Abstract

Excimer laser fragmentation-fluorescence spectroscopy is an effective detection strategy for NH3 in combustion exhausts at atmospheric pressure and high temperatures. Two-photon photofragmentation of NH3 with 193-nm light yields emission from the NH(AX) band at 336 nm. There are no major interferences in this spectral region, and the sensitivity is at the parts per billion (ppb) level. Quenching of the NH(A) state radical by the major combustion products is measured and does not limit the applicability of the detection method. Detection limits in practical situations are of the order of 100 ppb for a 100-shot (1-s) average. This technique could prove useful in monitoring ammonia emissions from catalytic and noncatalytic NOx reduction processes involving ammonia injection.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Lyon, “Method for the reduction of the concentration of NO in combustion effluents using ammonia,” U.S. patent3,900,554 (19August1975).
  2. C. Bowman, “Control of combustion-generated nitrogen oxide emissions: technology driven by regulation,” in Proceedings of the Twenty-Fourth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1993), p. 859.
  3. P. Glarborg, J. Miller, R. Kee, “Kinetic modeling and sensitivity analysis of nitrogen oxide formation in well-stirred reactors,” Combust. Flame 65, 177–202 (1986).
    [CrossRef]
  4. W. Meienburb, H. Neckel, J. Wolfrum, “In situ measurement of ammonia with a 13CO2-waveguide laser system,” Appl. Phys. B 51, 94–98 (1990).
    [CrossRef]
  5. Spectral Sciences Inc., “Diode laser-based real-time gas monitors,” http:/www.spectral.com/diode.html (1997).
  6. R. D. Kenner, R. Browarzik, F. Stuhl, “Two-photon formation of NH/ND (A3Π) in the 193 nm photolysis of ammonia. II. Photolysis of NH2,” Chem. Phys. 121, 457–471 (1988).
    [CrossRef]
  7. R. D. Kenner, F. Rohrer, R. K. Browarzik, A. Kaes, F. Stuhl, “Two-photon formation of NH/ND (A 3Π) in the 193 nm photolysis of ammonia. I. Mechanism and identification of the intermediate species,” Chem. Phys. 118, 141–152 (1987).
    [CrossRef]
  8. J. Jinkins, E. Wehry, “Laser photolytic fragmentation-fluorescence spectrometry of ammonia and aliphatic amines,” Appl. Spectrosc. 43, 861–865 (1989).
    [CrossRef]
  9. T. Ni, S. Yu, F. Ma, F. Kong, “NH (A3Π to X3∑-) emission from 193 nm two-photon photolysis,” Chem. Phys. Lett. 126, 413–416 (1986).
    [CrossRef]
  10. A. Hofzumahaus, F. Stuhl, “Electronic quenching, rotational relaxation, and radiative lifetime of NH (A3Π, v′ = 0, N′),” J. Chem. Phys. 82, 3152–3159 (1985).
    [CrossRef]
  11. H. Haak, F. Stuhl, “ArF laser photolysis of NH3, CH3NH2, N2H4: formation of excited NH radicals,” J. Phys. Chem. 88, 2201–2204 (1984).
    [CrossRef]
  12. V. Donnelly, A. Baronavski, J. McDonald, “ArF laser photodissociation of NH3 at 193 nm: internal energy distributions in NH2 X2B1 and A2A1, and two-photon generation of NH A3Π and b1∑+,” Chem. Phys. 43, 271–281 (1979).
    [CrossRef]
  13. S. Koda, P. A. Hackett, R. A. Back, “Fluorescence of ammonia from its first excited singlet state,” Chem. Phys. Lett. 28, 532–533 (1974).
    [CrossRef]
  14. S. G. Buckley, “Detection of toxic metals in combustion systems,” Ph.D. dissertation, (University of California at Berkeley, Berkeley, Calif., 1995).
  15. S. G. Buckley, C. P. Koshland, R. F. Sawyer, D. Lucas, “A real-time monitor for toxic metal emissions from combustion systems,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), p. 2455.
    [CrossRef]
  16. S. G. Buckley, C. S. McEnally, R. F. Sawyer, C. P. Koshland, D. Lucas, “Metal emissions monitoring using excimer laser fragmentation fluorescence spectroscopy,” Combust. Sci. Technol. 118, 169–188 (1996).
    [CrossRef]
  17. C. S. McEnally, R. F. Sawyer, C. P. Koshland, D. Lucas, “Sensitive in situ detection of chlorinated hydrocarbons in gas mixtures,” Appl. Opt. 33, 3977–3984 (1994).
    [CrossRef] [PubMed]
  18. C. S. McEnally, R. F. Sawyer, C. P. Koshland, D. Lucas, “In situ detection of hazardous waste,” in Proceedings of the Twenty-Fifth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1994), p. 325.
    [CrossRef]
  19. K. T. Hartinger, P. B. Monkhouse, J. Wolfrum, H. Baumann, B. Bonn, “Determination of flue gas alkali concentrations in fluidized-bed coal combustion by excimer-laser-induced fragmentation fluorescence,” in Proceedings of the Twenty-Fifth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1994), pp. 193–199.
    [CrossRef]
  20. K. T. Hartinger, P. B. Monkhouse, J. Wolfrum, “Determination of alkali traces in coal combustion by excimer laser induced fragmentation fluorescence,” Ber. Bunsenges. Phys. Chem. 97, 1731–1734 (1993).
    [CrossRef]
  21. B. L. Chadwick, G. Domazetis, R. J. S. Morrison, “Multiwavelength monitoring of photofragment fluorescence after 193 nm photolysis of NaCl and NaOH—application to measuring the sodium species released from coal at high temperatures,” Anal. Chem. 67, 710–716 (1995).
    [CrossRef]
  22. J. B. Simeonsson, R. C. Sausa, “A critical review of laser photofragmentation/fragment detection techniques for gas-phase chemical analysis,” Appl. Spectrosc. Rev. 31, 1–72 (1996).
    [CrossRef]
  23. D. Lucas, C. P. Koshland, C. S. McEnally, R. F. Sawyer, “The detection of ethyl chloride by photofragmentation,” Combust. Sci. Technol. 85, 271–281 (1992).
    [CrossRef]
  24. R. W. B. Pearse, The Identification of Molecular Spectra, 3rd ed. (Wiley, New York, 1963).
  25. K. T. Hartinger, S. Nord, P. B. Monkhouse, “Quenching of fluorescence from Na (32P) and K (42P) atoms following photodissociation of NaCl and KCl at 193 nm,” Appl. Phys. B 64, 363–367 (1997).
    [CrossRef]
  26. N. L. Garland, D. R. Crosley, “Rotational level dependent quenching of the A 3Πi, v′ = 0 state of NH,” J. Chem. Phys. 90, 3566–3573 (1989).
    [CrossRef]

