Abstract

The precise determination of the absolute absorptance of a laser component is of high scientific and commercial importance. Our intention is to demonstrate that laser calorimetry can be a reliable and sensitive characterization tool for this purpose. Furthermore, the limitations of laser calorimetry are discussed and suggestions for possible revisions of the ISO 11551 (International Organization for Standardization, Geneva, Switzerland) standard are made. Finally, laser calorimetry is compared with photothermal deflection methods with respect to their practicability in different fields of laser optic characterization.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Pinnow, T. Rich, “Development of a calorimetric method for making precision optical absorption measurements,” Appl. Opt. 12, 984–992 (1973).
    [CrossRef] [PubMed]
  2. H. B. Rosenstock, D. A. Gregory, J. A. Harrington, “Infrared bulk and surface absorption by nearly transparent crystals,” Appl. Opt. 15, 2075–2078 (1976).
    [CrossRef] [PubMed]
  3. In the following, only that part of absorbed laser power/energy that is transformed into heat is considered, and other possible (but typically less relevant) absorption channels are disregarded.
  4. A. C. Tam, “Photoacoustic and photothermal spectroscopy,” in ICALEO: International Congress on Applications of Lasers and Electro-Optics (Laser Institute of America, Orlando, Fla., 1985), pp. 121–133.
  5. E. Welsch, D. Ristau, “Photothermal measurements on optical thin films,” Appl. Opt. 34, 7239–7253 (1995).
    [CrossRef] [PubMed]
  6. “ISO 11551: test method for absorptance of optical laser components,” (International Organization for Standardization, Geneva, Switzerland, 1997).
  7. D. Ristau, U. Willamowski, H. Welling, W. Plass, A. Giesen, “Evaluation of a round-robin test on optical absorption at 10.6 μm,” in Third International Workshop on Laser Beam and Optics Characterization, A. Geisen, M. Morin, eds., Proc. SPIE2870, 502–514 (1996).
    [CrossRef]
  8. E. Eva, K. R. Mann, “High-resolution calorimetric absorption measurements on optical components for excimer lasers,” in Laser-Induced Damage in Optical Materials: 1996, H. E. Bennet, A. H. Guenther, M. R. Kozlowsk, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2966, 48–55 (1997).
    [CrossRef]
  9. E. Welsch, “Photothermal surface deformation technique—a goal for nondestructive evaluation in thin-film optics,” J. Mod. Opt. 38, 2159–2176 (1991).
    [CrossRef]
  10. M. Reichling, H. Grönbeck, “Harmonic heat flow in isotropic layered systems and its use for thin-film thermal conductivity measurements,” J. Appl. Phys. 75, 1914–1922 (1994).
    [CrossRef]
  11. M. Reichling, E. Welsch, E. Matthias, “Thin-film characterization and photothermal absolute calibration measurements using high-frequency electric currents,” in Specification and Measurement of Optical Systems, L. R. Baker, ed., Proc. SPIE1781, 205–213 (1993).
    [CrossRef]
  12. M. Reichling, A. Bodemann, N. Kaiser, “Defect induced laser damage in oxide multilayer coatings for 248 nm,” Thin Solid Films 320, 363–278 (1997).
  13. M. Reichling, in Experimental Methods in the Physical Sciences, J. C. Miller, R. F. Haglund, eds. (Academic, San Diego, Calif., 1998), Vol. 30, Chap. 12, pp. 573–624.
  14. N. M. Amer, “New approaches to photothermal spectroscopy,” J. Phys. (Paris) Colloq. 44, 185–198 (1983).
    [CrossRef]
  15. R. E. Hummel, K. H. Guenther, Thin Films for Optical Coatings (CRC Press, Boca Raton, Fla., 1995), Vol. 1, Chap. 9.
