Abstract

We investigate the feasibility of using in-fiber Bragg gratings for measuring acoustic fields in the megahertz range. We found that the acoustic coupling from the ultrasonic field to the grating leads to the formation of standing waves in the fiber. Because of these standing waves, the system response is complex and, as we show, the grating does not act as an effective probe. However, significant improvement in its performance can be gained by use of short gratings coupled with an appropriate desensitization of the fiber. A noise-limited pressure resolution of ≈4.5 × 10-3 atm/√Hz was found.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Nyborg, “Optimization of exposure conditions for medical ultrasound,” Ultrasound Med. Biol. 11, 245–260 (1985).
    [CrossRef] [PubMed]
  2. National Council on Radiation Protection and Measurements, “Biological effects of ultrasound: mechanisms and clinical implications,” NCRP Rep. No. 74 (National Council on Radiation Protection and Measurements, Bethesda, Md., 1983).
  3. B. B. Barnett, G. R. ter Haar, M. C. Ziskin, W. L. Nyborg, K. Maeda, J. Bang, “Current status of research on biophysical effects of ultrasound,” Ultrasound Med. Biol. 20, 205–218 (1994).
    [CrossRef] [PubMed]
  4. N. T. Sanghvi, F. J. Fry, R. Bihrle, R. S. Foster, M. H. Phillips, J. Syrus, A. V. Zaitsev, C. W. Hennige, “Noninvasive surgery of prostate tissue by high-intensity focused ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 1099–1110 (1996).
    [CrossRef]
  5. C. R. Hill, “Optimum acoustic frequency for focused ultrasound surgery,” Ultrasound Med. Biol. 20, 271–277 (1994).
    [CrossRef] [PubMed]
  6. S. B. Field, J. W. Hand, eds., An Introduction to the Practical Aspects of Clinical Hyperthermia (Taylor and Francis, London, 1990).
  7. “Guidelines for the safe use of extra corporeal shock-wave lithotripsy (ESWL) devices,” in Proceedings of the Radiation Safety Committee of the European Federation of Societies for Ultrasound in Medicine and Biology, Ultrasound Med. Biol.20, 315–316 (1994).
  8. R. P. De Paula, L. Flax, J. H. Cole, J. A. Bucaro, “Single mode fiber ultrasonic sensor,” IEEE J. Quantum Electron. 18, 680–693 (1982).
    [CrossRef]
  9. S. Knudsen, K. Blotekjaer, “An ultrasonic fiber-optic hydrophone incorporating a push–pull Sagnac interferometer,” J. Lightwave Technol. 12, 1696–1700 (1994).
    [CrossRef]
  10. H. L. W. Chan, K. S. Chiang, D. C. Price, J. L. Gardener, “The characterisation of high frequency ultrasonic fields using polarimetric optical fiber sensor,” J. Appl. Phys. 66, 1565–1570 (1989).
    [CrossRef]
  11. H. L. W. Chan, K. S. Chiang, D. C. Price, J. L. Gardener, J. Brinch, “Use of a fiber-optic hydrophone in measuring acoustic parameters of high power hyperthermia transducers,” Phys. Med. Biol. 34, 1609–1622 (1989).
    [CrossRef] [PubMed]
  12. K. S. Chiang, H. L. W. Chan, J. L. Gardener, “Detection of high frequency ultrasound with polarisation maintaining fiber,” J. Lightwave Technol. 8, 1221–1227 (1990).
    [CrossRef]
  13. P. C. Beard, T. N. Mills, “Optical fiber sensor for the detection of laser-generated ultrasound in arterial tissues,” in Medical Sensors II and Fiber Optic Sensors, A. M. Verga Scheggi, F. Baldini, P. R. Coulet, O. S. Wolfbeis, eds. Proc. SPIE2331, 112–122 (1994).
    [CrossRef]
  14. J. J. Alcoz, C. E. Lee, H. F. Taylor, “Embedded fibre-optic Fabry–Perot ultrasound sensor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37, 302–305 (1990).
    [CrossRef]
  15. P. C. Beard and T. N. Mills, “Miniature optical fibre ultrasonic hydrophone using a Fabry–Perot polymer film interferometer,” Electron. Lett. 33, 801–803 (1997).
    [CrossRef]
  16. P. St. J. Russell, J.-L. Archambault, L. Reekie, “Fibre gratings,” Phys. World 6, 41–46 (1993).
  17. Y.-J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355–375 (1997).
    [CrossRef]
  18. D. A. Jackson, A. D. Kersey, M. Corke, J. D. C. Jones, “Pseudo-heterodyne detection scheme for optical interferometer,” Electron. Lett. 18, 1081–1083 (1982).
    [CrossRef]
  19. A. D. Kersey, T. A. Berkoff, W. W. Morey, “Fiber-optic grating strain sensor with drift-compensated high-resolution interferometric wavelength-shift detection,” Opt. Lett. 18, 72–74 (1993).
    [CrossRef] [PubMed]
  20. G. Kossoff, “Analysis of focusing action of spherically curved transducers,” Ultrasound Med. Biol. 5, 359–365 (1979).
    [CrossRef] [PubMed]
  21. N. E. Fisher, S. F. O’Neill, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “Response of in-fibre Bragg gratings to focused ultrasonic fields,” in Proceedings of the 12th International Conference on Optical Fiber Sensors, G. W. Day, A. D. Kersey, eds. (Optical Society of America, Washington, D.C., 1997), pp. 190–193.
  22. C. M. Sayers, C. E. Tait, Ultrasonic Properties of Transducer Backings (Butterworth, Oxford, UK, 1984), pp. 57–60.
  23. J. Kaiser, “Investigation of acoustic emission in tensile testing,” Ph.D dissertation (Technische Hochscule, Munich, Germany, 1950).
  24. N. Lagakos, G. Ku, J. Jarzynski, J. H. Cole, J. A. Bucaro, “Desensitization of the ultrasonic response of single-mode fibers,” J. Lightwave Technol. 5, 1036–1039 (1985).
    [CrossRef]
  25. Y. Rao, D. J. Webb, D. A. Jackson, L. Zhang, I. Bennion, “In-fibre Bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15, 779–785 (1997).
    [CrossRef]
  26. N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “Ultrasonic field and temperature sensor based on short in-fibre Bragg gratings,” Electron. Lett. 34, 1139–1140 (1998).
    [CrossRef]

