thin Films 8, 51–98 (1975).

1967 (1)

C. F. Grain, “Phase relations in the ZrO2-MgO system,” J. Am. Ceram. Soc. 50, 288–290 (1967).
[CrossRef]

1963 (1)

R. Jacobsson, “Optical properties of a class of inhomogeneous thin films,” Opt. Acta 10, 309–323 (1963).
[CrossRef]

1950 (1)

P. Duwez, F. Odell, “Phase relationships in the system zirconia-ceria,” J. Am. Ceram. Soc. 33, 274–283 (1950).
[CrossRef]

1949 (1)

W. H. Hall, “X-ray line broadening in metals,” Proc. Phys. Soc. London Sec. A 62, 741–743 (1949).
[CrossRef]

1929 (1)

O. Ruff, F. Ebert, “Ceramics of highly refractory materials,” Z. Anorg. Allgem. Chem. 180, 19–41 (1929).
[CrossRef]

Abd El-Rahman, A. M.

M. M. El-Nahass, B. A. Khalifa, A. M. Abd El-Rahman, R. El-Ariny, “Structural and optical properties of ZnSexTe1-x solid solution in thin film form,” Appl. Phys. A 63, 81–86 (1996).
[CrossRef]

Adamik, M.

U. Kaiser, M. Adamik, G. Sáfrán, P. B. Barna, S. Laux, W. Richter, “Growth structure investigation of MgF2 and NdF3 films grown by molecular beam deposition on CaF2 (111) substrates,” Thin Solid Films 280, 5–15 (1996).
[CrossRef]

Aita, C. R.

C.-K. Kwok, C. R. Aita, “Indirect band gap in α-ZrO2,” J. Vac. Sci Technol. A 8, 3345–3346 (1990).
[CrossRef]

C.-K. Kwok, C. R. Aita, “Near-bandgap optical behavior of sputter deposited α- and α + β- ZrO2 films,” J. Appl. Phys. 66, 2756–2758 (1989).
[CrossRef]

C.-K. Kwok, C. R. Aita, “The transition from αZr to αZrO2 growth in sputter-deposited films as a function of gas O2 content, rare-gas type and cathode voltage,” J. Vac. Sci Technol. A 7, 1235–1239 (1989).
[CrossRef]

Amra, C.

C. Deumié, R. Richier, P. Dumas, C. Amra, “Multiscale roughness in optical multilayers: atomic force microscopy and light scattering,” Appl. Opt. 35, 5583–5594 (1996).
[CrossRef]

C. Amra, C. Deumié, D. Torricini, P. Roche, R. Galindo, P. Dumas, F. Salvan, “Overlapping of roughness spectra measured in macroscopic (optical) and microscopic (AFM) bandwidths,” in Optical Interference Coatings, F. Abeles, ed., Proc. SPIE2253, 614–630 (1994).
[CrossRef]

Anderson, J. C.

B. Lewis, J. C. Anderson, Nucleation and Growth of Thin Films (Academic, New York, 1978).

Apparao, K. V. S. R.

N. K. Sahoo, K. V. S. R. Apparao, “Process-parameter optimization of Sb2O3 films in the ultraviolet and visible region for interferometric applications,” Appl. Phys. A 63, 195–202 (1996).

N. K. Sahoo, K. V. S. R. Apparao, “Modified complex method for constrained design and optimization of optical multilayer thin-film devices,” Appl. Phys. A 59, 317–326 (1994).
[CrossRef]

Arndt, D. P.

Azzam, R. M. A.

Balmer, M. L.

M. L. Balmer, F. F. Lange, C. G. Levi, “Metastable phase selection and partitioning in ZrO2-MgO processed from liquid precursors,” J. Am. Ceram. Soc. 75, 946–952 (1992).
[CrossRef]

Barna, P. B.

U. Kaiser, M. Adamik, G. Sáfrán, P. B. Barna, S. Laux, W. Richter, “Growth structure investigation of MgF2 and NdF3 films grown by molecular beam deposition on CaF2 (111) substrates,” Thin Solid Films 280, 5–15 (1996).
[CrossRef]

Bennett, J. M.

Bertram, R.

Biscarini, F.

F. Biscarini, P. Samorí, A. Lauria, P. Ostoja, R. Zamboni, C. Taliani, P. Viville, R. Lazzaroni, J. L. Brédas, “Morphology and roughness of high-vacuum sublimed oligomer thin films,” Thin Solid Films 284-285, 439–443 (1996).
[CrossRef]

Borgogno, J. P.

Bouamrane, F.

E. E. Khawaja, F. Bouamrane, A. B. Hallak, M. A. Daous, M. A. Salim, “Observation of oxygen enrichment in zirconium oxide films,” J. Vac. Sci Technol. A 11, 580–587 (1993).
[CrossRef]

Bouillot, J.

N. H. Brett, M. Gonzalez, J. Bouillot, J. C. Niepce, “Neutron and x-ray diffraction studies on pure and magnesia-doped zirconia gels decomposed in vacuo,” J. Mater. Sci 19, 1349–1358 (1984).
[CrossRef]

Bousquet, P.

Bovard, B.

Boyer, A.

F. Tcheliebou, A. Boyer, L. Martin, “Studies on MgO-stabilized zirconia thin films in the UV-visible region,” Thin Solid Films 249, 86–90 (1994).
[CrossRef]

J. P. Cheron, F. Tcheliebou, A. Boyer, “Structural properties of Y2O3 stabilized ZrO2 films deposited by reactive thermal coevaporation,” J. Vac. Sci. Technol. A 10, 3207–3209 (1992).
[CrossRef]

M. Mesbah, A. Boyer, E. Groubert, L. Martin, “Crystallographic and optical study of ZrO2 partially and totally stabilized with Y2O3,” J. Vac. Sci. Technol. A 8, 3961–3966 (1990).
[CrossRef]

Brédas, J. L.

F. Biscarini, P. Samorí, A. Lauria, P. Ostoja, R. Zamboni, C. Taliani, P. Viville, R. Lazzaroni, J. L. Brédas, “Morphology and roughness of high-vacuum sublimed oligomer thin films,” Thin Solid Films 284-285, 439–443 (1996).
[CrossRef]

Brett, N. H.

N. H. Brett, M. Gonzalez, J. Bouillot, J. C. Niepce, “Neutron and x-ray diffraction studies on pure and magnesia-doped zirconia gels decomposed in vacuo,” J. Mater. Sci 19, 1349–1358 (1984).
[CrossRef]

Carniglia, C. K.

Case, W. E.

Chao, S.

Chen, C.-H.

Chen, J.-S.

Cheron, J. P.

J. P. Cheron, F. Tcheliebou, A. Boyer, “Structural properties of Y2O3 stabilized ZrO2 films deposited by reactive thermal coevaporation,” J. Vac. Sci. Technol. A 10, 3207–3209 (1992).
[CrossRef]

Cho, H. J.

Daous, M. A.

E. E. Khawaja, F. Bouamrane, A. B. Hallak, M. A. Daous, M. A. Salim, “Observation of oxygen enrichment in zirconium oxide films,” J. Vac. Sci Technol. A 11, 580–587 (1993).
[CrossRef]

Deumié, C.

C. Deumié, R. Richier, P. Dumas, C. Amra, “Multiscale roughness in optical multilayers: atomic force microscopy and light scattering,” Appl. Opt. 35, 5583–5594 (1996).
[CrossRef]

C. Amra, C. Deumié, D. Torricini, P. Roche, R. Galindo, P. Dumas, F. Salvan, “Overlapping of roughness spectra measured in macroscopic (optical) and microscopic (AFM) bandwidths,” in Optical Interference Coatings, F. Abeles, ed., Proc. SPIE2253, 614–630 (1994).
[CrossRef]

Dobrowoloski, J. A.

Dobrowolski, J. A.

Dumas, P.

C. Deumié, R. Richier, P. Dumas, C. Amra, “Multiscale roughness in optical multilayers: atomic force microscopy and light scattering,” Appl. Opt. 35, 5583–5594 (1996).
[CrossRef]

C. Amra, C. Deumié, D. Torricini, P. Roche, R. Galindo, P. Dumas, F. Salvan, “Overlapping of roughness spectra measured in macroscopic (optical) and microscopic (AFM) bandwidths,” in Optical Interference Coatings, F. Abeles, ed., Proc. SPIE2253, 614–630 (1994).
[CrossRef]

Duparré, A.