  16. A. C. Boccara, D. Fournier, J. Badoz, “Thermo-optical spectroscopy: detection by the ‘mirage effect’” Appl. Phys. Lett. 36, 130–132 (1980).
    [CrossRef]
  17. W. B. Jackson, N. M. Amer, A. C. Boccara, D. Fournier, “Photothermal deflection spectroscopy and detection,” Appl. Opt. 20, 1333–1344 (1981).
    [CrossRef] [PubMed]
  18. J. M. Bennett, E. Pelletier, G. Albrand, J. P. Borgogno, B. Lazarides, C. K. Carniglia, R. A. Schmell, T. H. Allen, T. Tuttle-Hart, K. H. Guenther, A. Saxer, “Comparison of the properties of titanium dioxide films prepared by various techniques,” Appl. Opt. 28, 3303–3317 (1988).
    [CrossRef]
  19. V. Loriette, L. Pinard, C. Boccara, J.-M. Mackowski, “Multilayer coating characterization for interferometric gravitational waves detection,” in Optical Interference Coatings, F. Abeles, ed., Proc. SPIE2253, 1031–1039 (1994).
    [CrossRef]
  20. M. Commandré, P. Roche, “Characterization of absorption by photothermal deflection,” in Thin Films for Optical Systems, Opt. Eng. 49, 329–365 (1995).
  21. P. Zimmermann, D. Ristau, E. Welsch, G. Langer, M. Reichling, “Potentiality of the photothermal surface-displacement technique for precisely performed absorption measurement of optical coatings,” Appl. Phys. A 58, 377–383 (1994).
    [CrossRef]
  22. M. Commandré, P. Roche, “Characterization of optical coatings by photothermal deflection,” Appl. Opt. 35, 5021–5043 (1996).
    [CrossRef] [PubMed]
  23. E. Welsch, K. Ettrich, H. Blaschke, P. Thomsen-Schmidt, D. Schaefer, N. Kaiser, “Investigation of the absorption induced damage in ultraviolet dielectric thin films,” Opt. Eng. 36, 504–514 (1997).
    [CrossRef]
  24. R. T. Swimm, Y. Xiao, M. Bass, “Calorimetric study of optical absorption of suprasil w-1 fused quart at visible, near-IR, and near-UV wavelengths,” Appl. Opt. 24, 322–323 (1985).
    [CrossRef] [PubMed]
  25. H. W. Becker, V. Scheuer, T. T. Tschudi, “Low-power laser calorimetry with high resolution,” in Optical Interference Coatings, F. Abeles, ed., Proc. SPIE2253, 1152–1161 (1994).
    [CrossRef]
  26. E. Eva, K. R. Mann, “Nonlinear absorption phenomena in optical materials for the UV-spectral range,” in Third International Workshop on Laser Beam and Optics Characterization, A. Geisen, M. Morin, eds., Proc. SPIE2870, 476–482 (1996).
    [CrossRef]
  27. U. Willamowski, T. Gross, D. Ristau, H. Welling, “Calorimetric measurement of optical absorption and transmissivity with sub-ppm sensitivity,” in Specification, Production, and Testing of Optical Components and Systems, A. E. Gee, J. Houee, eds., Proc. SPIE2775, 148–158 (1996).
    [CrossRef]
  28. A. C. Boccara, D. Fournier, W. Jackson, N. M. Amer, “Sensitive photothermal deflection technique for measuring absorption in optically thin media,” Opt. Lett. 5, 377–379 (1980).
    [CrossRef] [PubMed]
  29. A simple method for performing such calibrations is to deposit a high-absorbing coating (e.g., soot or graphite) on a reference sample of identical thermal conductivity, heat capacity, and geometry and test the absorptance with an attenuated laser beam. While high absorptance values can be easily determined with good accuracy (e.g., by spectral photometric methods or by testing transmissivity and scatter), the determination of the attenuation factor is often more difficult, and nonlinearities of the attenuators must be avoided.
  30. W. A. McGahan, K. Cole, “Solutions of the heat equation in multilayers for photothermal deflection experiments,” J. Appl. Phys. 72, 1362–1373 (1992).
    [CrossRef]