1998 (1)

N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “Ultrasonic field and temperature sensor based on short in-fibre Bragg gratings,” Electron. Lett. 34, 1139–1140 (1998).
[CrossRef]

1997 (3)

Y. Rao, D. J. Webb, D. A. Jackson, L. Zhang, I. Bennion, “In-fibre Bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15, 779–785 (1997).
[CrossRef]

P. C. Beard and T. N. Mills, “Miniature optical fibre ultrasonic hydrophone using a Fabry–Perot polymer film interferometer,” Electron. Lett. 33, 801–803 (1997).
[CrossRef]

Y.-J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355–375 (1997).
[CrossRef]

1996 (1)

N. T. Sanghvi, F. J. Fry, R. Bihrle, R. S. Foster, M. H. Phillips, J. Syrus, A. V. Zaitsev, C. W. Hennige, “Noninvasive surgery of prostate tissue by high-intensity focused ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 1099–1110 (1996).
[CrossRef]

1994 (3)

C. R. Hill, “Optimum acoustic frequency for focused ultrasound surgery,” Ultrasound Med. Biol. 20, 271–277 (1994).
[CrossRef] [PubMed]

B. B. Barnett, G. R. ter Haar, M. C. Ziskin, W. L. Nyborg, K. Maeda, J. Bang, “Current status of research on biophysical effects of ultrasound,” Ultrasound Med. Biol. 20, 205–218 (1994).
[CrossRef] [PubMed]

S. Knudsen, K. Blotekjaer, “An ultrasonic fiber-optic hydrophone incorporating a push–pull Sagnac interferometer,” J. Lightwave Technol. 12, 1696–1700 (1994).
[CrossRef]

1993 (2)

1990 (2)

K. S. Chiang, H. L. W. Chan, J. L. Gardener, “Detection of high frequency ultrasound with polarisation maintaining fiber,” J. Lightwave Technol. 8, 1221–1227 (1990).
[CrossRef]

J. J. Alcoz, C. E. Lee, H. F. Taylor, “Embedded fibre-optic Fabry–Perot ultrasound sensor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37, 302–305 (1990).
[CrossRef]

1989 (2)

H. L. W. Chan, K. S. Chiang, D. C. Price, J. L. Gardener, “The characterisation of high frequency ultrasonic fields using polarimetric optical fiber sensor,” J. Appl. Phys. 66, 1565–1570 (1989).
[CrossRef]

H. L. W. Chan, K. S. Chiang, D. C. Price, J. L. Gardener, J. Brinch, “Use of a fiber-optic hydrophone in measuring acoustic parameters of high power hyperthermia transducers,” Phys. Med. Biol. 34, 1609–1622 (1989).
[CrossRef] [PubMed]

