Abstract

A diode-laser sensor system based on absorption spectroscopy techniques has been developed for nonintrusive measurements of CO2 in high-temperature environments. Survey spectra of the CO2 (20°1,04°1)I–00°0 and (20°1,04°1)II–00°0 bands between 1.966 and 2.035 μm (4915–5085 cm-1) were recorded at temperatures between 296 and 1425 K in a heated static cell and compared with calculated spectra (by using the HITRAN 96/HITEMP database) to find candidate transitions for CO2 detection. High-resolution measurements of the CO2 R(56) line shape [(20°1,04°1)II–00°0 band] were used to determine the transition line strength, the self-broadening half-width, and the coefficient of temperature dependence of the self-broadening half-width. The results represent what are believed to be the first measurements of CO2 absorption near 2.0 μm with room-temperature diode lasers. Potential applications of the diode-laser sensor system include in situ combustion measurements and environmental monitoring.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using a multiplexed diode-laser sensor system,” AIAA J. 34, 489–493 (1996).
    [CrossRef]
  2. D. M. Sonnenfroh, M. G. Allen, “Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8-μm room-temperature diode laser,” Appl. Opt. 36, 7970–7977 (1997).
    [CrossRef]
  3. V. Nagali, E. R. Furlong, S. I. Chou, R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode-laser sensor system for multi-species and multi-parameter measurements in combustion flows,” paper AIAA 95-2684, presented at the 31st Joint Propulsion Conference, San Diego, Calif., 10–12 July 1995 (American Institute of Aeronautics and Astronautics, 555 West 57th Street, New York, 1995).
  4. D. S. Baer, R. K. Hanson, M. E. Newfield, N. K. Gopaul, “Multiplexed diode-laser sensor system for simultaneous H2O, O2, and temperature measurements,” Opt. Lett. 19, 1900–1902 (1994).
    [CrossRef] [PubMed]
  5. E. R. Furlong, D. S. Baer, R. K. Hanson, “Combustion control using a multiplexed diode laser sensor system,” in Twenty-Sixth Symposium (International) on Combustion, A. R. Burgess, F. L. Dryer, eds. (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2851–2858.
    [CrossRef]
  6. V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, “Tunable diode laser absorption measurements of CH4 at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996).
    [CrossRef] [PubMed]
  7. R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode laser sensor for measurements of CO, CO2, and CH4 in combustion flows,” Appl. Opt. 36, 8745–8752 (1997).
    [CrossRef]
  8. R. M. Mihalcea, D. S. Baer, R. K. Hanson, “A diode-laser sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
    [CrossRef]
  9. J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992).
    [CrossRef] [PubMed]
  10. D. B. Oh, M. E. Paige, A. C. Stanton, J. A. Silver, “Quantitative, in situ monitoring of combustion radicals using visible and near-infrared diode lasers and high frequency wavelength modulation spectroscopy,” in Proceedings of the Western States Section of the Combustion Institute (The Combustion Institute, Pittsburgh, Pa., 1996), paper 96F-084.
  11. R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Tunable diode-laser absorption measurements of NO2 near 670 and 395 nm,” Appl. Opt. 35, 4059–4064 (1996).
    [CrossRef] [PubMed]
  12. L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
    [CrossRef]
  13. L. S. Rothman, R. L. Hawkins, R. B. Wattson, R. R. Gamache, “Energy levels, intensities, and linewidths of atmospheric carbon dioxide bands,” J. Quant. Spectrosc. Radiat. Transfer 48, 537–566 (1992).
    [CrossRef]
  14. L. S. Rothman, Phillips Laboratory, Geophysics Directorate, Hanscom Air Force Base, Ma., 01731 (personal communication, 1998).
  15. K. P. Vasilevskii, L. E. Danilochinka, V. A. Kazbanov, “Intensities and halfwidths of CO2 lines in the vibrational-rotational bands at 2.0 μm,” Opt. Spectrosc. 38, 499–500 (1975).
  16. D. Scutaru, L. Rosenmann, J. Taine, R. B. Wattson, L. S. Rothman, “Measurements and calculations of CO2 absorption at high temperature in the 4.3 and 2.7 μm regions,” J. Quant. Spectrosc. Radiat. Transfer 50, 179–191 (1993).
    [CrossRef]
  17. F. P. J. Valero, C. B. Suarez, R. W. Boese, “Absolute intensities and pressure broadening coefficients measured at different temperatures for the 201II ← 000 band of 12C16O2 at 4978 cm-1,” J. Quant. Spectrosc. Radiat. Transfer 23, 337–341 (1979).
    [CrossRef]
  18. J. Taine, “A line-by-line calculation of low-resolution radiative properties of CO2-CO-transparent nonisothermal gases mixtures up to 3000 K,” J. Quant. Spectrosc. Radiat. Transfer 30, 371–379 (1983).
    [CrossRef]
  19. P. Arcas, E. Arié, M. Cuisenier, J. P. Maillard, “The infrared spectrum and molecular constants of CO2 in the 2 μm region,” Can. J. Phys. 61, 857–866 (1983).
    [CrossRef]

