Abstract

A fiber-optic contact microsoldering device was demonstrated. It consists of a crystalline fiber with a tapered absorbing tip grown directly onto one end. A tapered tip with a 20-μm end enables the soldering of components with lead spacing as small as 50 μm.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Kujawa, “Using laser microsoldering to improve productivity,” Insul./Circuits 27, 43–45 (1981).
  2. M. Greenstein, “Optical absorption aspects of laser soldering for high density interconnects,” Appl. Opt. 28, 4595–4603 (1989).
    [CrossRef] [PubMed]
  3. P. M. Beckett, A. R. Fleming, R. J. Foster, J. M. Gilbert, D. G. Whitehead, “The application of semiconductor diode lasers to the soldering of electronic components,” Opt. Quantum Electron. 27, 1303–1311 (1995).
  4. V. Phomsakha, N. Djeu, “Fiber-optic high temperature thermal source,” Rev. Sci. Instrum. 67, 2987–2988 (1996).
    [CrossRef]
  5. M. M. Fejer, J. L. Nightingale, G. A. Magel, R. L. Byer, “Laser heated miniature pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55, 1791–1796 (1984).
    [CrossRef]
  6. R. S. F. Chang, S. Sengupta, G. J. Dixon, L. B. Shaw, N. Djeu, “Growth of small laser crystals for study of energy kinetics and spectroscopy,” in Growth, Characterization, and Applications of Laser Host and Nonlinear Crystals, J. T. Lin., ed., Proc. SPIE1104, 244–250 (1989).
    [CrossRef]
  7. S. Sudo, A. Cordova-Plaza, R. L. Byer, H. J. Shaw, “MgO:LiNbO3 single-crystal fiber with magnesium-ion in-diffused cladding,” Opt. Lett. 12, 938–940 (1987).
    [CrossRef] [PubMed]
  8. D. P. S. Saini, Y. Shimoji, R. S. F. Chang, N. Djeu, “Cladding of a crystal fiber by high-energy ion implantation,” Opt. Lett. 16, 1074–1076 (1991).
    [CrossRef] [PubMed]

1996 (1)

V. Phomsakha, N. Djeu, “Fiber-optic high temperature thermal source,” Rev. Sci. Instrum. 67, 2987–2988 (1996).
[CrossRef]

1995 (1)

P. M. Beckett, A. R. Fleming, R. J. Foster, J. M. Gilbert, D. G. Whitehead, “The application of semiconductor diode lasers to the soldering of electronic components,” Opt. Quantum Electron. 27, 1303–1311 (1995).

1991 (1)

1989 (1)

1987 (1)

1984 (1)

M. M. Fejer, J. L. Nightingale, G. A. Magel, R. L. Byer, “Laser heated miniature pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55, 1791–1796 (1984).
[CrossRef]

1981 (1)

Kujawa, “Using laser microsoldering to improve productivity,” Insul./Circuits 27, 43–45 (1981).

Beckett, P. M.

P. M. Beckett, A. R. Fleming, R. J. Foster, J. M. Gilbert, D. G. Whitehead, “The application of semiconductor diode lasers to the soldering of electronic components,” Opt. Quantum Electron. 27, 1303–1311 (1995).

Byer, R. L.

S. Sudo, A. Cordova-Plaza, R. L. Byer, H. J. Shaw, “MgO:LiNbO3 single-crystal fiber with magnesium-ion in-diffused cladding,” Opt. Lett. 12, 938–940 (1987).
[CrossRef] [PubMed]

M. M. Fejer, J. L. Nightingale, G. A. Magel, R. L. Byer, “Laser heated miniature pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55, 1791–1796 (1984).
[CrossRef]

Chang, R. S. F.

D. P. S. Saini, Y. Shimoji, R. S. F. Chang, N. Djeu, “Cladding of a crystal fiber by high-energy ion implantation,” Opt. Lett. 16, 1074–1076 (1991).
[CrossRef] [PubMed]

R. S. F. Chang, S. Sengupta, G. J. Dixon, L. B. Shaw, N. Djeu, “Growth of small laser crystals for study of energy kinetics and spectroscopy,” in Growth, Characterization, and Applications of Laser Host and Nonlinear Crystals, J. T. Lin., ed., Proc. SPIE1104, 244–250 (1989).
[CrossRef]

Cordova-Plaza, A.

Dixon, G. J.

R. S. F. Chang, S. Sengupta, G. J. Dixon, L. B. Shaw, N. Djeu, “Growth of small laser crystals for study of energy kinetics and spectroscopy,” in Growth, Characterization, and Applications of Laser Host and Nonlinear Crystals, J. T. Lin., ed., Proc. SPIE1104, 244–250 (1989).
[CrossRef]

Djeu, N.