1985 (2)

W. L. Nyborg, “Optimization of exposure conditions for medical ultrasound,” Ultrasound Med. Biol. 11, 245–260 (1985).
[CrossRef] [PubMed]

N. Lagakos, G. Ku, J. Jarzynski, J. H. Cole, J. A. Bucaro, “Desensitization of the ultrasonic response of single-mode fibers,” J. Lightwave Technol. 5, 1036–1039 (1985).
[CrossRef]

1982 (2)

D. A. Jackson, A. D. Kersey, M. Corke, J. D. C. Jones, “Pseudo-heterodyne detection scheme for optical interferometer,” Electron. Lett. 18, 1081–1083 (1982).
[CrossRef]

R. P. De Paula, L. Flax, J. H. Cole, J. A. Bucaro, “Single mode fiber ultrasonic sensor,” IEEE J. Quantum Electron. 18, 680–693 (1982).
[CrossRef]

1979 (1)

G. Kossoff, “Analysis of focusing action of spherically curved transducers,” Ultrasound Med. Biol. 5, 359–365 (1979).
[CrossRef] [PubMed]

Alcoz, J. J.

J. J. Alcoz, C. E. Lee, H. F. Taylor, “Embedded fibre-optic Fabry–Perot ultrasound sensor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37, 302–305 (1990).
[CrossRef]

Archambault, J.-L.

P. St. J. Russell, J.-L. Archambault, L. Reekie, “Fibre gratings,” Phys. World 6, 41–46 (1993).

Bang, J.

B. B. Barnett, G. R. ter Haar, M. C. Ziskin, W. L. Nyborg, K. Maeda, J. Bang, “Current status of research on biophysical effects of ultrasound,” Ultrasound Med. Biol. 20, 205–218 (1994).
[CrossRef] [PubMed]

Barnett, B. B.

B. B. Barnett, G. R. ter Haar, M. C. Ziskin, W. L. Nyborg, K. Maeda, J. Bang, “Current status of research on biophysical effects of ultrasound,” Ultrasound Med. Biol. 20, 205–218 (1994).
[CrossRef] [PubMed]

Beard, P. C.

P. C. Beard, T. N. Mills, “Optical fiber sensor for the detection of laser-generated ultrasound in arterial tissues,” in Medical Sensors II and Fiber Optic Sensors, A. M. Verga Scheggi, F. Baldini, P. R. Coulet, O. S. Wolfbeis, eds. Proc. SPIE2331, 112–122 (1994).
[CrossRef]

Beard and T. N. Mills, P. C.

P. C. Beard and T. N. Mills, “Miniature optical fibre ultrasonic hydrophone using a Fabry–Perot polymer film interferometer,” Electron. Lett. 33, 801–803 (1997).
[CrossRef]

Bennion, I.

N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “Ultrasonic field and temperature sensor based on short in-fibre Bragg gratings,” Electron. Lett. 34, 1139–1140 (1998).
[CrossRef]

Y. Rao, D. J. Webb, D. A. Jackson, L. Zhang, I. Bennion, “In-fibre Bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15, 779–785 (1997).
[CrossRef]

N. E. Fisher, S. F. O’Neill, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “Response of in-fibre Bragg gratings to focused ultrasonic fields,” in Proceedings of the 12th International Conference on Optical Fiber Sensors, G. W. Day, A. D. Kersey, eds. (Optical Society of America, Washington, D.C., 1997), pp. 190–193.

Berkoff, T. A.

Bihrle, R.

N. T. Sanghvi, F. J. Fry, R. Bihrle, R. S. Foster, M. H. Phillips, J. Syrus, A. V. Zaitsev, C. W. Hennige, “Noninvasive surgery of prostate tissue by high-intensity focused ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 1099–1110 (1996).
[CrossRef]

Blotekjaer, K.

S. Knudsen, K. Blotekjaer, “An ultrasonic fiber-optic hydrophone incorporating a push–pull Sagnac interferometer,” J. Lightwave Technol. 12, 1696–1700 (1994).
[CrossRef]

Brinch, J.

H. L. W. Chan, K. S. Chiang, D. C. Price, J. L. Gardener, J. Brinch, “Use of a fiber-optic hydrophone in measuring acoustic parameters of high power hyperthermia transducers,” Phys. Med. Biol. 34, 1609–1622 (1989).
[CrossRef] [PubMed]

Bucaro, J. A.