1998 (1)

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “A diode-laser sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

1997 (2)

1996 (3)

D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using a multiplexed diode-laser sensor system,” AIAA J. 34, 489–493 (1996).
[CrossRef]

V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, “Tunable diode laser absorption measurements of CH4 at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996).
[CrossRef] [PubMed]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Tunable diode-laser absorption measurements of NO2 near 670 and 395 nm,” Appl. Opt. 35, 4059–4064 (1996).
[CrossRef] [PubMed]

1994 (1)

1993 (1)

D. Scutaru, L. Rosenmann, J. Taine, R. B. Wattson, L. S. Rothman, “Measurements and calculations of CO2 absorption at high temperature in the 4.3 and 2.7 μm regions,” J. Quant. Spectrosc. Radiat. Transfer 50, 179–191 (1993).
[CrossRef]

1992 (3)

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

L. S. Rothman, R. L. Hawkins, R. B. Wattson, R. R. Gamache, “Energy levels, intensities, and linewidths of atmospheric carbon dioxide bands,” J. Quant. Spectrosc. Radiat. Transfer 48, 537–566 (1992).
[CrossRef]

J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992).
[CrossRef] [PubMed]

1983 (2)

J. Taine, “A line-by-line calculation of low-resolution radiative properties of CO2-CO-transparent nonisothermal gases mixtures up to 3000 K,” J. Quant. Spectrosc. Radiat. Transfer 30, 371–379 (1983).
[CrossRef]

P. Arcas, E. Arié, M. Cuisenier, J. P. Maillard, “The infrared spectrum and molecular constants of CO2 in the 2 μm region,” Can. J. Phys. 61, 857–866 (1983).
[CrossRef]

1979 (1)

F. P. J. Valero, C. B. Suarez, R. W. Boese, “Absolute intensities and pressure broadening coefficients measured at different temperatures for the 201II ← 000 band of 12C16O2 at 4978 cm-1,” J. Quant. Spectrosc. Radiat. Transfer 23, 337–341 (1979).
[CrossRef]

1975 (1)

K. P. Vasilevskii, L. E. Danilochinka, V. A. Kazbanov, “Intensities and halfwidths of CO2 lines in the vibrational-rotational bands at 2.0 μm,” Opt. Spectrosc. 38, 499–500 (1975).

Allen, M. G.

Arcas, P.

P. Arcas, E. Arié, M. Cuisenier, J. P. Maillard, “The infrared spectrum and molecular constants of CO2 in the 2 μm region,” Can. J. Phys. 61, 857–866 (1983).
[CrossRef]

Arié, E.

P. Arcas, E. Arié, M. Cuisenier, J. P. Maillard, “The infrared spectrum and molecular constants of CO2 in the 2 μm region,” Can. J. Phys. 61, 857–866 (1983).
[CrossRef]

Baer, D. S.