1997 (2)

M. Reichling, A. Bodemann, N. Kaiser, “Defect induced laser damage in oxide multilayer coatings for 248 nm,” Thin Solid Films 320, 363–278 (1997).

E. Welsch, K. Ettrich, H. Blaschke, P. Thomsen-Schmidt, D. Schaefer, N. Kaiser, “Investigation of the absorption induced damage in ultraviolet dielectric thin films,” Opt. Eng. 36, 504–514 (1997).
[CrossRef]

1996 (1)

M. Commandré, P. Roche, “Characterization of optical coatings by photothermal deflection,” Appl. Opt. 35, 5021–5043 (1996).
[CrossRef] [PubMed]

1995 (2)

M. Commandré, P. Roche, “Characterization of absorption by photothermal deflection,” in Thin Films for Optical Systems, Opt. Eng. 49, 329–365 (1995).

E. Welsch, D. Ristau, “Photothermal measurements on optical thin films,” Appl. Opt. 34, 7239–7253 (1995).
[CrossRef] [PubMed]

1994 (2)

M. Reichling, H. Grönbeck, “Harmonic heat flow in isotropic layered systems and its use for thin-film thermal conductivity measurements,” J. Appl. Phys. 75, 1914–1922 (1994).
[CrossRef]

P. Zimmermann, D. Ristau, E. Welsch, G. Langer, M. Reichling, “Potentiality of the photothermal surface-displacement technique for precisely performed absorption measurement of optical coatings,” Appl. Phys. A 58, 377–383 (1994).
[CrossRef]

1992 (1)

W. A. McGahan, K. Cole, “Solutions of the heat equation in multilayers for photothermal deflection experiments,” J. Appl. Phys. 72, 1362–1373 (1992).
[CrossRef]

1991 (1)

E. Welsch, “Photothermal surface deformation technique—a goal for nondestructive evaluation in thin-film optics,” J. Mod. Opt. 38, 2159–2176 (1991).
[CrossRef]

1988 (1)

1985 (1)

1983 (1)

N. M. Amer, “New approaches to photothermal spectroscopy,” J. Phys. (Paris) Colloq. 44, 185–198 (1983).
[CrossRef]

1981 (1)

1980 (2)

A. C. Boccara, D. Fournier, J. Badoz, “Thermo-optical spectroscopy: detection by the ‘mirage effect’” Appl. Phys. Lett. 36, 130–132 (1980).
[CrossRef]

A. C. Boccara, D. Fournier, W. Jackson, N. M. Amer, “Sensitive photothermal deflection technique for measuring absorption in optically thin media,” Opt. Lett. 5, 377–379 (1980).
[CrossRef] [PubMed]

1976 (1)

H. B. Rosenstock, D. A. Gregory, J. A. Harrington, “Infrared bulk and surface absorption by nearly transparent crystals,” Appl. Opt. 15, 2075–2078 (1976).
[CrossRef] [PubMed]

1973 (1)

Albrand, G.

Allen, T. H.

Amer, N. M.

Badoz, J.

A. C. Boccara, D. Fournier, J. Badoz, “Thermo-optical spectroscopy: detection by the ‘mirage effect’” Appl. Phys. Lett. 36, 130–132 (1980).
[CrossRef]

Bass, M.

Becker, H. W.

H. W. Becker, V. Scheuer, T. T. Tschudi, “Low-power laser calorimetry with high resolution,” in Optical Interference Coatings, F. Abeles, ed., Proc. SPIE2253, 1152–1161 (1994).
[CrossRef]

Bennett, J. M.

Blaschke, H.

E. Welsch, K. Ettrich, H. Blaschke, P. Thomsen-Schmidt, D. Schaefer, N. Kaiser, “Investigation of the absorption induced damage in ultraviolet dielectric thin films,” Opt. Eng. 36, 504–514 (1997).
[CrossRef]

Boccara, A. C.

Boccara, C.

V. Loriette, L. Pinard, C. Boccara, J.-M. Mackowski, “Multilayer coating characterization for interferometric gravitational waves detection,” in Optical Interference Coatings, F. Abeles, ed., Proc. SPIE2253, 1031–1039 (1994).
[CrossRef]

Bodemann, A.

M. Reichling, A. Bodemann, N. Kaiser, “Defect induced laser damage in oxide multilayer coatings for 248 nm,” Thin Solid Films 320, 363–278 (1997).

Borgogno, J. P.

Carniglia, C. K.

Cole, K.

W. A. McGahan, K. Cole, “Solutions of the heat equation in multilayers for photothermal deflection experiments,” J. Appl. Phys. 72, 1362–1373 (1992).
[CrossRef]

Commandré, M.

M. Commandré, P. Roche, “Characterization of optical coatings by photothermal deflection,” Appl. Opt. 35, 5021–5043 (1996).
[CrossRef] [PubMed]

M. Commandré, P. Roche, “Characterization of absorption by photothermal deflection,” in Thin Films for Optical Systems, Opt. Eng. 49, 329–365 (1995).

Ettrich, K.

E. Welsch, K. Ettrich, H. Blaschke, P. Thomsen-Schmidt, D. Schaefer, N. Kaiser, “Investigation of the absorption induced damage in ultraviolet dielectric thin films,” Opt. Eng. 36, 504–514 (1997).
[CrossRef]

Eva, E.

E. Eva, K. R. Mann, “High-resolution calorimetric absorption measurements on optical components for excimer lasers,” in Laser-Induced Damage in Optical Materials: 1996, H. E. Bennet, A. H. Guenther, M. R. Kozlowsk, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2966, 48–55 (1997).
[CrossRef]

E. Eva, K. R. Mann, “Nonlinear absorption phenomena in optical materials for the UV-spectral range,” in Third International Workshop on Laser Beam and Optics Characterization, A. Geisen, M. Morin, eds., Proc. SPIE2870, 476–482 (1996).
[CrossRef]

Fournier, D.

Giesen, A.

D. Ristau, U. Willamowski, H. Welling, W. Plass, A. Giesen, “Evaluation of a round-robin test on optical absorption at 10.6 μm,” in Third International Workshop on Laser Beam and Optics Characterization, A. Geisen, M. Morin, eds., Proc. SPIE2870, 502–514 (1996).
[CrossRef]

Gregory, D. A.