Duwez, P.

P. Duwez, F. Odell, “Phase relationships in the system zirconia-ceria,” J. Am. Ceram. Soc. 33, 274–283 (1950).
[CrossRef]

Ebert, F.

O. Ruff, F. Ebert, “Ceramics of highly refractory materials,” Z. Anorg. Allgem. Chem. 180, 19–41 (1929).
[CrossRef]

Eick, R. H.

A. F. Hebard, A. T. Fiory, S. Nakahara, R. H. Eick, “Oxygen-rich polycrystalline magnesium oxide—a high quality thin-film dielectric,” Appl. Phys. Lett. 48, 520–522 (1986).
[CrossRef]

El-Ariny, R.

M. M. El-Nahass, B. A. Khalifa, A. M. Abd El-Rahman, R. El-Ariny, “Structural and optical properties of ZnSexTe1-x solid solution in thin film form,” Appl. Phys. A 63, 81–86 (1996).
[CrossRef]

El-Nahass, M. M.

M. M. El-Nahass, B. A. Khalifa, A. M. Abd El-Rahman, R. El-Ariny, “Structural and optical properties of ZnSexTe1-x solid solution in thin film form,” Appl. Phys. A 63, 81–86 (1996).
[CrossRef]

Farabaugh, E. N.

A. Feldman, E. N. Farabaugh, W. K. Haller, D. M. Sanders, R. A. Stempniak, “Modifying structure and properties of optical films by co-evaporation,” J. Vac. Sci. Technol. A 4, 2969–2974 (1986).
[CrossRef]

E. N. Farabaugh, D. M. Sanders, “Microstructure of dielectric thin films formed by e-beam coevaporation,” J. Vac. Sci. Technol. A 1, 356–359 (1983).
[CrossRef]

D. M. Sanders, E. N. Farabaugh, W. K. Haller, “Glassy optical coatings by multisource evaporation,” in Thin Film Technologies and Special Applications, W. R. Hunter, ed., Proc. SPIE346, 31–38 (1982).
[CrossRef]

Feldman, A.

A. Feldman, E. N. Farabaugh, W. K. Haller, D. M. Sanders, R. A. Stempniak, “Modifying structure and properties of optical films by co-evaporation,” J. Vac. Sci. Technol. A 4, 2969–2974 (1986).
[CrossRef]

Fiory, A. T.

A. F. Hebard, A. T. Fiory, S. Nakahara, R. H. Eick, “Oxygen-rich polycrystalline magnesium oxide—a high quality thin-film dielectric,” Appl. Phys. Lett. 48, 520–522 (1986).
[CrossRef]

Flory, F.

Galindo, R.

C. Amra, C. Deumié, D. Torricini, P. Roche, R. Galindo, P. Dumas, F. Salvan, “Overlapping of roughness spectra measured in macroscopic (optical) and microscopic (AFM) bandwidths,” in Optical Interference Coatings, F. Abeles, ed., Proc. SPIE2253, 614–630 (1994).
[CrossRef]

Ghosh, G.

Gibson, U. J.

Gilmore, C. M.

C. M. Gilmore, C. Quinn, S. B. Qadri, C. R. Gosset, E. F. Skelton, “Stabilization of tetragonal ZrO2 with Al2O3 in reactive magnetron sputtered thin films,” J. Vac. Sci. Technol. A 5, 2085–2087 (1987).
[CrossRef]

Gluck, N. S.

Gonzalez, M.

N. H. Brett, M. Gonzalez, J. Bouillot, J. C. Niepce, “Neutron and x-ray diffraction studies on pure and magnesia-doped zirconia gels decomposed in vacuo,” J. Mater. Sci 19, 1349–1358 (1984).
[CrossRef]

Gosset, C. R.

C. M. Gilmore, C. Quinn, S. B. Qadri, C. R. Gosset, E. F. Skelton, “Stabilization of tetragonal ZrO2 with Al2O3 in reactive magnetron sputtered thin films,” J. Vac. Sci. Technol. A 5, 2085–2087 (1987).
[CrossRef]

Grain, C. F.

C. F. Grain, “Phase relations in the ZrO2-MgO system,” J. Am. Ceram. Soc. 50, 288–290 (1967).
[CrossRef]

Grant, P. D.

Groubert, E.

M. Mesbah, A. Boyer, E. Groubert, L. Martin, “Crystallographic and optical study of ZrO2 partially and totally stabilized with Y2O3,” J. Vac. Sci. Technol. A 8, 3961–3966 (1990).
[CrossRef]

Gunning, W. J.

Hall, R. L.

Hall, W. H.

W. H. Hall, “X-ray line broadening in metals,” Proc. Phys. Soc. London Sec. A 62, 741–743 (1949).
[CrossRef]

Hallak, A. B.

E. E. Khawaja, F. Bouamrane, A. B. Hallak, M. A. Daous, M. A. Salim, “Observation of oxygen enrichment in zirconium oxide films,” J. Vac. Sci Technol. A 11, 580–587 (1993).
[CrossRef]

Haller, W. K.

A. Feldman, E. N. Farabaugh, W. K. Haller, D. M. Sanders, R. A. Stempniak, “Modifying structure and properties of optical films by co-evaporation,” J. Vac. Sci. Technol. A 4, 2969–2974 (1986).
[CrossRef]

D. M. Sanders, E. N. Farabaugh, W. K. Haller, “Glassy optical coatings by multisource evaporation,” in Thin Film Technologies and Special Applications, W. R. Hunter, ed., Proc. SPIE346, 31–38 (1982).
[CrossRef]

Hannink, R. H.

R. H. Hannink, “Microstructural development of sub-eutectoid aged MgO–ZrO2 alloys,” J. Mater. Sci 18, 457–470 (1983).
[CrossRef]

Hannink, R. H. J.

H. J. Rossel, R. H. J. Hannink, “The phase Mg2Zr5O12 in MgO partially stabilized zirconia,” in Science and Technology of Zirconia II, Vol. 12 of Advances in Ceramics, N. Claussen, M. Rühle, A. H. Heuer, eds. (The American Ceramic Society, Inc., Columbus, Ohio, 1984), pp. 139–151.

Harford, M. Z.

S. B. Qadri, E. F. Skelton, M. Z. Harford, R. Jones, P. Lubitz, “e--beam deposition of In2O3 stabilized ZrO2 films,” J. Vac. Sci Technol. A 9, 510–511 (1991).
[CrossRef]

Harris, M.

M. Harris, H. A. Macleod, S. Ogura, E. Pelletier, B. Vidal, “The relationship between optical inhomogeneity and film structure,” Thin Solid Films 57, 173–178 (1979).
[CrossRef]

Hebard, A. F.

A. F. Hebard, A. T. Fiory, S. Nakahara, R. H. Eick, “Oxygen-rich polycrystalline magnesium oxide—a high quality thin-film dielectric,” Appl. Phys. Lett. 48, 520–522 (1986).
[CrossRef]

Heuer, A. H.

M. J. Readey, A. H. Heuer, R. W. Steinbrech, “Annealing of test specimens of high-toughness magnesia-partially-stabilized zirconia,” J. Am. Ceram. Soc. 71, c2–c6 (1988).
[CrossRef]

D. L. Porter, A. H. Heuer, “Microstructural development in MgO-stabilized zirconia (Mg-PSZ),” J. Am. Ceram. Soc. 62, 298–305 (1979).
[CrossRef]

Ho, F. C.

Hodgkin, V. A.

Hwangbo, C. K.

Jacobsson, R.

R. Jacobsson, “Inhomogeneous and coevaporated homogeneous films for optical applications,” Phys. Thin Films 8, 51–98 (1975).

R. Jacobsson, “Optical properties of a class of inhomogeneous thin films,” Opt. Acta 10, 309–323 (1963).
[CrossRef]

Jakobs, S.

Jenkins, R.

R. Jenkins, R. L. Snyder, Introduction to X-ray Powder Diffractometry (Wiley-Interscience, New York, 1996).
[CrossRef]

Jones, F.

F. Jones, “High-rate reactive sputter deposition of zirconium dioxide,” J. Vac. Sci. Technol. A 6, 3088–3097 (1988).
[CrossRef]

Jones, R.

