Abstract

A mid-infrared femtosecond optical parametric amplifier tunable in the chemically important spectral region between 3.1 and 3.9 μm (at >10-μJ idler pulse energy) has been constructed on the basis of MgO:LiNbO3 with 7% doping. With femtosecond pumping near 800 nm (Ti:sapphire regenerative amplifier) and narrow-band (long-pulse) seeding, this simple single-stage device provides maximum conversion efficiencies of 40% and exhibits extremely low seed threshold (<10-mW peak seed power for >1-μJ idler output). The generated idler pulses are almost transform limited with <200-fs pulse duration. The pulse-to-pulse fluctuations reproduce the stability of the pump source at 1-kHz repetition rate.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, P. Günter, “High-average power, high-repetition rate femtosecond pulse generation in the 1–5 μm region using an optical parametric oscillator,” Appl. Phys. Lett. 68, 452–454 (1996).
    [CrossRef]
  2. D. T. Reid, Z. Penman, M. Ebrahimzadeh, W. Sibbett, H. Karlsson, F. Laurell, “Broadly tunable infrared femtosecond optical parametric oscillator based on periodically poled RbTiOAsO4,” Opt. Lett. 22, 1397–1399 (1997).
    [CrossRef]
  3. K. C. Burr, C. L. Tang, M. A. Arbore, M. M. Fejer, “Broadly tunable mid-infrared femtosecond optical parametric oscillator using all-solid-state-pumped periodically poled lithium niobate,” Opt. Lett. 22, 1458–1460 (1997).
    [CrossRef]
  4. F. Seifert, V. Petrov, M. Woerner, “Solid-state laser system for the generation of mid-infrared femtosecond pulses tunable from 3.3 to 10 μm,” Opt. Lett. 23, 2009–2011 (1994).
    [CrossRef]
  5. M. K. Reed, M. K. Steiner Shepard, “Tunable infrared generation using a femtosecond 250 kHz Ti:sapphire regenerative amplifier,” IEEE J. Quantum Electron. 32, 1273–1277 (1996).
  6. G. R. Holtom, R. A. Crowell, X. S. Xie, “High-repetition-rate femtosecond optical parametric oscillator–amplifier system near 3 μm,” J. Opt. Soc. Am. B 12, 1723–1731 (1995).
    [CrossRef]
  7. V. Petrov, F. Noack, “Tunable femtosecond optical parametric amplifier in the mid-infrared with narrow-band seeding,” J. Opt. Soc. Am. B 12, 2214–2221 (1995).
    [CrossRef]
  8. V. Petrov, F. Noack, R. Stolzenberger, “Seeded femtosecond optical parametric amplification in the mid-infrared spectral region above 3 μm,” Appl. Opt. 36, 1164–1172 (1997).
    [CrossRef] [PubMed]
  9. V. Petrov, F. Noack, “Mid-infrared femtosecond optical parametric amplification in potassium niobate,” Opt. Lett. 21, 1576–1578 (1996).
    [CrossRef] [PubMed]
  10. J. D. Kafka, M. L. Watts, “A potassium niobate OPA pumped by amplified Ti:sapphire laser,” in Ultrafast Phenomena X, Vol. 62 of Springer Series in Chemical Physics, P. F. Barbara, J. G. Fujimoto, W. H. Knox, W. Zinth, eds. (Springer-Verlag, Berlin, 1996), pp. 38–39.
    [CrossRef]
  11. U. Emmerichs, S. Woutersen, H. J. Bakker, “Generation of intense femtosecond optical pulses near 3 μm with a kilohertz repetition rate,” J. Opt. Soc. Am. B 14, 1480–1483 (1997).
    [CrossRef]
  12. G. M. Gale, G. Gallot, F. Hache, R. Sander, “Generation of intense highly coherent femtosecond pulses in the mid infrared,” Opt. Lett. 22, 1253–1255 (1997).
    [CrossRef] [PubMed]
  13. S. Lin, Y. Tanaka, M. Aono, T. Suzuki, “Optical parametric amplification using the phase matching retracing behavior in MgO:LiNbO3 for generation of intense widely tunable mid-infrared pulses,” Jpn. J. Appl. Phys. 36, 3510–3514 (1997).
    [CrossRef]
  14. S. Lin, Y. Tanaka, S. Takeuchi, T. Suzuki, “Improved dispersion equation for MgO:LiNbO3 crystal in the infrared spectral range derived from sum and difference frequency mixing,” IEEE J. Quantum Electron. 32, 124–126 (1996).
    [CrossRef]
  15. S. Lin, T. Suzuki, “Tunable picosecond mid-infrared pulses generated by optical parametric generation/amplification in MgO:LiNbO3 crystals,” Opt. Lett. 21, 579–581 (1996).
    [CrossRef] [PubMed]
  16. R. Danielius, A. Piskarskas, A. Stabinis, G. P. Banfi, P. Di Trapani, R. Righini, “Traveling-wave parametric generation of widely tunable, highly coherent femtosecond light pulses,” J. Opt. Soc. Am. B 10, 2222–2232 (1993).
    [CrossRef]
  17. V. Petrov, F. Noack, “Narrow-band seeding of an optical parametric amplifier in the femtosecond regime,” Opt. Quantum Electron. 28, 1105–1110 (1996).
    [CrossRef]
  18. T. Nishikawa, N. Uesugi, “Effects of walk-off and group velocity difference on the optical parametric generation in KTiOPO4 crystals,” J. Appl. Phys. 77, 4941–4947 (1995).
    [CrossRef]
  19. S. A. Magnitskii, V. I. Malachova, A. P. Tarasevich, V. G. Tunkin, S. D. Yakubovich, “Generation of bandwidth-limited tunable picosecond pulses by injection-locked optical parametric oscillators,” Opt. Lett. 18, 18–20 (1986).
    [CrossRef]
  20. S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, A. P. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. QE-4, 598–605 (1968).
    [CrossRef]