1997 (1)

K. T. Hartinger, S. Nord, P. B. Monkhouse, “Quenching of fluorescence from Na (32P) and K (42P) atoms following photodissociation of NaCl and KCl at 193 nm,” Appl. Phys. B 64, 363–367 (1997).
[CrossRef]

1996 (2)

J. B. Simeonsson, R. C. Sausa, “A critical review of laser photofragmentation/fragment detection techniques for gas-phase chemical analysis,” Appl. Spectrosc. Rev. 31, 1–72 (1996).
[CrossRef]

S. G. Buckley, C. S. McEnally, R. F. Sawyer, C. P. Koshland, D. Lucas, “Metal emissions monitoring using excimer laser fragmentation fluorescence spectroscopy,” Combust. Sci. Technol. 118, 169–188 (1996).
[CrossRef]

1995 (1)

B. L. Chadwick, G. Domazetis, R. J. S. Morrison, “Multiwavelength monitoring of photofragment fluorescence after 193 nm photolysis of NaCl and NaOH—application to measuring the sodium species released from coal at high temperatures,” Anal. Chem. 67, 710–716 (1995).
[CrossRef]

1994 (1)

1993 (1)

K. T. Hartinger, P. B. Monkhouse, J. Wolfrum, “Determination of alkali traces in coal combustion by excimer laser induced fragmentation fluorescence,” Ber. Bunsenges. Phys. Chem. 97, 1731–1734 (1993).
[CrossRef]

1992 (1)

D. Lucas, C. P. Koshland, C. S. McEnally, R. F. Sawyer, “The detection of ethyl chloride by photofragmentation,” Combust. Sci. Technol. 85, 271–281 (1992).
[CrossRef]

1990 (1)

W. Meienburb, H. Neckel, J. Wolfrum, “In situ measurement of ammonia with a 13CO2-waveguide laser system,” Appl. Phys. B 51, 94–98 (1990).
[CrossRef]

1989 (2)

J. Jinkins, E. Wehry, “Laser photolytic fragmentation-fluorescence spectrometry of ammonia and aliphatic amines,” Appl. Spectrosc. 43, 861–865 (1989).
[CrossRef]

N. L. Garland, D. R. Crosley, “Rotational level dependent quenching of the A 3Πi, v′ = 0 state of NH,” J. Chem. Phys. 90, 3566–3573 (1989).
[CrossRef]

1988 (1)

R. D. Kenner, R. Browarzik, F. Stuhl, “Two-photon formation of NH/ND (A3Π) in the 193 nm photolysis of ammonia. II. Photolysis of NH2,” Chem. Phys. 121, 457–471 (1988).
[CrossRef]