S. B. Qadri, E. F. Skelton, M. Z. Harford, R. Jones, P. Lubitz, “e--beam deposition of In2O3 stabilized ZrO2 films,” J. Vac. Sci Technol. A 9, 510–511 (1991).
[CrossRef]

Kaiser, U.

U. Kaiser, M. Adamik, G. Sáfrán, P. B. Barna, S. Laux, W. Richter, “Growth structure investigation of MgF2 and NdF3 films grown by molecular beam deposition on CaF2 (111) substrates,” Thin Solid Films 280, 5–15 (1996).
[CrossRef]

Kao, J.-S.

Kemp, R. A.

Kettunen, P.

P. Vuoristo, T. Mäntylä, P. Kettunen, R. Lappalainen, “RBS analysis of sputter-deposited MgO films,” Vacuum 42, 1001–1004 (1991).
[CrossRef]

Khalifa, B. A.

M. M. El-Nahass, B. A. Khalifa, A. M. Abd El-Rahman, R. El-Ariny, “Structural and optical properties of ZnSexTe1-x solid solution in thin film form,” Appl. Phys. A 63, 81–86 (1996).
[CrossRef]

Khan, H. R.

S. B. Qadri, E. F. Skelton, P. Lubitz, N. V. Nguyen, H. R. Khan, “Electron beam deposition of ZrO2-ZnO films,” Thin Solid Films 290–291, 80–83 (1996).

Khawaja, E. E.

E. E. Khawaja, F. Bouamrane, A. B. Hallak, M. A. Daous, M. A. Salim, “Observation of oxygen enrichment in zirconium oxide films,” J. Vac. Sci Technol. A 11, 580–587 (1993).
[CrossRef]

E. E. Khawaja, “The determination of the refractive index and thickness of a transparent film,” J. Phys. D. 9, 1939–1943 (1976).
[CrossRef]

Klapp, W. P.

Klinger, R. E.

Kucírková, A.

A. Kucírková, K. Navrátil, L. Pajasová, V. Vorlícek, “Influence of oxygen concentration on optical properties of semi-insulating polycrystalline silicon films,” Appl. Phys. A 63, 495–503 (1996).
[CrossRef]

Kwok, C.-K.

C.-K. Kwok, C. R. Aita, “Indirect band gap in α-ZrO2,” J. Vac. Sci Technol. A 8, 3345–3346 (1990).
[CrossRef]

C.-K. Kwok, C. R. Aita, “Near-bandgap optical behavior of sputter deposited α- and α + β- ZrO2 films,” J. Appl. Phys. 66, 2756–2758 (1989).
[CrossRef]

C.-K. Kwok, C. R. Aita, “The transition from αZr to αZrO2 growth in sputter-deposited films as a function of gas O2 content, rare-gas type and cathode voltage,” J. Vac. Sci Technol. A 7, 1235–1239 (1989).
[CrossRef]

Lange, F. F.

M. L. Balmer, F. F. Lange, C. G. Levi, “Metastable phase selection and partitioning in ZrO2-MgO processed from liquid precursors,” J. Am. Ceram. Soc. 75, 946–952 (1992).
[CrossRef]

Lappalainen, R.

P. Vuoristo, T. Mäntylä, P. Kettunen, R. Lappalainen, “RBS analysis of sputter-deposited MgO films,” Vacuum 42, 1001–1004 (1991).
[CrossRef]

Lauria, A.

F. Biscarini, P. Samorí, A. Lauria, P. Ostoja, R. Zamboni, C. Taliani, P. Viville, R. Lazzaroni, J. L. Brédas, “Morphology and roughness of high-vacuum sublimed oligomer thin films,” Thin Solid Films 284-285, 439–443 (1996).
[CrossRef]

Laux, S.

U. Kaiser, M. Adamik, G. Sáfrán, P. B. Barna, S. Laux, W. Richter, “Growth structure investigation of MgF2 and NdF3 films grown by molecular beam deposition on CaF2 (111) substrates,” Thin Solid Films 280, 5–15 (1996).
[CrossRef]

Lazarides, B.

Lazzaroni, R.

F. Biscarini, P. Samorí, A. Lauria, P. Ostoja, R. Zamboni, C. Taliani, P. Viville, R. Lazzaroni, J. L. Brédas, “Morphology and roughness of high-vacuum sublimed oligomer thin films,” Thin Solid Films 284-285, 439–443 (1996).
[CrossRef]

Levi, C. G.

M. L. Balmer, F. F. Lange, C. G. Levi, “Metastable phase selection and partitioning in ZrO2-MgO processed from liquid precursors,” J. Am. Ceram. Soc. 75, 946–952 (1992).
[CrossRef]

Lewis, B.

B. Lewis, J. C. Anderson, Nucleation and Growth of Thin Films (Academic, New York, 1978).

Liu, S.

H. Zhang, S. Liu, “Optical compound film deposited by double e-gun,” Thin Solid Films 209, 148–149 (1992).
[CrossRef]

Lubitz, P.

S. B. Qadri, E. F. Skelton, P. Lubitz, N. V. Nguyen, H. R. Khan, “Electron beam deposition of ZrO2-ZnO films,” Thin Solid Films 290–291, 80–83 (1996).

S. B. Qadri, E. F. Skelton, M. Z. Harford, R. Jones, P. Lubitz, “e--beam deposition of In2O3 stabilized ZrO2 films,” J. Vac. Sci Technol. A 9, 510–511 (1991).
[CrossRef]

Lysoi, B. G.

A. V. Tikhonravov, M. K. Trubetskov, A. N. Tikhonov, O. B. Tcsherednichenko, B. G. Lysoi, K. V. Mikhailova, B. T. Sullivan, J. A. Dobrowolski, “Study of thin film inhomogeneity with a fast-scanning acoustooptic spectrophotometer,” in Developments in Optical Component Coatings, I. Reid, ed., Proc. SPIE2776, 212–220 (1996).
[CrossRef]

Macleod, H. A.

Man, W. K.

T. K. S. Wong, W. K. Man, “Scanning probe microscopy and tunneling measurements of polycrystalline tin oxide films,” Thin Solid Films 287, 45–50 (1996).
[CrossRef]

Mäntylä, T.

P. Vuoristo, T. Mäntylä, P. Kettunen, R. Lappalainen, “RBS analysis of sputter-deposited MgO films,” Vacuum 42, 1001–1004 (1991).
[CrossRef]

Martin, L.

F. Tcheliebou, A. Boyer, L. Martin, “Studies on MgO-stabilized zirconia thin films in the UV-visible region,” Thin Solid Films 249, 86–90 (1994).
[CrossRef]

M. Mesbah, A. Boyer, E. Groubert, L. Martin, “Crystallographic and optical study of ZrO2 partially and totally stabilized with Y2O3,” J. Vac. Sci. Technol. A 8, 3961–3966 (1990).
[CrossRef]

Martin, P. J.

P. J. Martin, R. P. Netterfield, W. G. Sainty, “Modification of the optical and structural properties of dielectric ZrO2 films by ion-assisted deposition,” J. Appl. Phys. 55, 235–241 (1984).
[CrossRef]

Mesbah, M.

M. Mesbah, A. Boyer, E. Groubert, L. Martin, “Crystallographic and optical study of ZrO2 partially and totally stabilized with Y2O3,” J. Vac. Sci. Technol. A 8, 3961–3966 (1990).
[CrossRef]

Messerly, M. J.

Mikhailova, K. V.

A. V. Tikhonravov, M. K. Trubetskov, A. N. Tikhonov, O. B. Tcsherednichenko, B. G. Lysoi, K. V. Mikhailova, B. T. Sullivan, J. A. Dobrowolski, “Study of thin film inhomogeneity with a fast-scanning acoustooptic spectrophotometer,” in Developments in Optical Component Coatings, I. Reid, ed., Proc. SPIE2776, 212–220 (1996).
[CrossRef]

Nakahara, S.

A. F. Hebard, A. T. Fiory, S. Nakahara, R. H. Eick, “Oxygen-rich polycrystalline magnesium oxide—a high quality thin-film dielectric,” Appl. Phys. Lett. 48, 520–522 (1986).
[CrossRef]

Nassau, K.