1997 (6)

1996 (6)

V. Petrov, F. Noack, “Mid-infrared femtosecond optical parametric amplification in potassium niobate,” Opt. Lett. 21, 1576–1578 (1996).
[CrossRef] [PubMed]

D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, P. Günter, “High-average power, high-repetition rate femtosecond pulse generation in the 1–5 μm region using an optical parametric oscillator,” Appl. Phys. Lett. 68, 452–454 (1996).
[CrossRef]

V. Petrov, F. Noack, “Narrow-band seeding of an optical parametric amplifier in the femtosecond regime,” Opt. Quantum Electron. 28, 1105–1110 (1996).
[CrossRef]

S. Lin, Y. Tanaka, S. Takeuchi, T. Suzuki, “Improved dispersion equation for MgO:LiNbO3 crystal in the infrared spectral range derived from sum and difference frequency mixing,” IEEE J. Quantum Electron. 32, 124–126 (1996).
[CrossRef]

S. Lin, T. Suzuki, “Tunable picosecond mid-infrared pulses generated by optical parametric generation/amplification in MgO:LiNbO3 crystals,” Opt. Lett. 21, 579–581 (1996).
[CrossRef] [PubMed]

M. K. Reed, M. K. Steiner Shepard, “Tunable infrared generation using a femtosecond 250 kHz Ti:sapphire regenerative amplifier,” IEEE J. Quantum Electron. 32, 1273–1277 (1996).

1995 (3)

1994 (1)

F. Seifert, V. Petrov, M. Woerner, “Solid-state laser system for the generation of mid-infrared femtosecond pulses tunable from 3.3 to 10 μm,” Opt. Lett. 23, 2009–2011 (1994).
[CrossRef]

1993 (1)

1986 (1)

S. A. Magnitskii, V. I. Malachova, A. P. Tarasevich, V. G. Tunkin, S. D. Yakubovich, “Generation of bandwidth-limited tunable picosecond pulses by injection-locked optical parametric oscillators,” Opt. Lett. 18, 18–20 (1986).
[CrossRef]

1968 (1)

S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, A. P. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. QE-4, 598–605 (1968).
[CrossRef]

Akhmanov, S. A.