N. Lagakos, G. Ku, J. Jarzynski, J. H. Cole, J. A. Bucaro, “Desensitization of the ultrasonic response of single-mode fibers,” J. Lightwave Technol. 5, 1036–1039 (1985).
[CrossRef]

R. P. De Paula, L. Flax, J. H. Cole, J. A. Bucaro, “Single mode fiber ultrasonic sensor,” IEEE J. Quantum Electron. 18, 680–693 (1982).
[CrossRef]

Chan, H. L. W.

K. S. Chiang, H. L. W. Chan, J. L. Gardener, “Detection of high frequency ultrasound with polarisation maintaining fiber,” J. Lightwave Technol. 8, 1221–1227 (1990).
[CrossRef]

H. L. W. Chan, K. S. Chiang, D. C. Price, J. L. Gardener, J. Brinch, “Use of a fiber-optic hydrophone in measuring acoustic parameters of high power hyperthermia transducers,” Phys. Med. Biol. 34, 1609–1622 (1989).
[CrossRef] [PubMed]

H. L. W. Chan, K. S. Chiang, D. C. Price, J. L. Gardener, “The characterisation of high frequency ultrasonic fields using polarimetric optical fiber sensor,” J. Appl. Phys. 66, 1565–1570 (1989).
[CrossRef]

Chiang, K. S.

K. S. Chiang, H. L. W. Chan, J. L. Gardener, “Detection of high frequency ultrasound with polarisation maintaining fiber,” J. Lightwave Technol. 8, 1221–1227 (1990).
[CrossRef]

H. L. W. Chan, K. S. Chiang, D. C. Price, J. L. Gardener, J. Brinch, “Use of a fiber-optic hydrophone in measuring acoustic parameters of high power hyperthermia transducers,” Phys. Med. Biol. 34, 1609–1622 (1989).
[CrossRef] [PubMed]

H. L. W. Chan, K. S. Chiang, D. C. Price, J. L. Gardener, “The characterisation of high frequency ultrasonic fields using polarimetric optical fiber sensor,” J. Appl. Phys. 66, 1565–1570 (1989).
[CrossRef]

Cole, J. H.

N. Lagakos, G. Ku, J. Jarzynski, J. H. Cole, J. A. Bucaro, “Desensitization of the ultrasonic response of single-mode fibers,” J. Lightwave Technol. 5, 1036–1039 (1985).
[CrossRef]

R. P. De Paula, L. Flax, J. H. Cole, J. A. Bucaro, “Single mode fiber ultrasonic sensor,” IEEE J. Quantum Electron. 18, 680–693 (1982).
[CrossRef]

Corke, M.

D. A. Jackson, A. D. Kersey, M. Corke, J. D. C. Jones, “Pseudo-heterodyne detection scheme for optical interferometer,” Electron. Lett. 18, 1081–1083 (1982).
[CrossRef]

De Paula, R. P.

R. P. De Paula, L. Flax, J. H. Cole, J. A. Bucaro, “Single mode fiber ultrasonic sensor,” IEEE J. Quantum Electron. 18, 680–693 (1982).
[CrossRef]

Fisher, N. E.

N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “Ultrasonic field and temperature sensor based on short in-fibre Bragg gratings,” Electron. Lett. 34, 1139–1140 (1998).
[CrossRef]

N. E. Fisher, S. F. O’Neill, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “Response of in-fibre Bragg gratings to focused ultrasonic fields,” in Proceedings of the 12th International Conference on Optical Fiber Sensors, G. W. Day, A. D. Kersey, eds. (Optical Society of America, Washington, D.C., 1997), pp. 190–193.

Flax, L.

R. P. De Paula, L. Flax, J. H. Cole, J. A. Bucaro, “Single mode fiber ultrasonic sensor,” IEEE J. Quantum Electron. 18, 680–693 (1982).
[CrossRef]

Foster, R. S.

N. T. Sanghvi, F. J. Fry, R. Bihrle, R. S. Foster, M. H. Phillips, J. Syrus, A. V. Zaitsev, C. W. Hennige, “Noninvasive surgery of prostate tissue by high-intensity focused ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 1099–1110 (1996).
[CrossRef]

Fry, F. J.

N. T. Sanghvi, F. J. Fry, R. Bihrle, R. S. Foster, M. H. Phillips, J. Syrus, A. V. Zaitsev, C. W. Hennige, “Noninvasive surgery of prostate tissue by high-intensity focused ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 1099–1110 (1996).
[CrossRef]

Gardener, J. L.