Navrátil, K.

A. Kucírková, K. Navrátil, L. Pajasová, V. Vorlícek, “Influence of oxygen concentration on optical properties of semi-insulating polycrystalline silicon films,” Appl. Phys. A 63, 495–503 (1996).
[CrossRef]

Netterfield, R. P.

P. J. Martin, R. P. Netterfield, W. G. Sainty, “Modification of the optical and structural properties of dielectric ZrO2 films by ion-assisted deposition,” J. Appl. Phys. 55, 235–241 (1984).
[CrossRef]

Nguyen, N. V.

S. B. Qadri, E. F. Skelton, P. Lubitz, N. V. Nguyen, H. R. Khan, “Electron beam deposition of ZrO2-ZnO films,” Thin Solid Films 290–291, 80–83 (1996).

Niepce, J. C.

N. H. Brett, M. Gonzalez, J. Bouillot, J. C. Niepce, “Neutron and x-ray diffraction studies on pure and magnesia-doped zirconia gels decomposed in vacuo,” J. Mater. Sci 19, 1349–1358 (1984).
[CrossRef]

Niu, H.

Nowak, M.

M. Nowak, “Determination of optical constants and average thickness of inhomogeneous-rough thin films using spectral dependence of optical transmittance,” Thin Solid Films 254, 200–210 (1995).
[CrossRef]

Odell, F.

P. Duwez, F. Odell, “Phase relationships in the system zirconia-ceria,” J. Am. Ceram. Soc. 33, 274–283 (1950).
[CrossRef]

Ogawa, S.

M. Yoshitake, K. Takiguchi, Y. Suzuki, S. Ogawa, “Effect of oxygen pressure in reactive ion-beam sputter deposition of zirconium oxides,” J. Vac. Sci. Technol. A 6, 2326–2332 (1988).
[CrossRef]

Ogura, S.

M. Harris, H. A. Macleod, S. Ogura, E. Pelletier, B. Vidal, “The relationship between optical inhomogeneity and film structure,” Thin Solid Films 57, 173–178 (1979).
[CrossRef]

S. Ogura, “Dynamic characteristics in optically inhomogeneous films,” in Thin Films for Optical Systems, K. H. Guenther, ed., Proc. SPIE1782, 377–388 (1992).
[CrossRef]

Ostoja, P.

F. Biscarini, P. Samorí, A. Lauria, P. Ostoja, R. Zamboni, C. Taliani, P. Viville, R. Lazzaroni, J. L. Brédas, “Morphology and roughness of high-vacuum sublimed oligomer thin films,” Thin Solid Films 284-285, 439–443 (1996).
[CrossRef]

Ouellette, M. F.

Pajasová, L.

A. Kucírková, K. Navrátil, L. Pajasová, V. Vorlícek, “Influence of oxygen concentration on optical properties of semi-insulating polycrystalline silicon films,” Appl. Phys. A 63, 495–503 (1996).
[CrossRef]

Pelletier, E.

Porter, D. L.

D. L. Porter, A. H. Heuer, “Microstructural development in MgO-stabilized zirconia (Mg-PSZ),” J. Am. Ceram. Soc. 62, 298–305 (1979).
[CrossRef]

Purvis, M. K.

Qadri, S. B.

S. B. Qadri, E. F. Skelton, P. Lubitz, N. V. Nguyen, H. R. Khan, “Electron beam deposition of ZrO2-ZnO films,” Thin Solid Films 290–291, 80–83 (1996).

S. B. Qadri, E. F. Skelton, M. Z. Harford, R. Jones, P. Lubitz, “e--beam deposition of In2O3 stabilized ZrO2 films,” J. Vac. Sci Technol. A 9, 510–511 (1991).
[CrossRef]

C. M. Gilmore, C. Quinn, S. B. Qadri, C. R. Gosset, E. F. Skelton, “Stabilization of tetragonal ZrO2 with Al2O3 in reactive magnetron sputtered thin films,” J. Vac. Sci. Technol. A 5, 2085–2087 (1987).
[CrossRef]

Quinn, C.

C. M. Gilmore, C. Quinn, S. B. Qadri, C. R. Gosset, E. F. Skelton, “Stabilization of tetragonal ZrO2 with Al2O3 in reactive magnetron sputtered thin films,” J. Vac. Sci. Technol. A 5, 2085–2087 (1987).
[CrossRef]

Quinn, D. M.

Readey, M. J.

M. J. Readey, A. H. Heuer, R. W. Steinbrech, “Annealing of test specimens of high-toughness magnesia-partially-stabilized zirconia,” J. Am. Ceram. Soc. 71, c2–c6 (1988).
[CrossRef]

Richier, R.

Richter, W.

U. Kaiser, M. Adamik, G. Sáfrán, P. B. Barna, S. Laux, W. Richter, “Growth structure investigation of MgF2 and NdF3 films grown by molecular beam deposition on CaF2 (111) substrates,” Thin Solid Films 280, 5–15 (1996).
[CrossRef]

Roche, P.

J. P. Borgogno, P. Bousquet, F. Flory, B. Lazarides, E. Pelletier, P. Roche, “Inhomogeneity in films: limitation of the accuracy of optical monitoring of thin films,” Appl. Opt. 20, 90–94 (1981).
[CrossRef] [PubMed]

C. Amra, C. Deumié, D. Torricini, P. Roche, R. Galindo, P. Dumas, F. Salvan, “Overlapping of roughness spectra measured in macroscopic (optical) and microscopic (AFM) bandwidths,” in Optical Interference Coatings, F. Abeles, ed., Proc. SPIE2253, 614–630 (1994).
[CrossRef]

Rossel, H. J.

H. J. Rossel, R. H. J. Hannink, “The phase Mg2Zr5O12 in MgO partially stabilized zirconia,” in Science and Technology of Zirconia II, Vol. 12 of Advances in Ceramics, N. Claussen, M. Rühle, A. H. Heuer, eds. (The American Ceramic Society, Inc., Columbus, Ohio, 1984), pp. 139–151.

Ruff, O.

O. Ruff, F. Ebert, “Ceramics of highly refractory materials,” Z. Anorg. Allgem. Chem. 180, 19–41 (1929).
[CrossRef]

Sáfrán, G.

U. Kaiser, M. Adamik, G. Sáfrán, P. B. Barna, S. Laux, W. Richter, “Growth structure investigation of MgF2 and NdF3 films grown by molecular beam deposition on CaF2 (111) substrates,” Thin Solid Films 280, 5–15 (1996).
[CrossRef]

Sahoo, N. K.

N. K. Sahoo, K. V. S. R. Apparao, “Process-parameter optimization of Sb2O3 films in the ultraviolet and visible region for interferometric applications,” Appl. Phys. A 63, 195–202 (1996).

N. K. Sahoo, K. V. S. R. Apparao, “Modified complex method for constrained design and optimization of optical multilayer thin-film devices,” Appl. Phys. A 59, 317–326 (1994).
[CrossRef]

Sainty, W. G.

P. J. Martin, R. P. Netterfield, W. G. Sainty, “Modification of the optical and structural properties of dielectric ZrO2 films by ion-assisted deposition,” J. Appl. Phys. 55, 235–241 (1984).
[CrossRef]

Salim, M. A.

E. E. Khawaja, F. Bouamrane, A. B. Hallak, M. A. Daous, M. A. Salim, “Observation of oxygen enrichment in zirconium oxide films,” J. Vac. Sci Technol. A 11, 580–587 (1993).
[CrossRef]

Salvan, F.

C. Amra, C. Deumié, D. Torricini, P. Roche, R. Galindo, P. Dumas, F. Salvan, “Overlapping of roughness spectra measured in macroscopic (optical) and microscopic (AFM) bandwidths,” in Optical Interference Coatings, F. Abeles, ed., Proc. SPIE2253, 614–630 (1994).
[CrossRef]

Samorí, P.

F. Biscarini, P. Samorí, A. Lauria, P. Ostoja, R. Zamboni, C. Taliani, P. Viville, R. Lazzaroni, J. L. Brédas, “Morphology and roughness of high-vacuum sublimed oligomer thin films,” Thin Solid Films 284-285, 439–443 (1996).
[CrossRef]

Sanders, D. M.