S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, A. P. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. QE-4, 598–605 (1968).
[CrossRef]

Aono, M.

S. Lin, Y. Tanaka, M. Aono, T. Suzuki, “Optical parametric amplification using the phase matching retracing behavior in MgO:LiNbO3 for generation of intense widely tunable mid-infrared pulses,” Jpn. J. Appl. Phys. 36, 3510–3514 (1997).
[CrossRef]

Arbore, M. A.

Bakker, H. J.

Banfi, G. P.

Bosshard, C.

D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, P. Günter, “High-average power, high-repetition rate femtosecond pulse generation in the 1–5 μm region using an optical parametric oscillator,” Appl. Phys. Lett. 68, 452–454 (1996).
[CrossRef]

Burr, K. C.

Chirkin, A. S.

S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, A. P. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. QE-4, 598–605 (1968).
[CrossRef]

Crowell, R. A.

Danielius, R.

Di Trapani, P.

Drabovich, K. N.

S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, A. P. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. QE-4, 598–605 (1968).
[CrossRef]

Ebrahimzadeh, M.

Emmerichs, U.

Fejer, M. M.

Gale, G. M.

Gallot, G.

Günter, P.

D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, P. Günter, “High-average power, high-repetition rate femtosecond pulse generation in the 1–5 μm region using an optical parametric oscillator,” Appl. Phys. Lett. 68, 452–454 (1996).
[CrossRef]

Hache, F.

Holtom, G. R.

Kafka, J. D.

J. D. Kafka, M. L. Watts, “A potassium niobate OPA pumped by amplified Ti:sapphire laser,” in Ultrafast Phenomena X, Vol. 62 of Springer Series in Chemical Physics, P. F. Barbara, J. G. Fujimoto, W. H. Knox, W. Zinth, eds. (Springer-Verlag, Berlin, 1996), pp. 38–39.
[CrossRef]

Karlsson, H.

Khokhlov, R. V.

S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, A. P. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. QE-4, 598–605 (1968).
[CrossRef]

Kovrigin, A. I.

S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, A. P. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. QE-4, 598–605 (1968).
[CrossRef]

Laurell, F.

Lin, S.

S. Lin, Y. Tanaka, M. Aono, T. Suzuki, “Optical parametric amplification using the phase matching retracing behavior in MgO:LiNbO3 for generation of intense widely tunable mid-infrared pulses,” Jpn. J. Appl. Phys. 36, 3510–3514 (1997).
[CrossRef]

S. Lin, T. Suzuki, “Tunable picosecond mid-infrared pulses generated by optical parametric generation/amplification in MgO:LiNbO3 crystals,” Opt. Lett. 21, 579–581 (1996).
[CrossRef] [PubMed]

S. Lin, Y. Tanaka, S. Takeuchi, T. Suzuki, “Improved dispersion equation for MgO:LiNbO3 crystal in the infrared spectral range derived from sum and difference frequency mixing,” IEEE J. Quantum Electron. 32, 124–126 (1996).
[CrossRef]

Magnitskii, S. A.

S. A. Magnitskii, V. I. Malachova, A. P. Tarasevich, V. G. Tunkin, S. D. Yakubovich, “Generation of bandwidth-limited tunable picosecond pulses by injection-locked optical parametric oscillators,” Opt. Lett. 18, 18–20 (1986).
[CrossRef]

Malachova, V. I.

S. A. Magnitskii, V. I. Malachova, A. P. Tarasevich, V. G. Tunkin, S. D. Yakubovich, “Generation of bandwidth-limited tunable picosecond pulses by injection-locked optical parametric oscillators,” Opt. Lett. 18, 18–20 (1986).
[CrossRef]

Nishikawa, T.

T. Nishikawa, N. Uesugi, “Effects of walk-off and group velocity difference on the optical parametric generation in KTiOPO4 crystals,” J. Appl. Phys. 77, 4941–4947 (1995).
[CrossRef]

Noack, F.

Penman, Z.

Petrov, V.