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “A diode-laser sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode laser sensor for measurements of CO, CO2, and CH4 in combustion flows,” Appl. Opt. 36, 8745–8752 (1997).
[CrossRef]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Tunable diode-laser absorption measurements of NO2 near 670 and 395 nm,” Appl. Opt. 35, 4059–4064 (1996).
[CrossRef] [PubMed]

V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, “Tunable diode laser absorption measurements of CH4 at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996).
[CrossRef] [PubMed]

D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using a multiplexed diode-laser sensor system,” AIAA J. 34, 489–493 (1996).
[CrossRef]

D. S. Baer, R. K. Hanson, M. E. Newfield, N. K. Gopaul, “Multiplexed diode-laser sensor system for simultaneous H2O, O2, and temperature measurements,” Opt. Lett. 19, 1900–1902 (1994).
[CrossRef] [PubMed]

E. R. Furlong, D. S. Baer, R. K. Hanson, “Combustion control using a multiplexed diode laser sensor system,” in Twenty-Sixth Symposium (International) on Combustion, A. R. Burgess, F. L. Dryer, eds. (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2851–2858.
[CrossRef]

V. Nagali, E. R. Furlong, S. I. Chou, R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode-laser sensor system for multi-species and multi-parameter measurements in combustion flows,” paper AIAA 95-2684, presented at the 31st Joint Propulsion Conference, San Diego, Calif., 10–12 July 1995 (American Institute of Aeronautics and Astronautics, 555 West 57th Street, New York, 1995).

Boese, R. W.

F. P. J. Valero, C. B. Suarez, R. W. Boese, “Absolute intensities and pressure broadening coefficients measured at different temperatures for the 201II ← 000 band of 12C16O2 at 4978 cm-1,” J. Quant. Spectrosc. Radiat. Transfer 23, 337–341 (1979).
[CrossRef]

Brown, L. R.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Camy-Peyret, C.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Chou, S. I.

V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, “Tunable diode laser absorption measurements of CH4 at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996).
[CrossRef] [PubMed]

V. Nagali, E. R. Furlong, S. I. Chou, R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode-laser sensor system for multi-species and multi-parameter measurements in combustion flows,” paper AIAA 95-2684, presented at the 31st Joint Propulsion Conference, San Diego, Calif., 10–12 July 1995 (American Institute of Aeronautics and Astronautics, 555 West 57th Street, New York, 1995).

Chris Benner, D.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Cuisenier, M.

P. Arcas, E. Arié, M. Cuisenier, J. P. Maillard, “The infrared spectrum and molecular constants of CO2 in the 2 μm region,” Can. J. Phys. 61, 857–866 (1983).
[CrossRef]

Danilochinka, L. E.

K. P. Vasilevskii, L. E. Danilochinka, V. A. Kazbanov, “Intensities and halfwidths of CO2 lines in the vibrational-rotational bands at 2.0 μm,” Opt. Spectrosc. 38, 499–500 (1975).

Flaud, J.-M.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Furlong, E. R.

D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using a multiplexed diode-laser sensor system,” AIAA J. 34, 489–493 (1996).
[CrossRef]

E. R. Furlong, D. S. Baer, R. K. Hanson, “Combustion control using a multiplexed diode laser sensor system,” in Twenty-Sixth Symposium (International) on Combustion, A. R. Burgess, F. L. Dryer, eds. (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2851–2858.
[CrossRef]

V. Nagali, E. R. Furlong, S. I. Chou, R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode-laser sensor system for multi-species and multi-parameter measurements in combustion flows,” paper AIAA 95-2684, presented at the 31st Joint Propulsion Conference, San Diego, Calif., 10–12 July 1995 (American Institute of Aeronautics and Astronautics, 555 West 57th Street, New York, 1995).

Gamache, R. R.