H. B. Rosenstock, D. A. Gregory, J. A. Harrington, “Infrared bulk and surface absorption by nearly transparent crystals,” Appl. Opt. 15, 2075–2078 (1976).
[CrossRef] [PubMed]

Grönbeck, H.

M. Reichling, H. Grönbeck, “Harmonic heat flow in isotropic layered systems and its use for thin-film thermal conductivity measurements,” J. Appl. Phys. 75, 1914–1922 (1994).
[CrossRef]

Gross, T.

U. Willamowski, T. Gross, D. Ristau, H. Welling, “Calorimetric measurement of optical absorption and transmissivity with sub-ppm sensitivity,” in Specification, Production, and Testing of Optical Components and Systems, A. E. Gee, J. Houee, eds., Proc. SPIE2775, 148–158 (1996).
[CrossRef]

Guenther, K. H.

Harrington, J. A.

H. B. Rosenstock, D. A. Gregory, J. A. Harrington, “Infrared bulk and surface absorption by nearly transparent crystals,” Appl. Opt. 15, 2075–2078 (1976).
[CrossRef] [PubMed]

Hummel, R. E.

R. E. Hummel, K. H. Guenther, Thin Films for Optical Coatings (CRC Press, Boca Raton, Fla., 1995), Vol. 1, Chap. 9.

Jackson, W.

Jackson, W. B.

Kaiser, N.

E. Welsch, K. Ettrich, H. Blaschke, P. Thomsen-Schmidt, D. Schaefer, N. Kaiser, “Investigation of the absorption induced damage in ultraviolet dielectric thin films,” Opt. Eng. 36, 504–514 (1997).
[CrossRef]

M. Reichling, A. Bodemann, N. Kaiser, “Defect induced laser damage in oxide multilayer coatings for 248 nm,” Thin Solid Films 320, 363–278 (1997).

Langer, G.

P. Zimmermann, D. Ristau, E. Welsch, G. Langer, M. Reichling, “Potentiality of the photothermal surface-displacement technique for precisely performed absorption measurement of optical coatings,” Appl. Phys. A 58, 377–383 (1994).
[CrossRef]

Lazarides, B.

Loriette, V.

V. Loriette, L. Pinard, C. Boccara, J.-M. Mackowski, “Multilayer coating characterization for interferometric gravitational waves detection,” in Optical Interference Coatings, F. Abeles, ed., Proc. SPIE2253, 1031–1039 (1994).
[CrossRef]

Mackowski, J.-M.

V. Loriette, L. Pinard, C. Boccara, J.-M. Mackowski, “Multilayer coating characterization for interferometric gravitational waves detection,” in Optical Interference Coatings, F. Abeles, ed., Proc. SPIE2253, 1031–1039 (1994).
[CrossRef]

Mann, K. R.

E. Eva, K. R. Mann, “High-resolution calorimetric absorption measurements on optical components for excimer lasers,” in Laser-Induced Damage in Optical Materials: 1996, H. E. Bennet, A. H. Guenther, M. R. Kozlowsk, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2966, 48–55 (1997).
[CrossRef]

E. Eva, K. R. Mann, “Nonlinear absorption phenomena in optical materials for the UV-spectral range,” in Third International Workshop on Laser Beam and Optics Characterization, A. Geisen, M. Morin, eds., Proc. SPIE2870, 476–482 (1996).
[CrossRef]

Matthias, E.

M. Reichling, E. Welsch, E. Matthias, “Thin-film characterization and photothermal absolute calibration measurements using high-frequency electric currents,” in Specification and Measurement of Optical Systems, L. R. Baker, ed., Proc. SPIE1781, 205–213 (1993).
[CrossRef]

McGahan, W. A.

W. A. McGahan, K. Cole, “Solutions of the heat equation in multilayers for photothermal deflection experiments,” J. Appl. Phys. 72, 1362–1373 (1992).
[CrossRef]

Pelletier, E.

Pinard, L.

V. Loriette, L. Pinard, C. Boccara, J.-M. Mackowski, “Multilayer coating characterization for interferometric gravitational waves detection,” in Optical Interference Coatings, F. Abeles, ed., Proc. SPIE2253, 1031–1039 (1994).
[CrossRef]

Pinnow, D. A.

Plass, W.

D. Ristau, U. Willamowski, H. Welling, W. Plass, A. Giesen, “Evaluation of a round-robin test on optical absorption at 10.6 μm,” in Third International Workshop on Laser Beam and Optics Characterization, A. Geisen, M. Morin, eds., Proc. SPIE2870, 502–514 (1996).
[CrossRef]

Reichling, M.