A. Feldman, E. N. Farabaugh, W. K. Haller, D. M. Sanders, R. A. Stempniak, “Modifying structure and properties of optical films by co-evaporation,” J. Vac. Sci. Technol. A 4, 2969–2974 (1986).
[CrossRef]

E. N. Farabaugh, D. M. Sanders, “Microstructure of dielectric thin films formed by e-beam coevaporation,” J. Vac. Sci. Technol. A 1, 356–359 (1983).
[CrossRef]

D. M. Sanders, E. N. Farabaugh, W. K. Haller, “Glassy optical coatings by multisource evaporation,” in Thin Film Technologies and Special Applications, W. R. Hunter, ed., Proc. SPIE346, 31–38 (1982).
[CrossRef]

Saxe, S. G.

Simpson, R.

Skelton, E. F.

S. B. Qadri, E. F. Skelton, P. Lubitz, N. V. Nguyen, H. R. Khan, “Electron beam deposition of ZrO2-ZnO films,” Thin Solid Films 290–291, 80–83 (1996).

S. B. Qadri, E. F. Skelton, M. Z. Harford, R. Jones, P. Lubitz, “e--beam deposition of In2O3 stabilized ZrO2 films,” J. Vac. Sci Technol. A 9, 510–511 (1991).
[CrossRef]

C. M. Gilmore, C. Quinn, S. B. Qadri, C. R. Gosset, E. F. Skelton, “Stabilization of tetragonal ZrO2 with Al2O3 in reactive magnetron sputtered thin films,” J. Vac. Sci. Technol. A 5, 2085–2087 (1987).
[CrossRef]

Snyder, R. L.

R. Jenkins, R. L. Snyder, Introduction to X-ray Powder Diffractometry (Wiley-Interscience, New York, 1996).
[CrossRef]

Sokolov, I. Y.

I. Y. Sokolov, “On the recovery of the spectroscopic image in atomic force microscopy,” J. Vac. Sci. Technol. A 14, 2901–2904 (1996).
[CrossRef]

Southwell, W. H.

Steinbrech, R. W.

M. J. Readey, A. H. Heuer, R. W. Steinbrech, “Annealing of test specimens of high-toughness magnesia-partially-stabilized zirconia,” J. Am. Ceram. Soc. 71, c2–c6 (1988).
[CrossRef]

Stempniak, R. A.

A. Feldman, E. N. Farabaugh, W. K. Haller, D. M. Sanders, R. A. Stempniak, “Modifying structure and properties of optical films by co-evaporation,” J. Vac. Sci. Technol. A 4, 2969–2974 (1986).
[CrossRef]

Strome, D. H.

Sullivan, B. T.

A. V. Tikhonravov, M. K. Trubetskov, A. N. Tikhonov, O. B. Tcsherednichenko, B. G. Lysoi, K. V. Mikhailova, B. T. Sullivan, J. A. Dobrowolski, “Study of thin film inhomogeneity with a fast-scanning acoustooptic spectrophotometer,” in Developments in Optical Component Coatings, I. Reid, ed., Proc. SPIE2776, 212–220 (1996).
[CrossRef]

Suzuki, Y.

M. Yoshitake, K. Takiguchi, Y. Suzuki, S. Ogawa, “Effect of oxygen pressure in reactive ion-beam sputter deposition of zirconium oxides,” J. Vac. Sci. Technol. A 6, 2326–2332 (1988).
[CrossRef]

Swanepoel, R.

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E 16, 1214–1222 (1983).
[CrossRef]

Swenson, R.

Takiguchi, K.

M. Yoshitake, K. Takiguchi, Y. Suzuki, S. Ogawa, “Effect of oxygen pressure in reactive ion-beam sputter deposition of zirconium oxides,” J. Vac. Sci. Technol. A 6, 2326–2332 (1988).
[CrossRef]

Taliani, C.

F. Biscarini, P. Samorí, A. Lauria, P. Ostoja, R. Zamboni, C. Taliani, P. Viville, R. Lazzaroni, J. L. Brédas, “Morphology and roughness of high-vacuum sublimed oligomer thin films,” Thin Solid Films 284-285, 439–443 (1996).
[CrossRef]

Tcheliebou, F.

F. Tcheliebou, A. Boyer, L. Martin, “Studies on MgO-stabilized zirconia thin films in the UV-visible region,” Thin Solid Films 249, 86–90 (1994).
[CrossRef]

J. P. Cheron, F. Tcheliebou, A. Boyer, “Structural properties of Y2O3 stabilized ZrO2 films deposited by reactive thermal coevaporation,” J. Vac. Sci. Technol. A 10, 3207–3209 (1992).
[CrossRef]

Tcsherednichenko, O. B.

A. V. Tikhonravov, M. K. Trubetskov, A. N. Tikhonov, O. B. Tcsherednichenko, B. G. Lysoi, K. V. Mikhailova, B. T. Sullivan, J. A. Dobrowolski, “Study of thin film inhomogeneity with a fast-scanning acoustooptic spectrophotometer,” in Developments in Optical Component Coatings, I. Reid, ed., Proc. SPIE2776, 212–220 (1996).
[CrossRef]

Temple, P. A.

Thonn, T. F.

Tikhonov, A. N.

A. V. Tikhonravov, M. K. Trubetskov, A. N. Tikhonov, O. B. Tcsherednichenko, B. G. Lysoi, K. V. Mikhailova, B. T. Sullivan, J. A. Dobrowolski, “Study of thin film inhomogeneity with a fast-scanning acoustooptic spectrophotometer,” in Developments in Optical Component Coatings, I. Reid, ed., Proc. SPIE2776, 212–220 (1996).
[CrossRef]

Tikhonravov, A. V.

A. V. Tikhonravov, M. K. Trubetskov, A. N. Tikhonov, O. B. Tcsherednichenko, B. G. Lysoi, K. V. Mikhailova, B. T. Sullivan, J. A. Dobrowolski, “Study of thin film inhomogeneity with a fast-scanning acoustooptic spectrophotometer,” in Developments in Optical Component Coatings, I. Reid, ed., Proc. SPIE2776, 212–220 (1996).
[CrossRef]

Torricini, D.

C. Amra, C. Deumié, D. Torricini, P. Roche, R. Galindo, P. Dumas, F. Salvan, “Overlapping of roughness spectra measured in macroscopic (optical) and microscopic (AFM) bandwidths,” in Optical Interference Coatings, F. Abeles, ed., Proc. SPIE2253, 614–630 (1994).
[CrossRef]

Trubetskov, M. K.

A. V. Tikhonravov, M. K. Trubetskov, A. N. Tikhonov, O. B. Tcsherednichenko, B. G. Lysoi, K. V. Mikhailova, B. T. Sullivan, J. A. Dobrowolski, “Study of thin film inhomogeneity with a fast-scanning acoustooptic spectrophotometer,” in Developments in Optical Component Coatings, I. Reid, ed., Proc. SPIE2776, 212–220 (1996).
[CrossRef]

Tse, P. Y.

Tsou, Y.

Tuttle Hart, T.

Van Milligen, F. J.

Vidal, B.

M. Harris, H. A. Macleod, S. Ogura, E. Pelletier, B. Vidal, “The relationship between optical inhomogeneity and film structure,” Thin Solid Films 57, 173–178 (1979).
[CrossRef]

Viville, P.

F. Biscarini, P. Samorí, A. Lauria, P. Ostoja, R. Zamboni, C. Taliani, P. Viville, R. Lazzaroni, J. L. Brédas, “Morphology and roughness of high-vacuum sublimed oligomer thin films,” Thin Solid Films 284-285, 439–443 (1996).
[CrossRef]

Vorlícek, V.

A. Kucírková, K. Navrátil, L. Pajasová, V. Vorlícek, “Influence of oxygen concentration on optical properties of semi-insulating polycrystalline silicon films,” Appl. Phys. A 63, 495–503 (1996).
[CrossRef]

Vuoristo, P.

P. Vuoristo, T. Mäntylä, P. Kettunen, R. Lappalainen, “RBS analysis of sputter-deposited MgO films,” Vacuum 42, 1001–1004 (1991).
[CrossRef]

Waldorf, A. J.

Wong, T. K. S.

T. K. S. Wong, W. K. Man, “Scanning probe microscopy and tunneling measurements of polycrystalline tin oxide films,” Thin Solid Films 287, 45–50 (1996).
[CrossRef]

Wood, D. L.