L. S. Rothman, R. L. Hawkins, R. B. Wattson, R. R. Gamache, “Energy levels, intensities, and linewidths of atmospheric carbon dioxide bands,” J. Quant. Spectrosc. Radiat. Transfer 48, 537–566 (1992).
[CrossRef]

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Goldman, A.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Gopaul, N. K.

Hanson, R. K.

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “A diode-laser sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode laser sensor for measurements of CO, CO2, and CH4 in combustion flows,” Appl. Opt. 36, 8745–8752 (1997).
[CrossRef]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Tunable diode-laser absorption measurements of NO2 near 670 and 395 nm,” Appl. Opt. 35, 4059–4064 (1996).
[CrossRef] [PubMed]

V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, “Tunable diode laser absorption measurements of CH4 at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996).
[CrossRef] [PubMed]

D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using a multiplexed diode-laser sensor system,” AIAA J. 34, 489–493 (1996).
[CrossRef]

D. S. Baer, R. K. Hanson, M. E. Newfield, N. K. Gopaul, “Multiplexed diode-laser sensor system for simultaneous H2O, O2, and temperature measurements,” Opt. Lett. 19, 1900–1902 (1994).
[CrossRef] [PubMed]

E. R. Furlong, D. S. Baer, R. K. Hanson, “Combustion control using a multiplexed diode laser sensor system,” in Twenty-Sixth Symposium (International) on Combustion, A. R. Burgess, F. L. Dryer, eds. (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2851–2858.
[CrossRef]

V. Nagali, E. R. Furlong, S. I. Chou, R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode-laser sensor system for multi-species and multi-parameter measurements in combustion flows,” paper AIAA 95-2684, presented at the 31st Joint Propulsion Conference, San Diego, Calif., 10–12 July 1995 (American Institute of Aeronautics and Astronautics, 555 West 57th Street, New York, 1995).

Hawkins, R. L.

L. S. Rothman, R. L. Hawkins, R. B. Wattson, R. R. Gamache, “Energy levels, intensities, and linewidths of atmospheric carbon dioxide bands,” J. Quant. Spectrosc. Radiat. Transfer 48, 537–566 (1992).
[CrossRef]

Kazbanov, V. A.

K. P. Vasilevskii, L. E. Danilochinka, V. A. Kazbanov, “Intensities and halfwidths of CO2 lines in the vibrational-rotational bands at 2.0 μm,” Opt. Spectrosc. 38, 499–500 (1975).

Maillard, J. P.

P. Arcas, E. Arié, M. Cuisenier, J. P. Maillard, “The infrared spectrum and molecular constants of CO2 in the 2 μm region,” Can. J. Phys. 61, 857–866 (1983).
[CrossRef]

Malathy Devi, V.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Massie, S. T.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Mihalcea, R. M.

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “A diode-laser sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode laser sensor for measurements of CO, CO2, and CH4 in combustion flows,” Appl. Opt. 36, 8745–8752 (1997).
[CrossRef]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Tunable diode-laser absorption measurements of NO2 near 670 and 395 nm,” Appl. Opt. 35, 4059–4064 (1996).
[CrossRef] [PubMed]

V. Nagali, E. R. Furlong, S. I. Chou, R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode-laser sensor system for multi-species and multi-parameter measurements in combustion flows,” paper AIAA 95-2684, presented at the 31st Joint Propulsion Conference, San Diego, Calif., 10–12 July 1995 (American Institute of Aeronautics and Astronautics, 555 West 57th Street, New York, 1995).

Nagali, V.

V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, “Tunable diode laser absorption measurements of CH4 at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996).
[CrossRef] [PubMed]

D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using a multiplexed diode-laser sensor system,” AIAA J. 34, 489–493 (1996).
[CrossRef]

V. Nagali, E. R. Furlong, S. I. Chou, R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode-laser sensor system for multi-species and multi-parameter measurements in combustion flows,” paper AIAA 95-2684, presented at the 31st Joint Propulsion Conference, San Diego, Calif., 10–12 July 1995 (American Institute of Aeronautics and Astronautics, 555 West 57th Street, New York, 1995).