M. Reichling, A. Bodemann, N. Kaiser, “Defect induced laser damage in oxide multilayer coatings for 248 nm,” Thin Solid Films 320, 363–278 (1997).

M. Reichling, H. Grönbeck, “Harmonic heat flow in isotropic layered systems and its use for thin-film thermal conductivity measurements,” J. Appl. Phys. 75, 1914–1922 (1994).
[CrossRef]

P. Zimmermann, D. Ristau, E. Welsch, G. Langer, M. Reichling, “Potentiality of the photothermal surface-displacement technique for precisely performed absorption measurement of optical coatings,” Appl. Phys. A 58, 377–383 (1994).
[CrossRef]

M. Reichling, E. Welsch, E. Matthias, “Thin-film characterization and photothermal absolute calibration measurements using high-frequency electric currents,” in Specification and Measurement of Optical Systems, L. R. Baker, ed., Proc. SPIE1781, 205–213 (1993).
[CrossRef]

M. Reichling, in Experimental Methods in the Physical Sciences, J. C. Miller, R. F. Haglund, eds. (Academic, San Diego, Calif., 1998), Vol. 30, Chap. 12, pp. 573–624.

Rich, T.

Ristau, D.

E. Welsch, D. Ristau, “Photothermal measurements on optical thin films,” Appl. Opt. 34, 7239–7253 (1995).
[CrossRef] [PubMed]

P. Zimmermann, D. Ristau, E. Welsch, G. Langer, M. Reichling, “Potentiality of the photothermal surface-displacement technique for precisely performed absorption measurement of optical coatings,” Appl. Phys. A 58, 377–383 (1994).
[CrossRef]

D. Ristau, U. Willamowski, H. Welling, W. Plass, A. Giesen, “Evaluation of a round-robin test on optical absorption at 10.6 μm,” in Third International Workshop on Laser Beam and Optics Characterization, A. Geisen, M. Morin, eds., Proc. SPIE2870, 502–514 (1996).
[CrossRef]

U. Willamowski, T. Gross, D. Ristau, H. Welling, “Calorimetric measurement of optical absorption and transmissivity with sub-ppm sensitivity,” in Specification, Production, and Testing of Optical Components and Systems, A. E. Gee, J. Houee, eds., Proc. SPIE2775, 148–158 (1996).
[CrossRef]

Roche, P.

M. Commandré, P. Roche, “Characterization of optical coatings by photothermal deflection,” Appl. Opt. 35, 5021–5043 (1996).
[CrossRef] [PubMed]

M. Commandré, P. Roche, “Characterization of absorption by photothermal deflection,” in Thin Films for Optical Systems, Opt. Eng. 49, 329–365 (1995).

Rosenstock, H. B.

H. B. Rosenstock, D. A. Gregory, J. A. Harrington, “Infrared bulk and surface absorption by nearly transparent crystals,” Appl. Opt. 15, 2075–2078 (1976).
[CrossRef] [PubMed]

Saxer, A.

Schaefer, D.

E. Welsch, K. Ettrich, H. Blaschke, P. Thomsen-Schmidt, D. Schaefer, N. Kaiser, “Investigation of the absorption induced damage in ultraviolet dielectric thin films,” Opt. Eng. 36, 504–514 (1997).
[CrossRef]

Scheuer, V.

H. W. Becker, V. Scheuer, T. T. Tschudi, “Low-power laser calorimetry with high resolution,” in Optical Interference Coatings, F. Abeles, ed., Proc. SPIE2253, 1152–1161 (1994).
[CrossRef]

Schmell, R. A.

Swimm, R. T.

Tam, A. C.

A. C. Tam, “Photoacoustic and photothermal spectroscopy,” in ICALEO: International Congress on Applications of Lasers and Electro-Optics (Laser Institute of America, Orlando, Fla., 1985), pp. 121–133.

Thomsen-Schmidt, P.

E. Welsch, K. Ettrich, H. Blaschke, P. Thomsen-Schmidt, D. Schaefer, N. Kaiser, “Investigation of the absorption induced damage in ultraviolet dielectric thin films,” Opt. Eng. 36, 504–514 (1997).
[CrossRef]

Tschudi, T. T.

H. W. Becker, V. Scheuer, T. T. Tschudi, “Low-power laser calorimetry with high resolution,” in Optical Interference Coatings, F. Abeles, ed., Proc. SPIE2253, 1152–1161 (1994).
[CrossRef]

Tuttle-Hart, T.

Welling, H.