1987 (1)

R. D. Kenner, F. Rohrer, R. K. Browarzik, A. Kaes, F. Stuhl, “Two-photon formation of NH/ND (A 3Π) in the 193 nm photolysis of ammonia. I. Mechanism and identification of the intermediate species,” Chem. Phys. 118, 141–152 (1987).
[CrossRef]

1986 (2)

T. Ni, S. Yu, F. Ma, F. Kong, “NH (A3Π to X3∑-) emission from 193 nm two-photon photolysis,” Chem. Phys. Lett. 126, 413–416 (1986).
[CrossRef]

P. Glarborg, J. Miller, R. Kee, “Kinetic modeling and sensitivity analysis of nitrogen oxide formation in well-stirred reactors,” Combust. Flame 65, 177–202 (1986).
[CrossRef]

1985 (1)

A. Hofzumahaus, F. Stuhl, “Electronic quenching, rotational relaxation, and radiative lifetime of NH (A3Π, v′ = 0, N′),” J. Chem. Phys. 82, 3152–3159 (1985).
[CrossRef]

1984 (1)

H. Haak, F. Stuhl, “ArF laser photolysis of NH3, CH3NH2, N2H4: formation of excited NH radicals,” J. Phys. Chem. 88, 2201–2204 (1984).
[CrossRef]

1979 (1)

V. Donnelly, A. Baronavski, J. McDonald, “ArF laser photodissociation of NH3 at 193 nm: internal energy distributions in NH2 X2B1 and A2A1, and two-photon generation of NH A3Π and b1∑+,” Chem. Phys. 43, 271–281 (1979).
[CrossRef]

1974 (1)

S. Koda, P. A. Hackett, R. A. Back, “Fluorescence of ammonia from its first excited singlet state,” Chem. Phys. Lett. 28, 532–533 (1974).
[CrossRef]

Back, R. A.

S. Koda, P. A. Hackett, R. A. Back, “Fluorescence of ammonia from its first excited singlet state,” Chem. Phys. Lett. 28, 532–533 (1974).
[CrossRef]

Baronavski, A.

V. Donnelly, A. Baronavski, J. McDonald, “ArF laser photodissociation of NH3 at 193 nm: internal energy distributions in NH2 X2B1 and A2A1, and two-photon generation of NH A3Π and b1∑+,” Chem. Phys. 43, 271–281 (1979).
[CrossRef]

Baumann, H.

K. T. Hartinger, P. B. Monkhouse, J. Wolfrum, H. Baumann, B. Bonn, “Determination of flue gas alkali concentrations in fluidized-bed coal combustion by excimer-laser-induced fragmentation fluorescence,” in Proceedings of the Twenty-Fifth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1994), pp. 193–199.
[CrossRef]

Bonn, B.

K. T. Hartinger, P. B. Monkhouse, J. Wolfrum, H. Baumann, B. Bonn, “Determination of flue gas alkali concentrations in fluidized-bed coal combustion by excimer-laser-induced fragmentation fluorescence,” in Proceedings of the Twenty-Fifth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1994), pp. 193–199.
[CrossRef]

Bowman, C.

C. Bowman, “Control of combustion-generated nitrogen oxide emissions: technology driven by regulation,” in Proceedings of the Twenty-Fourth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1993), p. 859.

Browarzik, R.

R. D. Kenner, R. Browarzik, F. Stuhl, “Two-photon formation of NH/ND (A3Π) in the 193 nm photolysis of ammonia. II. Photolysis of NH2,” Chem. Phys. 121, 457–471 (1988).
[CrossRef]

Browarzik, R. K.

R. D. Kenner, F. Rohrer, R. K. Browarzik, A. Kaes, F. Stuhl, “Two-photon formation of NH/ND (A 3Π) in the 193 nm photolysis of ammonia. I. Mechanism and identification of the intermediate species,” Chem. Phys. 118, 141–152 (1987).
[CrossRef]

Buckley, S. G.

S. G. Buckley, C. S. McEnally, R. F. Sawyer, C. P. Koshland, D. Lucas, “Metal emissions monitoring using excimer laser fragmentation fluorescence spectroscopy,” Combust. Sci. Technol. 118, 169–188 (1996).
[CrossRef]

S. G. Buckley, “Detection of toxic metals in combustion systems,” Ph.D. dissertation, (University of California at Berkeley, Berkeley, Calif., 1995).

S. G. Buckley, C. P. Koshland, R. F. Sawyer, D. Lucas, “A real-time monitor for toxic metal emissions from combustion systems,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), p. 2455.
[CrossRef]

Chadwick, B. L.