Newfield, M. E.

D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using a multiplexed diode-laser sensor system,” AIAA J. 34, 489–493 (1996).
[CrossRef]

D. S. Baer, R. K. Hanson, M. E. Newfield, N. K. Gopaul, “Multiplexed diode-laser sensor system for simultaneous H2O, O2, and temperature measurements,” Opt. Lett. 19, 1900–1902 (1994).
[CrossRef] [PubMed]

Oh, D. B.

D. B. Oh, M. E. Paige, A. C. Stanton, J. A. Silver, “Quantitative, in situ monitoring of combustion radicals using visible and near-infrared diode lasers and high frequency wavelength modulation spectroscopy,” in Proceedings of the Western States Section of the Combustion Institute (The Combustion Institute, Pittsburgh, Pa., 1996), paper 96F-084.

Paige, M. E.

D. B. Oh, M. E. Paige, A. C. Stanton, J. A. Silver, “Quantitative, in situ monitoring of combustion radicals using visible and near-infrared diode lasers and high frequency wavelength modulation spectroscopy,” in Proceedings of the Western States Section of the Combustion Institute (The Combustion Institute, Pittsburgh, Pa., 1996), paper 96F-084.

Perrin, A.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Rinsland, C. P.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Rosenmann, L.

D. Scutaru, L. Rosenmann, J. Taine, R. B. Wattson, L. S. Rothman, “Measurements and calculations of CO2 absorption at high temperature in the 4.3 and 2.7 μm regions,” J. Quant. Spectrosc. Radiat. Transfer 50, 179–191 (1993).
[CrossRef]

Rothman, L. S.

D. Scutaru, L. Rosenmann, J. Taine, R. B. Wattson, L. S. Rothman, “Measurements and calculations of CO2 absorption at high temperature in the 4.3 and 2.7 μm regions,” J. Quant. Spectrosc. Radiat. Transfer 50, 179–191 (1993).
[CrossRef]

L. S. Rothman, R. L. Hawkins, R. B. Wattson, R. R. Gamache, “Energy levels, intensities, and linewidths of atmospheric carbon dioxide bands,” J. Quant. Spectrosc. Radiat. Transfer 48, 537–566 (1992).
[CrossRef]

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

L. S. Rothman, Phillips Laboratory, Geophysics Directorate, Hanscom Air Force Base, Ma., 01731 (personal communication, 1998).

Scutaru, D.

D. Scutaru, L. Rosenmann, J. Taine, R. B. Wattson, L. S. Rothman, “Measurements and calculations of CO2 absorption at high temperature in the 4.3 and 2.7 μm regions,” J. Quant. Spectrosc. Radiat. Transfer 50, 179–191 (1993).
[CrossRef]

Silver, J. A.

J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992).
[CrossRef] [PubMed]

D. B. Oh, M. E. Paige, A. C. Stanton, J. A. Silver, “Quantitative, in situ monitoring of combustion radicals using visible and near-infrared diode lasers and high frequency wavelength modulation spectroscopy,” in Proceedings of the Western States Section of the Combustion Institute (The Combustion Institute, Pittsburgh, Pa., 1996), paper 96F-084.

Smith, M. A. H.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Sonnenfroh, D. M.

Stanton, A. C.

D. B. Oh, M. E. Paige, A. C. Stanton, J. A. Silver, “Quantitative, in situ monitoring of combustion radicals using visible and near-infrared diode lasers and high frequency wavelength modulation spectroscopy,” in Proceedings of the Western States Section of the Combustion Institute (The Combustion Institute, Pittsburgh, Pa., 1996), paper 96F-084.

Suarez, C. B.

F. P. J. Valero, C. B. Suarez, R. W. Boese, “Absolute intensities and pressure broadening coefficients measured at different temperatures for the 201II ← 000 band of 12C16O2 at 4978 cm-1,” J. Quant. Spectrosc. Radiat. Transfer 23, 337–341 (1979).
[CrossRef]

Taine, J.