V. Phomsakha, N. Djeu, “Fiber-optic high temperature thermal source,” Rev. Sci. Instrum. 67, 2987–2988 (1996).
[CrossRef]

D. P. S. Saini, Y. Shimoji, R. S. F. Chang, N. Djeu, “Cladding of a crystal fiber by high-energy ion implantation,” Opt. Lett. 16, 1074–1076 (1991).
[CrossRef] [PubMed]

R. S. F. Chang, S. Sengupta, G. J. Dixon, L. B. Shaw, N. Djeu, “Growth of small laser crystals for study of energy kinetics and spectroscopy,” in Growth, Characterization, and Applications of Laser Host and Nonlinear Crystals, J. T. Lin., ed., Proc. SPIE1104, 244–250 (1989).
[CrossRef]

Fejer, M. M.

M. M. Fejer, J. L. Nightingale, G. A. Magel, R. L. Byer, “Laser heated miniature pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55, 1791–1796 (1984).
[CrossRef]

Fleming, A. R.

P. M. Beckett, A. R. Fleming, R. J. Foster, J. M. Gilbert, D. G. Whitehead, “The application of semiconductor diode lasers to the soldering of electronic components,” Opt. Quantum Electron. 27, 1303–1311 (1995).

Foster, R. J.

P. M. Beckett, A. R. Fleming, R. J. Foster, J. M. Gilbert, D. G. Whitehead, “The application of semiconductor diode lasers to the soldering of electronic components,” Opt. Quantum Electron. 27, 1303–1311 (1995).

Gilbert, J. M.

P. M. Beckett, A. R. Fleming, R. J. Foster, J. M. Gilbert, D. G. Whitehead, “The application of semiconductor diode lasers to the soldering of electronic components,” Opt. Quantum Electron. 27, 1303–1311 (1995).

Greenstein, M.

Kujawa,

Kujawa, “Using laser microsoldering to improve productivity,” Insul./Circuits 27, 43–45 (1981).

Magel, G. A.

M. M. Fejer, J. L. Nightingale, G. A. Magel, R. L. Byer, “Laser heated miniature pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55, 1791–1796 (1984).
[CrossRef]

Nightingale, J. L.

M. M. Fejer, J. L. Nightingale, G. A. Magel, R. L. Byer, “Laser heated miniature pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55, 1791–1796 (1984).
[CrossRef]

Phomsakha, V.

V. Phomsakha, N. Djeu, “Fiber-optic high temperature thermal source,” Rev. Sci. Instrum. 67, 2987–2988 (1996).
[CrossRef]

Saini, D. P. S.

Sengupta, S.

R. S. F. Chang, S. Sengupta, G. J. Dixon, L. B. Shaw, N. Djeu, “Growth of small laser crystals for study of energy kinetics and spectroscopy,” in Growth, Characterization, and Applications of Laser Host and Nonlinear Crystals, J. T. Lin., ed., Proc. SPIE1104, 244–250 (1989).
[CrossRef]

Shaw, H. J.

Shaw, L. B.

R. S. F. Chang, S. Sengupta, G. J. Dixon, L. B. Shaw, N. Djeu, “Growth of small laser crystals for study of energy kinetics and spectroscopy,” in Growth, Characterization, and Applications of Laser Host and Nonlinear Crystals, J. T. Lin., ed., Proc. SPIE1104, 244–250 (1989).
[CrossRef]

Shimoji, Y.

Sudo, S.

Whitehead, D. G.

P. M. Beckett, A. R. Fleming, R. J. Foster, J. M. Gilbert, D. G. Whitehead, “The application of semiconductor diode lasers to the soldering of electronic components,” Opt. Quantum Electron. 27, 1303–1311 (1995).

Appl. Opt. (1)

Insul./Circuits (1)

Kujawa, “Using laser microsoldering to improve productivity,” Insul./Circuits 27, 43–45 (1981).

Opt. Lett. (2)

Opt. Quantum Electron. (1)

P. M. Beckett, A. R. Fleming, R. J. Foster, J. M. Gilbert, D. G. Whitehead, “The application of semiconductor diode lasers to the soldering of electronic components,” Opt. Quantum Electron. 27, 1303–1311 (1995).

Rev. Sci. Instrum. (2)

V. Phomsakha, N. Djeu, “Fiber-optic high temperature thermal source,” Rev. Sci. Instrum. 67, 2987–2988 (1996).
[CrossRef]

M. M. Fejer, J. L. Nightingale, G. A. Magel, R. L. Byer, “Laser heated miniature pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55, 1791–1796 (1984).
[CrossRef]

Other (1)

R. S. F. Chang, S. Sengupta, G. J. Dixon, L. B. Shaw, N. Djeu, “Growth of small laser crystals for study of energy kinetics and spectroscopy,” in Growth, Characterization, and Applications of Laser Host and Nonlinear Crystals, J. T. Lin., ed., Proc. SPIE1104, 244–250 (1989).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Temperature dependence of the 60-μm end of a tapered tip on incident laser power.

Fig. 2
Fig. 2

SEM photograph of a tapered tip with a 40-μm end.

Fig. 3
Fig. 3

SEM photograph of a completed solder joint between a 25-μm gold wire and a 35-μm-wide gold trace on Kapton. The irregular edges of the gold trace were present at the beginning of the soldering process.

Metrics