B. L. Chadwick, G. Domazetis, R. J. S. Morrison, “Multiwavelength monitoring of photofragment fluorescence after 193 nm photolysis of NaCl and NaOH—application to measuring the sodium species released from coal at high temperatures,” Anal. Chem. 67, 710–716 (1995).
[CrossRef]

Crosley, D. R.

N. L. Garland, D. R. Crosley, “Rotational level dependent quenching of the A 3Πi, v′ = 0 state of NH,” J. Chem. Phys. 90, 3566–3573 (1989).
[CrossRef]

Domazetis, G.

B. L. Chadwick, G. Domazetis, R. J. S. Morrison, “Multiwavelength monitoring of photofragment fluorescence after 193 nm photolysis of NaCl and NaOH—application to measuring the sodium species released from coal at high temperatures,” Anal. Chem. 67, 710–716 (1995).
[CrossRef]

Donnelly, V.

V. Donnelly, A. Baronavski, J. McDonald, “ArF laser photodissociation of NH3 at 193 nm: internal energy distributions in NH2 X2B1 and A2A1, and two-photon generation of NH A3Π and b1∑+,” Chem. Phys. 43, 271–281 (1979).
[CrossRef]

Garland, N. L.

N. L. Garland, D. R. Crosley, “Rotational level dependent quenching of the A 3Πi, v′ = 0 state of NH,” J. Chem. Phys. 90, 3566–3573 (1989).
[CrossRef]

Glarborg, P.

P. Glarborg, J. Miller, R. Kee, “Kinetic modeling and sensitivity analysis of nitrogen oxide formation in well-stirred reactors,” Combust. Flame 65, 177–202 (1986).
[CrossRef]

Haak, H.

H. Haak, F. Stuhl, “ArF laser photolysis of NH3, CH3NH2, N2H4: formation of excited NH radicals,” J. Phys. Chem. 88, 2201–2204 (1984).
[CrossRef]

Hackett, P. A.

S. Koda, P. A. Hackett, R. A. Back, “Fluorescence of ammonia from its first excited singlet state,” Chem. Phys. Lett. 28, 532–533 (1974).
[CrossRef]

Hartinger, K. T.

K. T. Hartinger, S. Nord, P. B. Monkhouse, “Quenching of fluorescence from Na (32P) and K (42P) atoms following photodissociation of NaCl and KCl at 193 nm,” Appl. Phys. B 64, 363–367 (1997).
[CrossRef]

K. T. Hartinger, P. B. Monkhouse, J. Wolfrum, “Determination of alkali traces in coal combustion by excimer laser induced fragmentation fluorescence,” Ber. Bunsenges. Phys. Chem. 97, 1731–1734 (1993).
[CrossRef]

K. T. Hartinger, P. B. Monkhouse, J. Wolfrum, H. Baumann, B. Bonn, “Determination of flue gas alkali concentrations in fluidized-bed coal combustion by excimer-laser-induced fragmentation fluorescence,” in Proceedings of the Twenty-Fifth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1994), pp. 193–199.
[CrossRef]

Hofzumahaus, A.

A. Hofzumahaus, F. Stuhl, “Electronic quenching, rotational relaxation, and radiative lifetime of NH (A3Π, v′ = 0, N′),” J. Chem. Phys. 82, 3152–3159 (1985).
[CrossRef]

Jinkins, J.

Kaes, A.

R. D. Kenner, F. Rohrer, R. K. Browarzik, A. Kaes, F. Stuhl, “Two-photon formation of NH/ND (A 3Π) in the 193 nm photolysis of ammonia. I. Mechanism and identification of the intermediate species,” Chem. Phys. 118, 141–152 (1987).
[CrossRef]

Kee, R.

P. Glarborg, J. Miller, R. Kee, “Kinetic modeling and sensitivity analysis of nitrogen oxide formation in well-stirred reactors,” Combust. Flame 65, 177–202 (1986).
[CrossRef]

Kenner, R. D.

R. D. Kenner, R. Browarzik, F. Stuhl, “Two-photon formation of NH/ND (A3Π) in the 193 nm photolysis of ammonia. II. Photolysis of NH2,” Chem. Phys. 121, 457–471 (1988).
[CrossRef]

R. D. Kenner, F. Rohrer, R. K. Browarzik, A. Kaes, F. Stuhl, “Two-photon formation of NH/ND (A 3Π) in the 193 nm photolysis of ammonia. I. Mechanism and identification of the intermediate species,” Chem. Phys. 118, 141–152 (1987).
[CrossRef]

Koda, S.

S. Koda, P. A. Hackett, R. A. Back, “Fluorescence of ammonia from its first excited singlet state,” Chem. Phys. Lett. 28, 532–533 (1974).
[CrossRef]

Kong, F.