D. Scutaru, L. Rosenmann, J. Taine, R. B. Wattson, L. S. Rothman, “Measurements and calculations of CO2 absorption at high temperature in the 4.3 and 2.7 μm regions,” J. Quant. Spectrosc. Radiat. Transfer 50, 179–191 (1993).
[CrossRef]

J. Taine, “A line-by-line calculation of low-resolution radiative properties of CO2-CO-transparent nonisothermal gases mixtures up to 3000 K,” J. Quant. Spectrosc. Radiat. Transfer 30, 371–379 (1983).
[CrossRef]

Tipping, R. H.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Toth, R. A.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Valero, F. P. J.

F. P. J. Valero, C. B. Suarez, R. W. Boese, “Absolute intensities and pressure broadening coefficients measured at different temperatures for the 201II ← 000 band of 12C16O2 at 4978 cm-1,” J. Quant. Spectrosc. Radiat. Transfer 23, 337–341 (1979).
[CrossRef]

Vasilevskii, K. P.

K. P. Vasilevskii, L. E. Danilochinka, V. A. Kazbanov, “Intensities and halfwidths of CO2 lines in the vibrational-rotational bands at 2.0 μm,” Opt. Spectrosc. 38, 499–500 (1975).

Wattson, R. B.

D. Scutaru, L. Rosenmann, J. Taine, R. B. Wattson, L. S. Rothman, “Measurements and calculations of CO2 absorption at high temperature in the 4.3 and 2.7 μm regions,” J. Quant. Spectrosc. Radiat. Transfer 50, 179–191 (1993).
[CrossRef]

L. S. Rothman, R. L. Hawkins, R. B. Wattson, R. R. Gamache, “Energy levels, intensities, and linewidths of atmospheric carbon dioxide bands,” J. Quant. Spectrosc. Radiat. Transfer 48, 537–566 (1992).
[CrossRef]

AIAA J. (1)

D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using a multiplexed diode-laser sensor system,” AIAA J. 34, 489–493 (1996).
[CrossRef]

Appl. Opt. (2)

V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, “Tunable diode laser absorption measurements of CH4 at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996).
[CrossRef] [PubMed]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Tunable diode-laser absorption measurements of NO2 near 670 and 395 nm,” Appl. Opt. 35, 4059–4064 (1996).
[CrossRef] [PubMed]

Appl. Opt. (3)

Can. J. Phys. (1)

P. Arcas, E. Arié, M. Cuisenier, J. P. Maillard, “The infrared spectrum and molecular constants of CO2 in the 2 μm region,” Can. J. Phys. 61, 857–866 (1983).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

L. S. Rothman, R. L. Hawkins, R. B. Wattson, R. R. Gamache, “Energy levels, intensities, and linewidths of atmospheric carbon dioxide bands,” J. Quant. Spectrosc. Radiat. Transfer 48, 537–566 (1992).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

J. Taine, “A line-by-line calculation of low-resolution radiative properties of CO2-CO-transparent nonisothermal gases mixtures up to 3000 K,” J. Quant. Spectrosc. Radiat. Transfer 30, 371–379 (1983).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (3)

D. Scutaru, L. Rosenmann, J. Taine, R. B. Wattson, L. S. Rothman, “Measurements and calculations of CO2 absorption at high temperature in the 4.3 and 2.7 μm regions,” J. Quant. Spectrosc. Radiat. Transfer 50, 179–191 (1993).
[CrossRef]

F. P. J. Valero, C. B. Suarez, R. W. Boese, “Absolute intensities and pressure broadening coefficients measured at different temperatures for the 201II ← 000 band of 12C16O2 at 4978 cm-1,” J. Quant. Spectrosc. Radiat. Transfer 23, 337–341 (1979).
[CrossRef]

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Meas. Sci. Technol. (1)

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “A diode-laser sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

Opt. Spectrosc. (1)

K. P. Vasilevskii, L. E. Danilochinka, V. A. Kazbanov, “Intensities and halfwidths of CO2 lines in the vibrational-rotational bands at 2.0 μm,” Opt. Spectrosc. 38, 499–500 (1975).