Piskarskas, A.

Reed, M. K.

M. K. Reed, M. K. Steiner Shepard, “Tunable infrared generation using a femtosecond 250 kHz Ti:sapphire regenerative amplifier,” IEEE J. Quantum Electron. 32, 1273–1277 (1996).

Reid, D. T.

Righini, R.

Sander, R.

Seifert, F.

F. Seifert, V. Petrov, M. Woerner, “Solid-state laser system for the generation of mid-infrared femtosecond pulses tunable from 3.3 to 10 μm,” Opt. Lett. 23, 2009–2011 (1994).
[CrossRef]

Sibbett, W.

Spence, D. E.

D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, P. Günter, “High-average power, high-repetition rate femtosecond pulse generation in the 1–5 μm region using an optical parametric oscillator,” Appl. Phys. Lett. 68, 452–454 (1996).
[CrossRef]

Stabinis, A.

Steiner Shepard, M. K.

M. K. Reed, M. K. Steiner Shepard, “Tunable infrared generation using a femtosecond 250 kHz Ti:sapphire regenerative amplifier,” IEEE J. Quantum Electron. 32, 1273–1277 (1996).

Stolzenberger, R.

Sukhorukov, A. P.

S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, A. P. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. QE-4, 598–605 (1968).
[CrossRef]

Suzuki, T.

S. Lin, Y. Tanaka, M. Aono, T. Suzuki, “Optical parametric amplification using the phase matching retracing behavior in MgO:LiNbO3 for generation of intense widely tunable mid-infrared pulses,” Jpn. J. Appl. Phys. 36, 3510–3514 (1997).
[CrossRef]

S. Lin, T. Suzuki, “Tunable picosecond mid-infrared pulses generated by optical parametric generation/amplification in MgO:LiNbO3 crystals,” Opt. Lett. 21, 579–581 (1996).
[CrossRef] [PubMed]

S. Lin, Y. Tanaka, S. Takeuchi, T. Suzuki, “Improved dispersion equation for MgO:LiNbO3 crystal in the infrared spectral range derived from sum and difference frequency mixing,” IEEE J. Quantum Electron. 32, 124–126 (1996).
[CrossRef]

Takeuchi, S.

S. Lin, Y. Tanaka, S. Takeuchi, T. Suzuki, “Improved dispersion equation for MgO:LiNbO3 crystal in the infrared spectral range derived from sum and difference frequency mixing,” IEEE J. Quantum Electron. 32, 124–126 (1996).
[CrossRef]

Tanaka, Y.

S. Lin, Y. Tanaka, M. Aono, T. Suzuki, “Optical parametric amplification using the phase matching retracing behavior in MgO:LiNbO3 for generation of intense widely tunable mid-infrared pulses,” Jpn. J. Appl. Phys. 36, 3510–3514 (1997).
[CrossRef]

S. Lin, Y. Tanaka, S. Takeuchi, T. Suzuki, “Improved dispersion equation for MgO:LiNbO3 crystal in the infrared spectral range derived from sum and difference frequency mixing,” IEEE J. Quantum Electron. 32, 124–126 (1996).
[CrossRef]

Tang, C. L.

K. C. Burr, C. L. Tang, M. A. Arbore, M. M. Fejer, “Broadly tunable mid-infrared femtosecond optical parametric oscillator using all-solid-state-pumped periodically poled lithium niobate,” Opt. Lett. 22, 1458–1460 (1997).
[CrossRef]

D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, P. Günter, “High-average power, high-repetition rate femtosecond pulse generation in the 1–5 μm region using an optical parametric oscillator,” Appl. Phys. Lett. 68, 452–454 (1996).
[CrossRef]

Tarasevich, A. P.

S. A. Magnitskii, V. I. Malachova, A. P. Tarasevich, V. G. Tunkin, S. D. Yakubovich, “Generation of bandwidth-limited tunable picosecond pulses by injection-locked optical parametric oscillators,” Opt. Lett. 18, 18–20 (1986).
[CrossRef]

Tunkin, V. G.