T. Ni, S. Yu, F. Ma, F. Kong, “NH (A3Π to X3∑-) emission from 193 nm two-photon photolysis,” Chem. Phys. Lett. 126, 413–416 (1986).
[CrossRef]

Koshland, C. P.

S. G. Buckley, C. S. McEnally, R. F. Sawyer, C. P. Koshland, D. Lucas, “Metal emissions monitoring using excimer laser fragmentation fluorescence spectroscopy,” Combust. Sci. Technol. 118, 169–188 (1996).
[CrossRef]

C. S. McEnally, R. F. Sawyer, C. P. Koshland, D. Lucas, “Sensitive in situ detection of chlorinated hydrocarbons in gas mixtures,” Appl. Opt. 33, 3977–3984 (1994).
[CrossRef] [PubMed]

D. Lucas, C. P. Koshland, C. S. McEnally, R. F. Sawyer, “The detection of ethyl chloride by photofragmentation,” Combust. Sci. Technol. 85, 271–281 (1992).
[CrossRef]

C. S. McEnally, R. F. Sawyer, C. P. Koshland, D. Lucas, “In situ detection of hazardous waste,” in Proceedings of the Twenty-Fifth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1994), p. 325.
[CrossRef]

S. G. Buckley, C. P. Koshland, R. F. Sawyer, D. Lucas, “A real-time monitor for toxic metal emissions from combustion systems,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), p. 2455.
[CrossRef]

Lucas, D.

S. G. Buckley, C. S. McEnally, R. F. Sawyer, C. P. Koshland, D. Lucas, “Metal emissions monitoring using excimer laser fragmentation fluorescence spectroscopy,” Combust. Sci. Technol. 118, 169–188 (1996).
[CrossRef]

C. S. McEnally, R. F. Sawyer, C. P. Koshland, D. Lucas, “Sensitive in situ detection of chlorinated hydrocarbons in gas mixtures,” Appl. Opt. 33, 3977–3984 (1994).
[CrossRef] [PubMed]

D. Lucas, C. P. Koshland, C. S. McEnally, R. F. Sawyer, “The detection of ethyl chloride by photofragmentation,” Combust. Sci. Technol. 85, 271–281 (1992).
[CrossRef]

C. S. McEnally, R. F. Sawyer, C. P. Koshland, D. Lucas, “In situ detection of hazardous waste,” in Proceedings of the Twenty-Fifth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1994), p. 325.
[CrossRef]

S. G. Buckley, C. P. Koshland, R. F. Sawyer, D. Lucas, “A real-time monitor for toxic metal emissions from combustion systems,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), p. 2455.
[CrossRef]

Lyon, R.

R. Lyon, “Method for the reduction of the concentration of NO in combustion effluents using ammonia,” U.S. patent3,900,554 (19August1975).

Ma, F.

T. Ni, S. Yu, F. Ma, F. Kong, “NH (A3Π to X3∑-) emission from 193 nm two-photon photolysis,” Chem. Phys. Lett. 126, 413–416 (1986).
[CrossRef]

McDonald, J.

V. Donnelly, A. Baronavski, J. McDonald, “ArF laser photodissociation of NH3 at 193 nm: internal energy distributions in NH2 X2B1 and A2A1, and two-photon generation of NH A3Π and b1∑+,” Chem. Phys. 43, 271–281 (1979).
[CrossRef]

McEnally, C. S.

S. G. Buckley, C. S. McEnally, R. F. Sawyer, C. P. Koshland, D. Lucas, “Metal emissions monitoring using excimer laser fragmentation fluorescence spectroscopy,” Combust. Sci. Technol. 118, 169–188 (1996).
[CrossRef]

C. S. McEnally, R. F. Sawyer, C. P. Koshland, D. Lucas, “Sensitive in situ detection of chlorinated hydrocarbons in gas mixtures,” Appl. Opt. 33, 3977–3984 (1994).
[CrossRef] [PubMed]

D. Lucas, C. P. Koshland, C. S. McEnally, R. F. Sawyer, “The detection of ethyl chloride by photofragmentation,” Combust. Sci. Technol. 85, 271–281 (1992).
[CrossRef]

C. S. McEnally, R. F. Sawyer, C. P. Koshland, D. Lucas, “In situ detection of hazardous waste,” in Proceedings of the Twenty-Fifth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1994), p. 325.
[CrossRef]

Meienburb, W.

W. Meienburb, H. Neckel, J. Wolfrum, “In situ measurement of ammonia with a 13CO2-waveguide laser system,” Appl. Phys. B 51, 94–98 (1990).
[CrossRef]

Miller, J.

P. Glarborg, J. Miller, R. Kee, “Kinetic modeling and sensitivity analysis of nitrogen oxide formation in well-stirred reactors,” Combust. Flame 65, 177–202 (1986).
[CrossRef]

Monkhouse, P. B.