U. Willamowski, T. Gross, D. Ristau, H. Welling, “Calorimetric measurement of optical absorption and transmissivity with sub-ppm sensitivity,” in Specification, Production, and Testing of Optical Components and Systems, A. E. Gee, J. Houee, eds., Proc. SPIE2775, 148–158 (1996).
[CrossRef]

D. Ristau, U. Willamowski, H. Welling, W. Plass, A. Giesen, “Evaluation of a round-robin test on optical absorption at 10.6 μm,” in Third International Workshop on Laser Beam and Optics Characterization, A. Geisen, M. Morin, eds., Proc. SPIE2870, 502–514 (1996).
[CrossRef]

Welsch, E.

E. Welsch, K. Ettrich, H. Blaschke, P. Thomsen-Schmidt, D. Schaefer, N. Kaiser, “Investigation of the absorption induced damage in ultraviolet dielectric thin films,” Opt. Eng. 36, 504–514 (1997).
[CrossRef]

E. Welsch, D. Ristau, “Photothermal measurements on optical thin films,” Appl. Opt. 34, 7239–7253 (1995).
[CrossRef] [PubMed]

P. Zimmermann, D. Ristau, E. Welsch, G. Langer, M. Reichling, “Potentiality of the photothermal surface-displacement technique for precisely performed absorption measurement of optical coatings,” Appl. Phys. A 58, 377–383 (1994).
[CrossRef]

E. Welsch, “Photothermal surface deformation technique—a goal for nondestructive evaluation in thin-film optics,” J. Mod. Opt. 38, 2159–2176 (1991).
[CrossRef]

M. Reichling, E. Welsch, E. Matthias, “Thin-film characterization and photothermal absolute calibration measurements using high-frequency electric currents,” in Specification and Measurement of Optical Systems, L. R. Baker, ed., Proc. SPIE1781, 205–213 (1993).
[CrossRef]

Willamowski, U.

D. Ristau, U. Willamowski, H. Welling, W. Plass, A. Giesen, “Evaluation of a round-robin test on optical absorption at 10.6 μm,” in Third International Workshop on Laser Beam and Optics Characterization, A. Geisen, M. Morin, eds., Proc. SPIE2870, 502–514 (1996).
[CrossRef]

U. Willamowski, T. Gross, D. Ristau, H. Welling, “Calorimetric measurement of optical absorption and transmissivity with sub-ppm sensitivity,” in Specification, Production, and Testing of Optical Components and Systems, A. E. Gee, J. Houee, eds., Proc. SPIE2775, 148–158 (1996).
[CrossRef]

Xiao, Y.

Zimmermann, P.

P. Zimmermann, D. Ristau, E. Welsch, G. Langer, M. Reichling, “Potentiality of the photothermal surface-displacement technique for precisely performed absorption measurement of optical coatings,” Appl. Phys. A 58, 377–383 (1994).
[CrossRef]

Appl. Opt. (2)

H. B. Rosenstock, D. A. Gregory, J. A. Harrington, “Infrared bulk and surface absorption by nearly transparent crystals,” Appl. Opt. 15, 2075–2078 (1976).
[CrossRef] [PubMed]

M. Commandré, P. Roche, “Characterization of optical coatings by photothermal deflection,” Appl. Opt. 35, 5021–5043 (1996).
[CrossRef] [PubMed]

Appl. Phys. A (1)

P. Zimmermann, D. Ristau, E. Welsch, G. Langer, M. Reichling, “Potentiality of the photothermal surface-displacement technique for precisely performed absorption measurement of optical coatings,” Appl. Phys. A 58, 377–383 (1994).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. Lett. (1)

A. C. Boccara, D. Fournier, J. Badoz, “Thermo-optical spectroscopy: detection by the ‘mirage effect’” Appl. Phys. Lett. 36, 130–132 (1980).
[CrossRef]

J. Appl. Phys. (2)

W. A. McGahan, K. Cole, “Solutions of the heat equation in multilayers for photothermal deflection experiments,” J. Appl. Phys. 72, 1362–1373 (1992).
[CrossRef]

M. Reichling, H. Grönbeck, “Harmonic heat flow in isotropic layered systems and its use for thin-film thermal conductivity measurements,” J. Appl. Phys. 75, 1914–1922 (1994).
[CrossRef]

J. Mod. Opt. (1)

E. Welsch, “Photothermal surface deformation technique—a goal for nondestructive evaluation in thin-film optics,” J. Mod. Opt. 38, 2159–2176 (1991).
[CrossRef]

J. Phys. (Paris) Colloq. (1)

N. M. Amer, “New approaches to photothermal spectroscopy,” J. Phys. (Paris) Colloq. 44, 185–198 (1983).
[CrossRef]

Opt. Eng. (1)

E. Welsch, K. Ettrich, H. Blaschke, P. Thomsen-Schmidt, D. Schaefer, N. Kaiser, “Investigation of the absorption induced damage in ultraviolet dielectric thin films,” Opt. Eng. 36, 504–514 (1997).
[CrossRef]

Opt. Lett. (1)

Thin Films for Optical Systems, Opt. Eng. (1)

M. Commandré, P. Roche, “Characterization of absorption by photothermal deflection,” in Thin Films for Optical Systems, Opt. Eng. 49, 329–365 (1995).