S. A. Magnitskii, V. I. Malachova, A. P. Tarasevich, V. G. Tunkin, S. D. Yakubovich, “Generation of bandwidth-limited tunable picosecond pulses by injection-locked optical parametric oscillators,” Opt. Lett. 18, 18–20 (1986).
[CrossRef]

Uesugi, N.

T. Nishikawa, N. Uesugi, “Effects of walk-off and group velocity difference on the optical parametric generation in KTiOPO4 crystals,” J. Appl. Phys. 77, 4941–4947 (1995).
[CrossRef]

Watts, M. L.

J. D. Kafka, M. L. Watts, “A potassium niobate OPA pumped by amplified Ti:sapphire laser,” in Ultrafast Phenomena X, Vol. 62 of Springer Series in Chemical Physics, P. F. Barbara, J. G. Fujimoto, W. H. Knox, W. Zinth, eds. (Springer-Verlag, Berlin, 1996), pp. 38–39.
[CrossRef]

Wielandy, S.

D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, P. Günter, “High-average power, high-repetition rate femtosecond pulse generation in the 1–5 μm region using an optical parametric oscillator,” Appl. Phys. Lett. 68, 452–454 (1996).
[CrossRef]

Woerner, M.

F. Seifert, V. Petrov, M. Woerner, “Solid-state laser system for the generation of mid-infrared femtosecond pulses tunable from 3.3 to 10 μm,” Opt. Lett. 23, 2009–2011 (1994).
[CrossRef]

Woutersen, S.

Xie, X. S.

Yakubovich, S. D.

S. A. Magnitskii, V. I. Malachova, A. P. Tarasevich, V. G. Tunkin, S. D. Yakubovich, “Generation of bandwidth-limited tunable picosecond pulses by injection-locked optical parametric oscillators,” Opt. Lett. 18, 18–20 (1986).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, P. Günter, “High-average power, high-repetition rate femtosecond pulse generation in the 1–5 μm region using an optical parametric oscillator,” Appl. Phys. Lett. 68, 452–454 (1996).
[CrossRef]

IEEE J. Quantum Electron. (3)

M. K. Reed, M. K. Steiner Shepard, “Tunable infrared generation using a femtosecond 250 kHz Ti:sapphire regenerative amplifier,” IEEE J. Quantum Electron. 32, 1273–1277 (1996).

S. Lin, Y. Tanaka, S. Takeuchi, T. Suzuki, “Improved dispersion equation for MgO:LiNbO3 crystal in the infrared spectral range derived from sum and difference frequency mixing,” IEEE J. Quantum Electron. 32, 124–126 (1996).
[CrossRef]

S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, A. P. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. QE-4, 598–605 (1968).
[CrossRef]

J. Appl. Phys. (1)

T. Nishikawa, N. Uesugi, “Effects of walk-off and group velocity difference on the optical parametric generation in KTiOPO4 crystals,” J. Appl. Phys. 77, 4941–4947 (1995).
[CrossRef]

J. Opt. Soc. Am. B (4)

Jpn. J. Appl. Phys. (1)

S. Lin, Y. Tanaka, M. Aono, T. Suzuki, “Optical parametric amplification using the phase matching retracing behavior in MgO:LiNbO3 for generation of intense widely tunable mid-infrared pulses,” Jpn. J. Appl. Phys. 36, 3510–3514 (1997).
[CrossRef]

Opt. Lett. (7)

Opt. Quantum Electron. (1)

V. Petrov, F. Noack, “Narrow-band seeding of an optical parametric amplifier in the femtosecond regime,” Opt. Quantum Electron. 28, 1105–1110 (1996).
[CrossRef]

Other (1)

J. D. Kafka, M. L. Watts, “A potassium niobate OPA pumped by amplified Ti:sapphire laser,” in Ultrafast Phenomena X, Vol. 62 of Springer Series in Chemical Physics, P. F. Barbara, J. G. Fujimoto, W. H. Knox, W. Zinth, eds. (Springer-Verlag, Berlin, 1996), pp. 38–39.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Layout of the experimental setup: FROG (frequency-resolved optical gating), diagnostic module; SFG, sum-frequency generation; T, telescope; PR, waveplate; SP, spectrometer; D1, PbSe photodiode; D2, Si photodiode; JM, joule meter; DM, 800-nm, 45° mirror on a CaF2 substrate; L1, 12-cm antireflection-coated lens; L2, 5-cm BaF2 lens; L3, 25-cm BaF2 lens; F1, Ge filter; F2, tunable interference filter.