K. T. Hartinger, S. Nord, P. B. Monkhouse, “Quenching of fluorescence from Na (32P) and K (42P) atoms following photodissociation of NaCl and KCl at 193 nm,” Appl. Phys. B 64, 363–367 (1997).
[CrossRef]

K. T. Hartinger, P. B. Monkhouse, J. Wolfrum, “Determination of alkali traces in coal combustion by excimer laser induced fragmentation fluorescence,” Ber. Bunsenges. Phys. Chem. 97, 1731–1734 (1993).
[CrossRef]

K. T. Hartinger, P. B. Monkhouse, J. Wolfrum, H. Baumann, B. Bonn, “Determination of flue gas alkali concentrations in fluidized-bed coal combustion by excimer-laser-induced fragmentation fluorescence,” in Proceedings of the Twenty-Fifth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1994), pp. 193–199.
[CrossRef]

Morrison, R. J. S.

B. L. Chadwick, G. Domazetis, R. J. S. Morrison, “Multiwavelength monitoring of photofragment fluorescence after 193 nm photolysis of NaCl and NaOH—application to measuring the sodium species released from coal at high temperatures,” Anal. Chem. 67, 710–716 (1995).
[CrossRef]

Neckel, H.

W. Meienburb, H. Neckel, J. Wolfrum, “In situ measurement of ammonia with a 13CO2-waveguide laser system,” Appl. Phys. B 51, 94–98 (1990).
[CrossRef]

Ni, T.

T. Ni, S. Yu, F. Ma, F. Kong, “NH (A3Π to X3∑-) emission from 193 nm two-photon photolysis,” Chem. Phys. Lett. 126, 413–416 (1986).
[CrossRef]

Nord, S.

K. T. Hartinger, S. Nord, P. B. Monkhouse, “Quenching of fluorescence from Na (32P) and K (42P) atoms following photodissociation of NaCl and KCl at 193 nm,” Appl. Phys. B 64, 363–367 (1997).
[CrossRef]

Pearse, R. W. B.

R. W. B. Pearse, The Identification of Molecular Spectra, 3rd ed. (Wiley, New York, 1963).

Rohrer, F.

R. D. Kenner, F. Rohrer, R. K. Browarzik, A. Kaes, F. Stuhl, “Two-photon formation of NH/ND (A 3Π) in the 193 nm photolysis of ammonia. I. Mechanism and identification of the intermediate species,” Chem. Phys. 118, 141–152 (1987).
[CrossRef]

Sausa, R. C.

J. B. Simeonsson, R. C. Sausa, “A critical review of laser photofragmentation/fragment detection techniques for gas-phase chemical analysis,” Appl. Spectrosc. Rev. 31, 1–72 (1996).
[CrossRef]

Sawyer, R. F.

S. G. Buckley, C. S. McEnally, R. F. Sawyer, C. P. Koshland, D. Lucas, “Metal emissions monitoring using excimer laser fragmentation fluorescence spectroscopy,” Combust. Sci. Technol. 118, 169–188 (1996).
[CrossRef]

C. S. McEnally, R. F. Sawyer, C. P. Koshland, D. Lucas, “Sensitive in situ detection of chlorinated hydrocarbons in gas mixtures,” Appl. Opt. 33, 3977–3984 (1994).
[CrossRef] [PubMed]

D. Lucas, C. P. Koshland, C. S. McEnally, R. F. Sawyer, “The detection of ethyl chloride by photofragmentation,” Combust. Sci. Technol. 85, 271–281 (1992).
[CrossRef]

C. S. McEnally, R. F. Sawyer, C. P. Koshland, D. Lucas, “In situ detection of hazardous waste,” in Proceedings of the Twenty-Fifth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1994), p. 325.
[CrossRef]

S. G. Buckley, C. P. Koshland, R. F. Sawyer, D. Lucas, “A real-time monitor for toxic metal emissions from combustion systems,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), p. 2455.
[CrossRef]

Simeonsson, J. B.

J. B. Simeonsson, R. C. Sausa, “A critical review of laser photofragmentation/fragment detection techniques for gas-phase chemical analysis,” Appl. Spectrosc. Rev. 31, 1–72 (1996).
[CrossRef]

Stuhl, F.