Thin Solid Films (1)

M. Reichling, A. Bodemann, N. Kaiser, “Defect induced laser damage in oxide multilayer coatings for 248 nm,” Thin Solid Films 320, 363–278 (1997).

Other (13)

M. Reichling, in Experimental Methods in the Physical Sciences, J. C. Miller, R. F. Haglund, eds. (Academic, San Diego, Calif., 1998), Vol. 30, Chap. 12, pp. 573–624.

M. Reichling, E. Welsch, E. Matthias, “Thin-film characterization and photothermal absolute calibration measurements using high-frequency electric currents,” in Specification and Measurement of Optical Systems, L. R. Baker, ed., Proc. SPIE1781, 205–213 (1993).
[CrossRef]

R. E. Hummel, K. H. Guenther, Thin Films for Optical Coatings (CRC Press, Boca Raton, Fla., 1995), Vol. 1, Chap. 9.

V. Loriette, L. Pinard, C. Boccara, J.-M. Mackowski, “Multilayer coating characterization for interferometric gravitational waves detection,” in Optical Interference Coatings, F. Abeles, ed., Proc. SPIE2253, 1031–1039 (1994).
[CrossRef]

In the following, only that part of absorbed laser power/energy that is transformed into heat is considered, and other possible (but typically less relevant) absorption channels are disregarded.

A. C. Tam, “Photoacoustic and photothermal spectroscopy,” in ICALEO: International Congress on Applications of Lasers and Electro-Optics (Laser Institute of America, Orlando, Fla., 1985), pp. 121–133.

“ISO 11551: test method for absorptance of optical laser components,” (International Organization for Standardization, Geneva, Switzerland, 1997).

D. Ristau, U. Willamowski, H. Welling, W. Plass, A. Giesen, “Evaluation of a round-robin test on optical absorption at 10.6 μm,” in Third International Workshop on Laser Beam and Optics Characterization, A. Geisen, M. Morin, eds., Proc. SPIE2870, 502–514 (1996).
[CrossRef]

E. Eva, K. R. Mann, “High-resolution calorimetric absorption measurements on optical components for excimer lasers,” in Laser-Induced Damage in Optical Materials: 1996, H. E. Bennet, A. H. Guenther, M. R. Kozlowsk, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2966, 48–55 (1997).
[CrossRef]

H. W. Becker, V. Scheuer, T. T. Tschudi, “Low-power laser calorimetry with high resolution,” in Optical Interference Coatings, F. Abeles, ed., Proc. SPIE2253, 1152–1161 (1994).
[CrossRef]

E. Eva, K. R. Mann, “Nonlinear absorption phenomena in optical materials for the UV-spectral range,” in Third International Workshop on Laser Beam and Optics Characterization, A. Geisen, M. Morin, eds., Proc. SPIE2870, 476–482 (1996).
[CrossRef]

U. Willamowski, T. Gross, D. Ristau, H. Welling, “Calorimetric measurement of optical absorption and transmissivity with sub-ppm sensitivity,” in Specification, Production, and Testing of Optical Components and Systems, A. E. Gee, J. Houee, eds., Proc. SPIE2775, 148–158 (1996).
[CrossRef]

A simple method for performing such calibrations is to deposit a high-absorbing coating (e.g., soot or graphite) on a reference sample of identical thermal conductivity, heat capacity, and geometry and test the absorptance with an attenuated laser beam. While high absorptance values can be easily determined with good accuracy (e.g., by spectral photometric methods or by testing transmissivity and scatter), the determination of the attenuation factor is often more difficult, and nonlinearities of the attenuators must be avoided.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

PTD microscopy images: amplitude (Al2O3/SiO2 multilayer high-reflecting coating, λ0 = 248 nm, produced at the Fraunhofer Institute for Applied Optics and Precision Engineering, Jena. By courtesy of M. Reichling.

Fig. 2
Fig. 2

PTD microscopy images: phase (Al2O3/SiO2 multilayer high-reflecting coating, λ0 = 248 nm, produced at the Fraunhofer Institute for Applied Optics and Precision Engineering, Jena. By courtesy of M. Reichling.

Fig. 3
Fig. 3

Examples of PTD setups: photothermal displacement (left-hand figure), probe-beam refraction (center figure), and mirage (right-hand figure).

Fig. 4
Fig. 4

ISO 11551: evaluation methods for calorimetric data, pulse method.

Fig. 5
Fig. 5

ISO 11551: evaluation methods for calorimetric data, gradient method.