Woodberry, F. J.

Yoshitake, M.

M. Yoshitake, K. Takiguchi, Y. Suzuki, S. Ogawa, “Effect of oxygen pressure in reactive ion-beam sputter deposition of zirconium oxides,” J. Vac. Sci. Technol. A 6, 2326–2332 (1988).
[CrossRef]

Zamboni, R.

F. Biscarini, P. Samorí, A. Lauria, P. Ostoja, R. Zamboni, C. Taliani, P. Viville, R. Lazzaroni, J. L. Brédas, “Morphology and roughness of high-vacuum sublimed oligomer thin films,” Thin Solid Films 284-285, 439–443 (1996).
[CrossRef]

Zhang, H.

H. Zhang, S. Liu, “Optical compound film deposited by double e-gun,” Thin Solid Films 209, 148–149 (1992).
[CrossRef]

Appl. Opt. (16)

J. P. Borgogno, P. Bousquet, F. Flory, B. Lazarides, E. Pelletier, P. Roche, “Inhomogeneity in films: limitation of the accuracy of optical monitoring of thin films,” Appl. Opt. 20, 90–94 (1981).
[CrossRef] [PubMed]

D. L. Wood, K. Nassau, “Refractive index of cubic zirconia stabilized with yttria,” Appl. Opt. 21, 2978–2981 (1982).
[CrossRef] [PubMed]

J. P. Borgogno, B. Lazarides, E. Pelletier, “Automatic determination of the optical constants of inhomogeneous thin films,” Appl. Opt. 21, 4020–4029 (1982).
[CrossRef] [PubMed]

D. P. Arndt, R. M. A. Azzam, J. M. Bennett, J. P. Borgogno, C. K. Carniglia, W. E. Case, J. A. Dobrowolski, U. J. Gibson, T. Tuttle Hart, F. C. Ho, V. A. Hodgkin, W. P. Klapp, H. A. Macleod, E. Pelletier, M. K. Purvis, D. M. Quinn, D. H. Strome, R. Swenson, P. A. Temple, T. F. Thonn, “Multiple determination of the constants of thin-film coating materials,” Appl. Opt. 23, 3571–3596 (1984).
[CrossRef] [PubMed]

B. Bovard, F. J. Van Milligen, M. J. Messerly, S. G. Saxe, H. A. Macleod, “Optical constants derivation for an inhomogeneous thin film from in situ transmission measurements,” Appl. Opt. 24, 1803–1807 (1985).
[CrossRef] [PubMed]

R. E. Klinger, C. K. Carniglia, “Optical and crystalline inhomogeneity in evaporated zirconia films,” Appl. Opt. 24, 3184–3187 (1985).
[CrossRef] [PubMed]

R. Bertram, M. F. Ouellette, P. Y. Tse, “Inhomogeneous optical coatings: an experimental study of a new approach,” Appl. Opt. 28, 2935–2939 (1989).
[CrossRef] [PubMed]

W. J. Gunning, R. L. Hall, F. J. Woodberry, W. H. Southwell, N. S. Gluck, “Codeposition of continuous composition rugate filters,” Appl. Opt. 28, 2945–2948 (1989).
[CrossRef] [PubMed]

J. A. Dobrowolski, P. D. Grant, R. Simpson, A. J. Waldorf, “Investigation of the evaporation process conditions on the optical constants of zirconia films,” Appl. Opt. 28, 3997–4005 (1989).
[CrossRef] [PubMed]

J. A. Dobrowoloski, R. A. Kemp, “Refinement of optical multilayer systems with different optimization procedure,” Appl. Opt. 29, 2876–2893 (1990).
[CrossRef]

G. Ghosh, “Sellmeier coefficients and dispersion of thermo-optic coefficients for some optical glasses,” Appl. Opt. 36, 1540–1546 (1997).
[CrossRef] [PubMed]

J.-S. Chen, S. Chao, J.-S. Kao, H. Niu, C.-H. Chen, “Mixed films of TiO2-SiO2 deposited by double electron-beam coevaporation,” Appl. Opt. 35, 90–96 (1996).
[CrossRef] [PubMed]

A. Duparré, S. Jakobs, “Combination of surface characterization techniques for investigating optical thin-film components,” Appl. Opt. 35, 5052–5058 (1996).
[CrossRef]

Y. Tsou, F. C. Ho, “Optical properties of hafnia and co-evaporated hafnia magnesium fluoride thin films,” Appl. Opt. 35, 5091–5094 (1996).
[CrossRef] [PubMed]

H. J. Cho, C. K. Hwangbo, “Optical inhomogeneity and microstructure of ZrO2 thin films prepared by ion-assisted deposition,” Appl. Opt. 35, 5545–5552 (1996).
[CrossRef] [PubMed]

C. Deumié, R. Richier, P. Dumas, C. Amra, “Multiscale roughness in optical multilayers: atomic force microscopy and light scattering,” Appl. Opt. 35, 5583–5594 (1996).
[CrossRef]

Appl. Phys. A (4)

M. M. El-Nahass, B. A. Khalifa, A. M. Abd El-Rahman, R. El-Ariny, “Structural and optical properties of ZnSexTe1-x solid solution in thin film form,” Appl. Phys. A 63, 81–86 (1996).
[CrossRef]

N. K. Sahoo, K. V. S. R. Apparao, “Modified complex method for constrained design and optimization of optical multilayer thin-film devices,” Appl. Phys. A 59, 317–326 (1994).
[CrossRef]

N. K. Sahoo, K. V. S. R. Apparao, “Process-parameter optimization of Sb2O3 films in the ultraviolet and visible region for interferometric applications,” Appl. Phys. A 63, 195–202 (1996).

A. Kucírková, K. Navrátil, L. Pajasová, V. Vorlícek, “Influence of oxygen concentration on optical properties of semi-insulating polycrystalline silicon films,” Appl. Phys. A 63, 495–503 (1996).
[CrossRef]

Appl. Phys. Lett. (1)

A. F. Hebard, A. T. Fiory, S. Nakahara, R. H. Eick, “Oxygen-rich polycrystalline magnesium oxide—a high quality thin-film dielectric,” Appl. Phys. Lett. 48, 520–522 (1986).
[CrossRef]

J. Am. Ceram. Soc. (5)

D. L. Porter, A. H. Heuer, “Microstructural development in MgO-stabilized zirconia (Mg-PSZ),” J. Am. Ceram. Soc. 62, 298–305 (1979).
[CrossRef]

M. J. Readey, A. H. Heuer, R. W. Steinbrech, “Annealing of test specimens of high-toughness magnesia-partially-stabilized zirconia,” J. Am. Ceram. Soc. 71, c2–c6 (1988).
[CrossRef]

M. L. Balmer, F. F. Lange, C. G. Levi, “Metastable phase selection and partitioning in ZrO2-MgO processed from liquid precursors,” J. Am. Ceram. Soc. 75, 946–952 (1992).
[CrossRef]

C. F. Grain, “Phase relations in the ZrO2-MgO system,” J. Am. Ceram. Soc. 50, 288–290 (1967).
[CrossRef]

P. Duwez, F. Odell, “Phase relationships in the system zirconia-ceria,” J. Am. Ceram. Soc. 33, 274–283 (1950).
[CrossRef]

J. Appl. Phys. (2)

C.-K. Kwok, C. R. Aita, “Near-bandgap optical behavior of sputter deposited α- and α + β- ZrO2 films,” J. Appl. Phys. 66, 2756–2758 (1989).
[CrossRef]

P. J. Martin, R. P. Netterfield, W. G. Sainty, “Modification of the optical and structural properties of dielectric ZrO2 films by ion-assisted deposition,” J. Appl. Phys. 55, 235–241 (1984).
[CrossRef]

J. Mater. Sci (2)

R. H. Hannink, “Microstructural development of sub-eutectoid aged MgO–ZrO2 alloys,” J. Mater. Sci 18, 457–470 (1983).
[CrossRef]

N. H. Brett, M. Gonzalez, J. Bouillot, J. C. Niepce, “Neutron and x-ray diffraction studies on pure and magnesia-doped zirconia gels decomposed in vacuo,” J. Mater. Sci 19, 1349–1358 (1984).
[CrossRef]