Fig. 2
Fig. 2

Inverse GVM in KTP, MLN, and KNB: 1/v I - 1/v P (dashed curves) and 1/v S - 1/v P (solid curves). v’s denote the corresponding idler (I), pump (P), and signal (S) group velocities. The signal wavelength λ S is fixed at 1.064 μm. The Sellmeier coefficients used are from Ref. 14.

Fig. 3
Fig. 3

Idler pulse energy E I versus pump (idler) wavelength for the 10-mm-long MLN sample. The peak on-axis pump intensity I m = 130 GW/cm2 is the intensity incident on the crystal and not corrected for Fresnel reflection. The pump pulse duration (FWHM, Gaussian pulse-shape assumed) is T P = 100 fs. The dashed curve represents the calculated phase-matching angle.

Fig. 4
Fig. 4

Estimated parametric gain at the signal wavelength for three pump wavelengths, depending on the crystal length. The pump and idler wavelengths as well as the pump pulse duration T P are indicated. No picosecond OPA operation at λ I = 3.9 μm could be achieved with the 4-mm-long MLN crystal.

Fig. 5
Fig. 5

Parametric gain with the 10-mm-long MLN crystal calculated at the signal wavelength for T P = 100 fs and λ P = 818 nm (λ I = 3.54 μm), depending on the pump energy.

Fig. 6
Fig. 6

Saturation behavior of the 10-mm MLN OPA at T P = 100 fs, λ P = 818 nm (λ I = 3.54 μm), and I m = 130 GW/cm2. The seed power was reduced for this measurement by use of calibrated neutral-density filters.

Fig. 7
Fig. 7

Pulse-to-pulse fluctuations of the idler energy at T P = 100 fs, λ P = 818 nm (λ I = 3.54 μm), and E P = 260 μJ with the 10-mm MLN OPA. The average idler energy is E I = 15 μJ. Every second pulse was recorded for this plot.

Fig. 8
Fig. 8

Long-time stability of the 10-mm MLN OPA for the same parameters as in Fig. 7. This plot consists of 500 experimental points, and for each point 20-ms-long averaging (20 pulses) was performed.

Fig. 9
Fig. 9

Idler energy from the 10-mm MLN OPA plotted here as the average measured power for the purpose of comparison with the SFG signal obtained by mixing of the pump and seed pulses. In both cases T P = 100 fs and λ P = 818 nm. The delay is the electronic delay between the pump and seed pulses.

Fig. 10
Fig. 10

CCF FWHM, depending on the pump energy, for the 10-mm MLN OPA at λ P = 818 nm. T P = 180 fs corresponds to I m = 72 GW/cm2 at E P = 300 μJ. The deconvolved idler pulse duration varies from 340 fs (left-hand side) to 237 fs (right-hand side), and the idler energy increases from 1.5 μJ (left-hand side) to 20 μJ (right-hand side).

Fig. 11
Fig. 11

Cross-correlation trace and the corresponding spectrum of the idler pulse produced by the 10-mm MLN OPA at T P = 100 fs and E P = 300 μJ.

Fig. 12
Fig. 12

Cross-correlation trace and the corresponding spectrum of the idler pulse obtained with the 4-mm MLN OPA at T P = 120 fs and E P = 310 μJ (E I = 1.5 μJ).

Tables (1)

Tables Icon

Table 1 Comparison of MLN and KNB as Seeded OPA’sa

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E S / E S 0 = 0.25   exp 2 Γ L ,
Γ 2 = 4 π 2 I P d eff 2 / ε 0 cn P n I n S λ S λ I .

Metrics