K. S. Chiang, H. L. W. Chan, J. L. Gardener, “Detection of high frequency ultrasound with polarisation maintaining fiber,” J. Lightwave Technol. 8, 1221–1227 (1990).
[CrossRef]

H. L. W. Chan, K. S. Chiang, D. C. Price, J. L. Gardener, J. Brinch, “Use of a fiber-optic hydrophone in measuring acoustic parameters of high power hyperthermia transducers,” Phys. Med. Biol. 34, 1609–1622 (1989).
[CrossRef] [PubMed]

H. L. W. Chan, K. S. Chiang, D. C. Price, J. L. Gardener, “The characterisation of high frequency ultrasonic fields using polarimetric optical fiber sensor,” J. Appl. Phys. 66, 1565–1570 (1989).
[CrossRef]

Gavrilov, L. R.

N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “Ultrasonic field and temperature sensor based on short in-fibre Bragg gratings,” Electron. Lett. 34, 1139–1140 (1998).
[CrossRef]

N. E. Fisher, S. F. O’Neill, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “Response of in-fibre Bragg gratings to focused ultrasonic fields,” in Proceedings of the 12th International Conference on Optical Fiber Sensors, G. W. Day, A. D. Kersey, eds. (Optical Society of America, Washington, D.C., 1997), pp. 190–193.

Hand, J. W.

N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “Ultrasonic field and temperature sensor based on short in-fibre Bragg gratings,” Electron. Lett. 34, 1139–1140 (1998).
[CrossRef]

N. E. Fisher, S. F. O’Neill, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “Response of in-fibre Bragg gratings to focused ultrasonic fields,” in Proceedings of the 12th International Conference on Optical Fiber Sensors, G. W. Day, A. D. Kersey, eds. (Optical Society of America, Washington, D.C., 1997), pp. 190–193.

Hennige, C. W.

N. T. Sanghvi, F. J. Fry, R. Bihrle, R. S. Foster, M. H. Phillips, J. Syrus, A. V. Zaitsev, C. W. Hennige, “Noninvasive surgery of prostate tissue by high-intensity focused ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 1099–1110 (1996).
[CrossRef]

Hill, C. R.

C. R. Hill, “Optimum acoustic frequency for focused ultrasound surgery,” Ultrasound Med. Biol. 20, 271–277 (1994).
[CrossRef] [PubMed]

Jackson, D. A.

N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “Ultrasonic field and temperature sensor based on short in-fibre Bragg gratings,” Electron. Lett. 34, 1139–1140 (1998).
[CrossRef]

Y. Rao, D. J. Webb, D. A. Jackson, L. Zhang, I. Bennion, “In-fibre Bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15, 779–785 (1997).
[CrossRef]

D. A. Jackson, A. D. Kersey, M. Corke, J. D. C. Jones, “Pseudo-heterodyne detection scheme for optical interferometer,” Electron. Lett. 18, 1081–1083 (1982).
[CrossRef]

N. E. Fisher, S. F. O’Neill, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “Response of in-fibre Bragg gratings to focused ultrasonic fields,” in Proceedings of the 12th International Conference on Optical Fiber Sensors, G. W. Day, A. D. Kersey, eds. (Optical Society of America, Washington, D.C., 1997), pp. 190–193.

Jarzynski, J.

N. Lagakos, G. Ku, J. Jarzynski, J. H. Cole, J. A. Bucaro, “Desensitization of the ultrasonic response of single-mode fibers,” J. Lightwave Technol. 5, 1036–1039 (1985).
[CrossRef]

Jones, J. D. C.

D. A. Jackson, A. D. Kersey, M. Corke, J. D. C. Jones, “Pseudo-heterodyne detection scheme for optical interferometer,” Electron. Lett. 18, 1081–1083 (1982).
[CrossRef]

Kaiser, J.

J. Kaiser, “Investigation of acoustic emission in tensile testing,” Ph.D dissertation (Technische Hochscule, Munich, Germany, 1950).

Kersey, A. D.

A. D. Kersey, T. A. Berkoff, W. W. Morey, “Fiber-optic grating strain sensor with drift-compensated high-resolution interferometric wavelength-shift detection,” Opt. Lett. 18, 72–74 (1993).
[CrossRef] [PubMed]

D. A. Jackson, A. D. Kersey, M. Corke, J. D. C. Jones, “Pseudo-heterodyne detection scheme for optical interferometer,” Electron. Lett. 18, 1081–1083 (1982).
[CrossRef]

Knudsen, S.