Opt. Lett. (1)

Other (4)

D. B. Oh, M. E. Paige, A. C. Stanton, J. A. Silver, “Quantitative, in situ monitoring of combustion radicals using visible and near-infrared diode lasers and high frequency wavelength modulation spectroscopy,” in Proceedings of the Western States Section of the Combustion Institute (The Combustion Institute, Pittsburgh, Pa., 1996), paper 96F-084.

V. Nagali, E. R. Furlong, S. I. Chou, R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode-laser sensor system for multi-species and multi-parameter measurements in combustion flows,” paper AIAA 95-2684, presented at the 31st Joint Propulsion Conference, San Diego, Calif., 10–12 July 1995 (American Institute of Aeronautics and Astronautics, 555 West 57th Street, New York, 1995).

E. R. Furlong, D. S. Baer, R. K. Hanson, “Combustion control using a multiplexed diode laser sensor system,” in Twenty-Sixth Symposium (International) on Combustion, A. R. Burgess, F. L. Dryer, eds. (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2851–2858.
[CrossRef]

L. S. Rothman, Phillips Laboratory, Geophysics Directorate, Hanscom Air Force Base, Ma., 01731 (personal communication, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Calculated CO2 line intensities in the 1.4–3.0-μm spectral region at 1000 K (HITEMP database).

Fig. 2
Fig. 2

Schematic diagram of the experimental setup used to measure CO2 absorption at elevated temperatures in a heated static cell.

Fig. 3
Fig. 3

Measured CO2 survey spectra (top panel) between 4910 and 5084 cm-1 at 520 K (198-Torr CO2, 20-cm absorption path length). The middle and the bottom panels show the ratios of measured and calculated line-center absorbances (with m = 0.5 and m = 0.7 as values of the temperature dependence of the broadening coefficient) of selected transitions from the 20012 ← 00001 and the 20011 ← 00001 bands.

Fig. 4
Fig. 4

Comparison of (a) calculated (with the HITEMP database) and (b) measured spectral absorbance of CO2 and respective line assignments in the 5036–5049-cm-1 spectral range at 1080 K (202-Torr CO2, 20-cm absorption path length). The CO2 21122 ← 12201 band (HITEMP database) was not observed in the measured data.

Fig. 5
Fig. 5

Measured CO2 survey spectra (top panel) in the 4914–5060-cm-1 spectral region at 1080 K (202-Torr CO2, 20-cm absorption path length) and a comparison of measured and calculated line-center absorbances (bottom panel) of selected transitions from the 20012 ← 00001 and the 20011 ← 00001 bands.

Fig. 6
Fig. 6

Measured CO2 survey spectra (top panel) in the 4915–5041-cm-1 spectral region at 1425 K (217-Torr CO2, 20-cm absorption path length) and a comparison of measured and calculated line-center absorbances (bottom panel) of selected transitions from the 20012 ← 00001 band.

Fig. 7
Fig. 7

Comparison of (a) calculated (with the HITEMP database) and (b) measured spectral absorbance near 5010.035 cm-1 (1080 K, 106.6-Torr CO2, 40-cm absorption path length). The R(56) line of the CO2 20012 ← 00001 band represents a candidate transition for in situ CO2 detection.

Fig. 8
Fig. 8

Measured line strength of the R(56) transition (CO2 20012 ← 00001 band) as a function of temperature (296–1500 K). The dashed curve represents the calculated line strength with the HITEMP database.

Fig. 9
Fig. 9

Measured self-broadening half-width and the coefficient of temperature dependence of the self-broadening half-width of the R(56) line of the CO2 20012 ← 00001 band as a function of temperature.

Metrics