J. Phys. D. (1)

E. E. Khawaja, “The determination of the refractive index and thickness of a transparent film,” J. Phys. D. 9, 1939–1943 (1976).
[CrossRef]

J. Phys. E (1)

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E 16, 1214–1222 (1983).
[CrossRef]

J. Vac. Sci Technol. A (4)

E. E. Khawaja, F. Bouamrane, A. B. Hallak, M. A. Daous, M. A. Salim, “Observation of oxygen enrichment in zirconium oxide films,” J. Vac. Sci Technol. A 11, 580–587 (1993).
[CrossRef]

C.-K. Kwok, C. R. Aita, “Indirect band gap in α-ZrO2,” J. Vac. Sci Technol. A 8, 3345–3346 (1990).
[CrossRef]

C.-K. Kwok, C. R. Aita, “The transition from αZr to αZrO2 growth in sputter-deposited films as a function of gas O2 content, rare-gas type and cathode voltage,” J. Vac. Sci Technol. A 7, 1235–1239 (1989).
[CrossRef]

S. B. Qadri, E. F. Skelton, M. Z. Harford, R. Jones, P. Lubitz, “e--beam deposition of In2O3 stabilized ZrO2 films,” J. Vac. Sci Technol. A 9, 510–511 (1991).
[CrossRef]

J. Vac. Sci. Technol. A (8)

E. N. Farabaugh, D. M. Sanders, “Microstructure of dielectric thin films formed by e-beam coevaporation,” J. Vac. Sci. Technol. A 1, 356–359 (1983).
[CrossRef]

A. Feldman, E. N. Farabaugh, W. K. Haller, D. M. Sanders, R. A. Stempniak, “Modifying structure and properties of optical films by co-evaporation,” J. Vac. Sci. Technol. A 4, 2969–2974 (1986).
[CrossRef]

J. P. Cheron, F. Tcheliebou, A. Boyer, “Structural properties of Y2O3 stabilized ZrO2 films deposited by reactive thermal coevaporation,” J. Vac. Sci. Technol. A 10, 3207–3209 (1992).
[CrossRef]

M. Mesbah, A. Boyer, E. Groubert, L. Martin, “Crystallographic and optical study of ZrO2 partially and totally stabilized with Y2O3,” J. Vac. Sci. Technol. A 8, 3961–3966 (1990).
[CrossRef]

C. M. Gilmore, C. Quinn, S. B. Qadri, C. R. Gosset, E. F. Skelton, “Stabilization of tetragonal ZrO2 with Al2O3 in reactive magnetron sputtered thin films,” J. Vac. Sci. Technol. A 5, 2085–2087 (1987).
[CrossRef]

M. Yoshitake, K. Takiguchi, Y. Suzuki, S. Ogawa, “Effect of oxygen pressure in reactive ion-beam sputter deposition of zirconium oxides,” J. Vac. Sci. Technol. A 6, 2326–2332 (1988).
[CrossRef]

F. Jones, “High-rate reactive sputter deposition of zirconium dioxide,” J. Vac. Sci. Technol. A 6, 3088–3097 (1988).
[CrossRef]

I. Y. Sokolov, “On the recovery of the spectroscopic image in atomic force microscopy,” J. Vac. Sci. Technol. A 14, 2901–2904 (1996).
[CrossRef]

Opt. Acta (1)

R. Jacobsson, “Optical properties of a class of inhomogeneous thin films,” Opt. Acta 10, 309–323 (1963).
[CrossRef]

Phys. Thin Films (1)

R. Jacobsson, “Inhomogeneous and coevaporated homogeneous films for optical applications,” Phys. Thin Films 8, 51–98 (1975).

Proc. Phys. Soc. London Sec. A (1)

W. H. Hall, “X-ray line broadening in metals,” Proc. Phys. Soc. London Sec. A 62, 741–743 (1949).
[CrossRef]

Thin Solid Films (8)

U. Kaiser, M. Adamik, G. Sáfrán, P. B. Barna, S. Laux, W. Richter, “Growth structure investigation of MgF2 and NdF3 films grown by molecular beam deposition on CaF2 (111) substrates,” Thin Solid Films 280, 5–15 (1996).
[CrossRef]

T. K. S. Wong, W. K. Man, “Scanning probe microscopy and tunneling measurements of polycrystalline tin oxide films,” Thin Solid Films 287, 45–50 (1996).
[CrossRef]

F. Biscarini, P. Samorí, A. Lauria, P. Ostoja, R. Zamboni, C. Taliani, P. Viville, R. Lazzaroni, J. L. Brédas, “Morphology and roughness of high-vacuum sublimed oligomer thin films,” Thin Solid Films 284-285, 439–443 (1996).
[CrossRef]

H. Zhang, S. Liu, “Optical compound film deposited by double e-gun,” Thin Solid Films 209, 148–149 (1992).
[CrossRef]

S. B. Qadri, E. F. Skelton, P. Lubitz, N. V. Nguyen, H. R. Khan, “Electron beam deposition of ZrO2-ZnO films,” Thin Solid Films 290–291, 80–83 (1996).

F. Tcheliebou, A. Boyer, L. Martin, “Studies on MgO-stabilized zirconia thin films in the UV-visible region,” Thin Solid Films 249, 86–90 (1994).
[CrossRef]

M. Harris, H. A. Macleod, S. Ogura, E. Pelletier, B. Vidal, “The relationship between optical inhomogeneity and film structure,” Thin Solid Films 57, 173–178 (1979).
[CrossRef]

M. Nowak, “Determination of optical constants and average thickness of inhomogeneous-rough thin films using spectral dependence of optical transmittance,” Thin Solid Films 254, 200–210 (1995).
[CrossRef]

Vacuum (1)

P. Vuoristo, T. Mäntylä, P. Kettunen, R. Lappalainen, “RBS analysis of sputter-deposited MgO films,” Vacuum 42, 1001–1004 (1991).
[CrossRef]

Z. Anorg. Allgem. Chem. (1)

O. Ruff, F. Ebert, “Ceramics of highly refractory materials,” Z. Anorg. Allgem. Chem. 180, 19–41 (1929).
[CrossRef]

Other (8)

H. J. Rossel, R. H. J. Hannink, “The phase Mg2Zr5O12 in MgO partially stabilized zirconia,” in Science and Technology of Zirconia II, Vol. 12 of Advances in Ceramics, N. Claussen, M. Rühle, A. H. Heuer, eds. (The American Ceramic Society, Inc., Columbus, Ohio, 1984), pp. 139–151.

D. M. Sanders, E. N. Farabaugh, W. K. Haller, “Glassy optical coatings by multisource evaporation,” in Thin Film Technologies and Special Applications, W. R. Hunter, ed., Proc. SPIE346, 31–38 (1982).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, A. N. Tikhonov, O. B. Tcsherednichenko, B. G. Lysoi, K. V. Mikhailova, B. T. Sullivan, J. A. Dobrowolski, “Study of thin film inhomogeneity with a fast-scanning acoustooptic spectrophotometer,” in Developments in Optical Component Coatings, I. Reid, ed., Proc. SPIE2776, 212–220 (1996).
[CrossRef]

S. Ogura, “Dynamic characteristics in optically inhomogeneous films,” in Thin Films for Optical Systems, K. H. Guenther, ed., Proc. SPIE1782, 377–388 (1992).
[CrossRef]

R. Jenkins, R. L. Snyder, Introduction to X-ray Powder Diffractometry (Wiley-Interscience, New York, 1996).
[CrossRef]

B. Lewis, J. C. Anderson, Nucleation and Growth of Thin Films (Academic, New York, 1978).

H. A. Macleod, Thin Film Optical Filters, 2nd ed. (Macmillan, New York, 1986), Chap. 6, p. 194.

C. Amra, C. Deumié, D. Torricini, P. Roche, R. Galindo, P. Dumas, F. Salvan, “Overlapping of roughness spectra measured in macroscopic (optical) and microscopic (AFM) bandwidths,” in Optical Interference Coatings, F. Abeles, ed., Proc. SPIE2253, 614–630 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (32)

Fig. 1
Fig. 1

Transmittance characteristics of three experimental films deposited under different substrate temperatures, but with the same deposition rate and oxygen pressure. T s is the substrate transmittance, T M and T m are the envelopes for the maxima and the minima. ΔT + and ΔT - are the decrease and the increase of the transmittance value at half-wave points corresponding to positive and negative inhomogeneity.