S. Knudsen, K. Blotekjaer, “An ultrasonic fiber-optic hydrophone incorporating a push–pull Sagnac interferometer,” J. Lightwave Technol. 12, 1696–1700 (1994).
[CrossRef]

Kossoff, G.

G. Kossoff, “Analysis of focusing action of spherically curved transducers,” Ultrasound Med. Biol. 5, 359–365 (1979).
[CrossRef] [PubMed]

Ku, G.

N. Lagakos, G. Ku, J. Jarzynski, J. H. Cole, J. A. Bucaro, “Desensitization of the ultrasonic response of single-mode fibers,” J. Lightwave Technol. 5, 1036–1039 (1985).
[CrossRef]

Lagakos, N.

N. Lagakos, G. Ku, J. Jarzynski, J. H. Cole, J. A. Bucaro, “Desensitization of the ultrasonic response of single-mode fibers,” J. Lightwave Technol. 5, 1036–1039 (1985).
[CrossRef]

Lee, C. E.

J. J. Alcoz, C. E. Lee, H. F. Taylor, “Embedded fibre-optic Fabry–Perot ultrasound sensor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37, 302–305 (1990).
[CrossRef]

Maeda, K.

B. B. Barnett, G. R. ter Haar, M. C. Ziskin, W. L. Nyborg, K. Maeda, J. Bang, “Current status of research on biophysical effects of ultrasound,” Ultrasound Med. Biol. 20, 205–218 (1994).
[CrossRef] [PubMed]

Mills, T. N.

P. C. Beard, T. N. Mills, “Optical fiber sensor for the detection of laser-generated ultrasound in arterial tissues,” in Medical Sensors II and Fiber Optic Sensors, A. M. Verga Scheggi, F. Baldini, P. R. Coulet, O. S. Wolfbeis, eds. Proc. SPIE2331, 112–122 (1994).
[CrossRef]

Morey, W. W.

Nyborg, W. L.

B. B. Barnett, G. R. ter Haar, M. C. Ziskin, W. L. Nyborg, K. Maeda, J. Bang, “Current status of research on biophysical effects of ultrasound,” Ultrasound Med. Biol. 20, 205–218 (1994).
[CrossRef] [PubMed]

W. L. Nyborg, “Optimization of exposure conditions for medical ultrasound,” Ultrasound Med. Biol. 11, 245–260 (1985).
[CrossRef] [PubMed]

O’Neill, S. F.

N. E. Fisher, S. F. O’Neill, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “Response of in-fibre Bragg gratings to focused ultrasonic fields,” in Proceedings of the 12th International Conference on Optical Fiber Sensors, G. W. Day, A. D. Kersey, eds. (Optical Society of America, Washington, D.C., 1997), pp. 190–193.

Pannell, C. N.

N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “Ultrasonic field and temperature sensor based on short in-fibre Bragg gratings,” Electron. Lett. 34, 1139–1140 (1998).
[CrossRef]

N. E. Fisher, S. F. O’Neill, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “Response of in-fibre Bragg gratings to focused ultrasonic fields,” in Proceedings of the 12th International Conference on Optical Fiber Sensors, G. W. Day, A. D. Kersey, eds. (Optical Society of America, Washington, D.C., 1997), pp. 190–193.

Phillips, M. H.

N. T. Sanghvi, F. J. Fry, R. Bihrle, R. S. Foster, M. H. Phillips, J. Syrus, A. V. Zaitsev, C. W. Hennige, “Noninvasive surgery of prostate tissue by high-intensity focused ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 1099–1110 (1996).
[CrossRef]

Price, D. C.

H. L. W. Chan, K. S. Chiang, D. C. Price, J. L. Gardener, “The characterisation of high frequency ultrasonic fields using polarimetric optical fiber sensor,” J. Appl. Phys. 66, 1565–1570 (1989).
[CrossRef]

H. L. W. Chan, K. S. Chiang, D. C. Price, J. L. Gardener, J. Brinch, “Use of a fiber-optic hydrophone in measuring acoustic parameters of high power hyperthermia transducers,” Phys. Med. Biol. 34, 1609–1622 (1989).
[CrossRef] [PubMed]

Rao, Y.

Y. Rao, D. J. Webb, D. A. Jackson, L. Zhang, I. Bennion, “In-fibre Bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15, 779–785 (1997).
[CrossRef]

Rao, Y.-J.

Y.-J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355–375 (1997).
[CrossRef]

Reekie, L.

P. St. J. Russell, J.-L. Archambault, L. Reekie, “Fibre gratings,” Phys. World 6, 41–46 (1993).

Russell, P. St. J.