R. D. Kenner, R. Browarzik, F. Stuhl, “Two-photon formation of NH/ND (A3Π) in the 193 nm photolysis of ammonia. II. Photolysis of NH2,” Chem. Phys. 121, 457–471 (1988).
[CrossRef]

R. D. Kenner, F. Rohrer, R. K. Browarzik, A. Kaes, F. Stuhl, “Two-photon formation of NH/ND (A 3Π) in the 193 nm photolysis of ammonia. I. Mechanism and identification of the intermediate species,” Chem. Phys. 118, 141–152 (1987).
[CrossRef]

A. Hofzumahaus, F. Stuhl, “Electronic quenching, rotational relaxation, and radiative lifetime of NH (A3Π, v′ = 0, N′),” J. Chem. Phys. 82, 3152–3159 (1985).
[CrossRef]

H. Haak, F. Stuhl, “ArF laser photolysis of NH3, CH3NH2, N2H4: formation of excited NH radicals,” J. Phys. Chem. 88, 2201–2204 (1984).
[CrossRef]

Wehry, E.

Wolfrum, J.

K. T. Hartinger, P. B. Monkhouse, J. Wolfrum, “Determination of alkali traces in coal combustion by excimer laser induced fragmentation fluorescence,” Ber. Bunsenges. Phys. Chem. 97, 1731–1734 (1993).
[CrossRef]

W. Meienburb, H. Neckel, J. Wolfrum, “In situ measurement of ammonia with a 13CO2-waveguide laser system,” Appl. Phys. B 51, 94–98 (1990).
[CrossRef]

K. T. Hartinger, P. B. Monkhouse, J. Wolfrum, H. Baumann, B. Bonn, “Determination of flue gas alkali concentrations in fluidized-bed coal combustion by excimer-laser-induced fragmentation fluorescence,” in Proceedings of the Twenty-Fifth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1994), pp. 193–199.
[CrossRef]

Yu, S.

T. Ni, S. Yu, F. Ma, F. Kong, “NH (A3Π to X3∑-) emission from 193 nm two-photon photolysis,” Chem. Phys. Lett. 126, 413–416 (1986).
[CrossRef]

Anal. Chem. (1)

B. L. Chadwick, G. Domazetis, R. J. S. Morrison, “Multiwavelength monitoring of photofragment fluorescence after 193 nm photolysis of NaCl and NaOH—application to measuring the sodium species released from coal at high temperatures,” Anal. Chem. 67, 710–716 (1995).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (2)

K. T. Hartinger, S. Nord, P. B. Monkhouse, “Quenching of fluorescence from Na (32P) and K (42P) atoms following photodissociation of NaCl and KCl at 193 nm,” Appl. Phys. B 64, 363–367 (1997).
[CrossRef]

W. Meienburb, H. Neckel, J. Wolfrum, “In situ measurement of ammonia with a 13CO2-waveguide laser system,” Appl. Phys. B 51, 94–98 (1990).
[CrossRef]

Appl. Spectrosc. (1)

Appl. Spectrosc. Rev. (1)

J. B. Simeonsson, R. C. Sausa, “A critical review of laser photofragmentation/fragment detection techniques for gas-phase chemical analysis,” Appl. Spectrosc. Rev. 31, 1–72 (1996).
[CrossRef]

Ber. Bunsenges. Phys. Chem. (1)

K. T. Hartinger, P. B. Monkhouse, J. Wolfrum, “Determination of alkali traces in coal combustion by excimer laser induced fragmentation fluorescence,” Ber. Bunsenges. Phys. Chem. 97, 1731–1734 (1993).
[CrossRef]

Chem. Phys. (3)

V. Donnelly, A. Baronavski, J. McDonald, “ArF laser photodissociation of NH3 at 193 nm: internal energy distributions in NH2 X2B1 and A2A1, and two-photon generation of NH A3Π and b1∑+,” Chem. Phys. 43, 271–281 (1979).
[CrossRef]

R. D. Kenner, R. Browarzik, F. Stuhl, “Two-photon formation of NH/ND (A3Π) in the 193 nm photolysis of ammonia. II. Photolysis of NH2,” Chem. Phys. 121, 457–471 (1988).
[CrossRef]

R. D. Kenner, F. Rohrer, R. K. Browarzik, A. Kaes, F. Stuhl, “Two-photon formation of NH/ND (A 3Π) in the 193 nm photolysis of ammonia. I. Mechanism and identification of the intermediate species,” Chem. Phys. 118, 141–152 (1987).
[CrossRef]

Chem. Phys. Lett. (2)

S. Koda, P. A. Hackett, R. A. Back, “Fluorescence of ammonia from its first excited singlet state,” Chem. Phys. Lett. 28, 532–533 (1974).
[CrossRef]

T. Ni, S. Yu, F. Ma, F. Kong, “NH (A3Π to X3∑-) emission from 193 nm two-photon photolysis,” Chem. Phys. Lett. 126, 413–416 (1986).
[CrossRef]

Combust. Flame (1)