Fig. 6
Fig. 6

Example of highly sensitive calorimetric measurement: An absorbed laser power of 2.5 μW is detectable, effecting a temperature rise of 200 μK.

Fig. 7
Fig. 7

Temperature dynamics of BK7 substrate during and after irradiation (diffusivity κ = 0.51 mm2 s-1, l = 0.1 cm, t 2- t 1 = 120 s).

Fig. 8
Fig. 8

Temperature simulation at varying radial positions (quartz sample, 25-mm diameter × 3-mm thickness, k = 0.014 W cm-1 K-1).

Fig. 9
Fig. 9

Temperature rise simulations at position 7 mm from sample center (varying thermal conductivities k, sample 25-mm diameter × 3-mm thickness, ηc p = 2.5 J K-1 cm-3).

Fig. 10
Fig. 10

Temperature rise simulations at position 12.5 mm from sample center (varying thermal conductivities k, sample 25-mm diameter × 3-mm thickness, ηc p = 2.5 J K-1 cm-3).

Fig. 11
Fig. 11

Thickness dependency of SQ2 absorbtance: α = 1.2 + 27 ppm cm-1.

Tables (1)

Tables Icon

Table 1 Physical Symbols

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

T ˙ = α P mc p - γ T - T C ,
γ = h mc p 2 π Rl + 2 π R 2 = 2 h η c p 1 R + 1 l ,
T t - T C = 0 , t t 1 α P γ mc p 1 - exp - γ t - t 1 , t 1 < t < t 2 α P γ mc p exp - γ t - t 2 - exp - γ t - t 1 , t > t 2
α = T p i   m i c i t p P ,
α = i   m i c i P d T d t c + d T d t h .
T ˙ = - γ T - T C t 0 - ζ t - t 0 ,
T t = T C t 0 + ζ t - t 0 - ζ / γ + exp - γ t C 1 = T C t - ζ / γ + exp - γ t C 1 ,
T ˙ = α P mc p - γ T - T C t 0 - ζ t - t 0 , T t < t 1 = T C t - ζ / γ ,
T t - T C t 0 = ζ t - t 0 - ζ / γ ,     t t 1 α P γ mc p 1 - exp - γ t - t 1 + ζ t - t 0 - ζ γ ,     t 1 < t < t 2 . α P γ mc p exp - γ t - t 2 - exp - γ t - t 1 + ζ t - t 0 - ζ γ ,     t > t 2 .
k θ + Q ( ρ , z ) heat source = η c p θ ˙ .
k ρ θ = - h θ ρ = R 0 ρ = 0 ,     k z θ = - h θ z = l h θ   z = 0
ρ 2 + 1 ρ   ρ - 2 h kl θ + Q ρ k = 1 κ   t θ .
θ ρ ,   t = i   c i J 0 ξ i ρ exp - κ ξ i 2 + 2 h η c p l t - t 1 ,
0 = ρ J 0 ξ i ρ | ρ = R + h / k J 0 ξ i R .
q i = 1 N i 0 R d ρ ρ Q ρ J 0 ξ i ρ ,
N i = 0 R d ρ ρ J 0 2 ξ i ρ = R 2 2 J 0 2 ξ i R + J 1 2 ξ i R ,
γ i   : =   κ ξ i 2 + 2 h η c p l ,     0   = :   h k   J 0 ξ i R - ξ i J 1 ξ i R ,
0 = k ρ 2 + k ρ   ρ - 2 h l - η c p t θ + Q ρ , = i   0 + J 0 ξ i ρ exp - γ i t - t 1 - η c p t c i ρ ,   t + q i   exp γ i t - t 1 ,
  c i t = q i γ i η c p exp γ i t - t 1 + const ,
T ρ ,   t - T 0 = 0 , t t 1 i q i γ i η c p   J 0 ξ i ρ 1 - exp - γ i t - t 1 , t 1 < t t 2 i q i γ i η c p   J 0 ξ i ρ 1 - exp - γ i t 2 - t 1 × exp - γ i t - t 2 , t 2 < t .
q i = 2 aP π σ 2 N i 0 R d ρ ρ   exp - 2 ρ 2 σ 2 J 0 ξ i ρ = σ 0 aP 2 π N i
T ρ ,   t - T 0 = α P mc p 0 , t t 1 i 1 γ i J 0 ξ i ρ J 0 2 R ξ i h 2 ξ i 2 k 2 + 1 1 - exp - γ i t - t 1 , t 1 < t t 2 i 1 γ i J 0 ξ i ρ J 0 2 R ξ i h 2 ξ i 2 k 2 + 1 1 - exp - γ i t 2 - t 1 exp - γ i t - t 2 , t 2 < t .

Metrics