P. St. J. Russell, J.-L. Archambault, L. Reekie, “Fibre gratings,” Phys. World 6, 41–46 (1993).

Sanghvi, N. T.

N. T. Sanghvi, F. J. Fry, R. Bihrle, R. S. Foster, M. H. Phillips, J. Syrus, A. V. Zaitsev, C. W. Hennige, “Noninvasive surgery of prostate tissue by high-intensity focused ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 1099–1110 (1996).
[CrossRef]

Sayers, C. M.

C. M. Sayers, C. E. Tait, Ultrasonic Properties of Transducer Backings (Butterworth, Oxford, UK, 1984), pp. 57–60.

Syrus, J.

N. T. Sanghvi, F. J. Fry, R. Bihrle, R. S. Foster, M. H. Phillips, J. Syrus, A. V. Zaitsev, C. W. Hennige, “Noninvasive surgery of prostate tissue by high-intensity focused ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 1099–1110 (1996).
[CrossRef]

Tait, C. E.

C. M. Sayers, C. E. Tait, Ultrasonic Properties of Transducer Backings (Butterworth, Oxford, UK, 1984), pp. 57–60.

Taylor, H. F.

J. J. Alcoz, C. E. Lee, H. F. Taylor, “Embedded fibre-optic Fabry–Perot ultrasound sensor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37, 302–305 (1990).
[CrossRef]

ter Haar, G. R.

B. B. Barnett, G. R. ter Haar, M. C. Ziskin, W. L. Nyborg, K. Maeda, J. Bang, “Current status of research on biophysical effects of ultrasound,” Ultrasound Med. Biol. 20, 205–218 (1994).
[CrossRef] [PubMed]

Webb, D. J.

N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “Ultrasonic field and temperature sensor based on short in-fibre Bragg gratings,” Electron. Lett. 34, 1139–1140 (1998).
[CrossRef]

Y. Rao, D. J. Webb, D. A. Jackson, L. Zhang, I. Bennion, “In-fibre Bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15, 779–785 (1997).
[CrossRef]

N. E. Fisher, S. F. O’Neill, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “Response of in-fibre Bragg gratings to focused ultrasonic fields,” in Proceedings of the 12th International Conference on Optical Fiber Sensors, G. W. Day, A. D. Kersey, eds. (Optical Society of America, Washington, D.C., 1997), pp. 190–193.

Zaitsev, A. V.

N. T. Sanghvi, F. J. Fry, R. Bihrle, R. S. Foster, M. H. Phillips, J. Syrus, A. V. Zaitsev, C. W. Hennige, “Noninvasive surgery of prostate tissue by high-intensity focused ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 1099–1110 (1996).
[CrossRef]

Zhang, L.

N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “Ultrasonic field and temperature sensor based on short in-fibre Bragg gratings,” Electron. Lett. 34, 1139–1140 (1998).
[CrossRef]

Y. Rao, D. J. Webb, D. A. Jackson, L. Zhang, I. Bennion, “In-fibre Bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15, 779–785 (1997).
[CrossRef]

N. E. Fisher, S. F. O’Neill, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “Response of in-fibre Bragg gratings to focused ultrasonic fields,” in Proceedings of the 12th International Conference on Optical Fiber Sensors, G. W. Day, A. D. Kersey, eds. (Optical Society of America, Washington, D.C., 1997), pp. 190–193.

Ziskin, M. C.

B. B. Barnett, G. R. ter Haar, M. C. Ziskin, W. L. Nyborg, K. Maeda, J. Bang, “Current status of research on biophysical effects of ultrasound,” Ultrasound Med. Biol. 20, 205–218 (1994).
[CrossRef] [PubMed]

Electron. Lett. (3)

P. C. Beard and T. N. Mills, “Miniature optical fibre ultrasonic hydrophone using a Fabry–Perot polymer film interferometer,” Electron. Lett. 33, 801–803 (1997).
[CrossRef]

D. A. Jackson, A. D. Kersey, M. Corke, J. D. C. Jones, “Pseudo-heterodyne detection scheme for optical interferometer,” Electron. Lett. 18, 1081–1083 (1982).
[CrossRef]

N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “Ultrasonic field and temperature sensor based on short in-fibre Bragg gratings,” Electron. Lett. 34, 1139–1140 (1998).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. P. De Paula, L. Flax, J. H. Cole, J. A. Bucaro, “Single mode fiber ultrasonic sensor,” IEEE J. Quantum Electron. 18, 680–693 (1982).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (2)