P. Glarborg, J. Miller, R. Kee, “Kinetic modeling and sensitivity analysis of nitrogen oxide formation in well-stirred reactors,” Combust. Flame 65, 177–202 (1986).
[CrossRef]

Combust. Sci. Technol. (2)

S. G. Buckley, C. S. McEnally, R. F. Sawyer, C. P. Koshland, D. Lucas, “Metal emissions monitoring using excimer laser fragmentation fluorescence spectroscopy,” Combust. Sci. Technol. 118, 169–188 (1996).
[CrossRef]

D. Lucas, C. P. Koshland, C. S. McEnally, R. F. Sawyer, “The detection of ethyl chloride by photofragmentation,” Combust. Sci. Technol. 85, 271–281 (1992).
[CrossRef]

J. Chem. Phys. (2)

N. L. Garland, D. R. Crosley, “Rotational level dependent quenching of the A 3Πi, v′ = 0 state of NH,” J. Chem. Phys. 90, 3566–3573 (1989).
[CrossRef]

A. Hofzumahaus, F. Stuhl, “Electronic quenching, rotational relaxation, and radiative lifetime of NH (A3Π, v′ = 0, N′),” J. Chem. Phys. 82, 3152–3159 (1985).
[CrossRef]

J. Phys. Chem. (1)

H. Haak, F. Stuhl, “ArF laser photolysis of NH3, CH3NH2, N2H4: formation of excited NH radicals,” J. Phys. Chem. 88, 2201–2204 (1984).
[CrossRef]

Other (8)

Spectral Sciences Inc., “Diode laser-based real-time gas monitors,” http:/www.spectral.com/diode.html (1997).

R. Lyon, “Method for the reduction of the concentration of NO in combustion effluents using ammonia,” U.S. patent3,900,554 (19August1975).

C. Bowman, “Control of combustion-generated nitrogen oxide emissions: technology driven by regulation,” in Proceedings of the Twenty-Fourth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1993), p. 859.

S. G. Buckley, “Detection of toxic metals in combustion systems,” Ph.D. dissertation, (University of California at Berkeley, Berkeley, Calif., 1995).

S. G. Buckley, C. P. Koshland, R. F. Sawyer, D. Lucas, “A real-time monitor for toxic metal emissions from combustion systems,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), p. 2455.
[CrossRef]

C. S. McEnally, R. F. Sawyer, C. P. Koshland, D. Lucas, “In situ detection of hazardous waste,” in Proceedings of the Twenty-Fifth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1994), p. 325.
[CrossRef]

K. T. Hartinger, P. B. Monkhouse, J. Wolfrum, H. Baumann, B. Bonn, “Determination of flue gas alkali concentrations in fluidized-bed coal combustion by excimer-laser-induced fragmentation fluorescence,” in Proceedings of the Twenty-Fifth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1994), pp. 193–199.
[CrossRef]

R. W. B. Pearse, The Identification of Molecular Spectra, 3rd ed. (Wiley, New York, 1963).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental apparatus.

Fig. 2
Fig. 2

Fluorescence of NH(A) from fragmentation fluorescence of NH3 in various gases at ambient temperature and pressure. [NH3] = 60 ppm.

Fig. 3
Fig. 3

Background signal from fragmentation fluorescence in room air and in postflame gases.

Fig. 4
Fig. 4

Dependence of NH(A) fluorescence signal on NH3 concentration.

Fig. 5
Fig. 5

Dependence of NH(A) fluorescence signal on laser-pulse energy for 10-ppm NH3 in air.

Fig. 6
Fig. 6

Measured NH(A) fluorescence at the exhaust of a Lindberg furnace.

Fig. 7
Fig. 7

Modified Stern–Volmer plots for quenching of NH by CO2 (diamonds) and O2 (squares). [NH3] = 60 ppm.

Fig. 8
Fig. 8

Effects of equivalence ratio and postflame gas temperature on the NH(A) emission.

Tables (2)

Tables Icon

Table 1 Measured Water-Quenching Cross Section

Tables Icon

Table 2 Detection Limits

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

NH 3 X ,   v 2 = 0 + h ν 193 NH 3 A ,   v 2 = 6 ,
NH 3 A ,   v 2 = 6 NH 2 X + H ,
NH 2 X + h ν 193 NH 2 * * ,
NH 2 * * NH A + H .
S fl = C det E laser n NH 3 a abs q ,
q = A / A + Q ,   where   Q = n i v ri σ I .
S mix S ref T mix T ref y N 2 , ref μ N 2   σ N 2 + y O 2 , ref μ O 2   σ O 2 y N 2 , mix μ N 2   σ N 2 + y O 2 , mix μ O 2   σ O 2 + y CO 2 , mix μ CO 2   σ CO 2 + y H 2 O , mix μ H 2 O   σ H 2 O .

Metrics