Fig. 2
Fig. 2

Transmittance characteristics of a film deposited at a substrate temperature 125 °C, at 3 Å/s and without any additional oxygen. Peak minima (T m ’s) shows modulative behavior rather than dispersive for this film.

Fig. 3
Fig. 3

Modeling of a nonlinear inhomogeneity showing computed transmittance characteristics and computed refractive index versus physical thickness of the layer (inset plot). The film is assumed to be nondispersive and nonabsorbing for simplicity during computation.

Fig. 4
Fig. 4

Refractive indices of films deposited under different substrate temperatures but at the same rate (1 Å/s) and oxygen pressure (base value).

Fig. 5
Fig. 5

Extinction coefficients of films deposited under different substrate temperatures but at the same rate (1 Å/s) and oxygen pressure (base value).

Fig. 6
Fig. 6

Bandgaps of films deposited under different substrate temperatures but at the same rate (1 Å/s) and oxygen pressure (base value). Film deposited at ambient temperature shows an additional indirect bandgap (corresponding to α-phase), which is shown in the inset plot.

Fig. 7
Fig. 7

Refractive indices of films deposited under different oxygen pressures but at the same rate (1 Å/s) and substrate temperature (125 °C).

Fig. 8
Fig. 8

(a) Air-to-vacuum shift of the refractive index of the film deposited at the higher oxygen pressure of 8 × 10-4 mbar. (b) Measured transmittance characteristics of the film deposited at high oxygen pressure (8 × 10-4 mbar) in vacuum and in air.

Fig. 9
Fig. 9

Extinction coefficients of films deposited under different oxygen pressures but at the same rate (1 Å/s) and substrate temperature (125 °C).

Fig. 10
Fig. 10

Bandgaps of films deposited under different oxygen pressures but at the same rate (1 Å/s) and substrate temperature (125 °C).

Fig. 11
Fig. 11

Refractive indices of films deposited under different rates of evaporation but at the same oxygen pressure (base value) and substrate temperature (125 °C).

Fig. 12
Fig. 12

Extinction coefficients of films deposited under different rates of evaporation but at the same oxygen pressure (base value) and substrate temperature (125 °C).

Fig. 13
Fig. 13

Plot of PSD of uncoated quartz substrate versus spatial frequency showing a quasi-linear behavior.

Fig. 14
Fig. 14

(a) Surface topography of the film deposited at an optimum oxygen pressure of 1 × 10-4 mbar, substrate temperature of 125 °C, and rate of 1 Å/s. The surface roughness has an area rms value of 1.9534 nm and a R a value of 1.5487 nm. (b) Surface topography of the film deposited at a higher oxygen pressure of 8 × 10-4 mbar, substrate temperature of 125 °C, and rate of 1 Å/s. The surface roughness has an area rms value of 9.1709 nm and a R a value of 7.1729 nm. (c) Surface topography of the film deposited at the ambient temperature, oxygen base pressure and rate of 1 Å/s. The surface roughness has an area rms value of 4.0149 nm and a R a value of 2.9698 nm. (d) Surface topography of the film deposited at the highest experimental temperature of 239 °C and a oxygen base pressure and rate of 1 Å/s. The surface roughness has an area rms value of 2.3585 nm and a R a value of 1.8642 nm.

Fig. 15
Fig. 15

Surface topography of the uncoated quartz substrate with the roughness having an area rms value of 0.8340 nm and a R a value of 0.6634 nm.

Fig. 16
Fig. 16

Plot of the PSD versus spatial frequency for the films deposited under various oxygen pressures but at the same substrate temperature of 125 °C and rate of 1 Å/s.

Fig. 17
Fig. 17

Three-dimensional view of the PSD plots with respect to oxygen pressure, while substrate temperature (125 °C) and rate of deposition (1 Å/s) are constant.

Fig. 18
Fig. 18

X-ray diffraction peaks of the films deposited under different substrate temperatures but under the same rate of evaporation (1 Å/s) and the same oxygen base pressure.

Fig. 19
Fig. 19

X-ray diffraction peaks of the films deposited under different oxygen pressures but under the same rate of evaporation (1 Å/s) and the same substrate temperature.

Fig. 20
Fig. 20

X-ray diffraction peaks of the films deposited under different rates of evaporation but under the same substrate temperature and the same oxygen base pressure.

Fig. 21
Fig. 21

X-ray diffraction peaks of a 15-quarter-wave oxygen-modulated film. The inset plots show oxygen pressure variation with respect to the physical thickness and the measured reflectance spectrum of the coating.

Fig. 22
Fig. 22

Plot of β cos(θ)/λ versus sin(θ)/λ, which yields a linear plot parallel to the x axis. This is indicative of a strain-free coating produced under oxygen modulation.

Fig. 23
Fig. 23

EDX analysis of the uncoated quartz substrate.

Fig. 24
Fig. 24

EDX analysis of the film deposited under ambient substrate temperature and at a rate of 1 Å/s and oxygen base pressure. The relative peak heights for Zr:Mg:O are 1:0.175:0.178.

Fig. 25
Fig. 25

EDX analysis of the film deposited at a substrate temperature of 167 °C and at a rate of 1 Å/s and base oxygen pressure. The relative peak heights for Zr:Mg:O are 1:0.152:0.211.

Fig. 26
Fig. 26

EDX analysis of the film deposited under the highest experimental substrate temperature of 239 °C and at a rate of 1 Å/s and base oxygen pressure. The relative peak heights for Zr:Mg:O are 1:0.081:0.135.

Fig. 27
Fig. 27

EDX analysis of the film deposited at an oxygen pressure of 1 × 10-4 mbar and at a rate of 1 Å/s and a substrate temperature of 125 °C. The relative peak heights for Zr:Mg:O are 1:0.127:0.228.

Fig. 28
Fig. 28

EDX analysis of the film deposited at our highest experimental oxygen pressure of 8 × 10-4 mbar and at a rate of 1 Å/s and a substrate temperature of 125 °C. The relative peak heights for Zr:Mg:O are 1:0.106:0.310.

Fig. 29
Fig. 29

Variation of mean refractive index with respect to both magnesium and oxygen contents.

Fig. 30
Fig. 30

Measured transmittance characteristic of a single-layer edge filter produced by oxygen modulation over an optical thickness of 34 quarter waves. The inset plot shows the oxygen modulation versus the optical thickness of the layer.

Fig. 31
Fig. 31

Observed vacuum-to-air shift in the transmittance characteristics of an experimental edge filter.

Fig. 32
Fig. 32

Design and measured transmittance characteristics of a single-layer broadband antireflection coating produced by oxygen modulation. The inset plot shows the oxygen modulation with respect to the physical thickness of the layer.

Tables (3)

Tables Icon

Table 1 Sellmier Coefficients for the Films Deposited at the Same Rate of Deposition (1 Å/s), Without Any Additional Oxygen, at Various Substrate Temperatures

Tables Icon

Table 2 Positions of 2θ Peaks for Our 15-Quarter-Wave-Thick Oxygen-Modulated Cubic Film along with Experimental and Theoretical Dataa

Tables Icon

Table 3 Relative SEM Peak Height Ratios of Zr:Mg:O for Various Sample Films Deposited under Different Process Conditions

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

Δ n = n m Δ T 4.4 1 - T s ,
d = o m λ p 4 . n m ,
n m = 1 d 0 d   n z d z .
n m 2 λ = A + B 1 / 1 - B 2 / λ 2 + C 1 / 1 - C 2 / λ 2 ,
k m = 0 d   k z d z .
T α = T M T m ,
T i = 2 T M T m / T M + T m .
k m λ = a 1 + λ / c b ,
α ω - E g 1 / 2 ,
α = 0 ,
α 1 / 2 ω - E g ,
γ σ = ϕ / σ ψ ,
D = 8 - ψ / 2 = 4 ρ - ψ / 2 ,
β / λ = 1 / P   cos θ + 4 ε   tan θ / λ ,
β   cos θ / λ = 1 / P + 4 ε   sin θ / λ ,
a c = t i - t e / t i - t s ,

Metrics