N. T. Sanghvi, F. J. Fry, R. Bihrle, R. S. Foster, M. H. Phillips, J. Syrus, A. V. Zaitsev, C. W. Hennige, “Noninvasive surgery of prostate tissue by high-intensity focused ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 1099–1110 (1996).
[CrossRef]

J. J. Alcoz, C. E. Lee, H. F. Taylor, “Embedded fibre-optic Fabry–Perot ultrasound sensor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37, 302–305 (1990).
[CrossRef]

J. Appl. Phys. (1)

H. L. W. Chan, K. S. Chiang, D. C. Price, J. L. Gardener, “The characterisation of high frequency ultrasonic fields using polarimetric optical fiber sensor,” J. Appl. Phys. 66, 1565–1570 (1989).
[CrossRef]

J. Lightwave Technol. (4)

K. S. Chiang, H. L. W. Chan, J. L. Gardener, “Detection of high frequency ultrasound with polarisation maintaining fiber,” J. Lightwave Technol. 8, 1221–1227 (1990).
[CrossRef]

S. Knudsen, K. Blotekjaer, “An ultrasonic fiber-optic hydrophone incorporating a push–pull Sagnac interferometer,” J. Lightwave Technol. 12, 1696–1700 (1994).
[CrossRef]

N. Lagakos, G. Ku, J. Jarzynski, J. H. Cole, J. A. Bucaro, “Desensitization of the ultrasonic response of single-mode fibers,” J. Lightwave Technol. 5, 1036–1039 (1985).
[CrossRef]

Y. Rao, D. J. Webb, D. A. Jackson, L. Zhang, I. Bennion, “In-fibre Bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15, 779–785 (1997).
[CrossRef]

Meas. Sci. Technol. (1)

Y.-J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355–375 (1997).
[CrossRef]

Opt. Lett. (1)

Phys. Med. Biol. (1)

H. L. W. Chan, K. S. Chiang, D. C. Price, J. L. Gardener, J. Brinch, “Use of a fiber-optic hydrophone in measuring acoustic parameters of high power hyperthermia transducers,” Phys. Med. Biol. 34, 1609–1622 (1989).
[CrossRef] [PubMed]

Phys. World (1)

P. St. J. Russell, J.-L. Archambault, L. Reekie, “Fibre gratings,” Phys. World 6, 41–46 (1993).

Ultrasound Med. Biol. (4)

B. B. Barnett, G. R. ter Haar, M. C. Ziskin, W. L. Nyborg, K. Maeda, J. Bang, “Current status of research on biophysical effects of ultrasound,” Ultrasound Med. Biol. 20, 205–218 (1994).
[CrossRef] [PubMed]

W. L. Nyborg, “Optimization of exposure conditions for medical ultrasound,” Ultrasound Med. Biol. 11, 245–260 (1985).
[CrossRef] [PubMed]

C. R. Hill, “Optimum acoustic frequency for focused ultrasound surgery,” Ultrasound Med. Biol. 20, 271–277 (1994).
[CrossRef] [PubMed]

G. Kossoff, “Analysis of focusing action of spherically curved transducers,” Ultrasound Med. Biol. 5, 359–365 (1979).
[CrossRef] [PubMed]

Other (7)

N. E. Fisher, S. F. O’Neill, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion, “Response of in-fibre Bragg gratings to focused ultrasonic fields,” in Proceedings of the 12th International Conference on Optical Fiber Sensors, G. W. Day, A. D. Kersey, eds. (Optical Society of America, Washington, D.C., 1997), pp. 190–193.

C. M. Sayers, C. E. Tait, Ultrasonic Properties of Transducer Backings (Butterworth, Oxford, UK, 1984), pp. 57–60.

J. Kaiser, “Investigation of acoustic emission in tensile testing,” Ph.D dissertation (Technische Hochscule, Munich, Germany, 1950).

S. B. Field, J. W. Hand, eds., An Introduction to the Practical Aspects of Clinical Hyperthermia (Taylor and Francis, London, 1990).

“Guidelines for the safe use of extra corporeal shock-wave lithotripsy (ESWL) devices,” in Proceedings of the Radiation Safety Committee of the European Federation of Societies for Ultrasound in Medicine and Biology, Ultrasound Med. Biol.20, 315–316 (1994).

National Council on Radiation Protection and Measurements, “Biological effects of ultrasound: mechanisms and clinical implications,” NCRP Rep. No. 74 (National Council on Radiation Protection and Measurements, Bethesda, Md., 1983).

P. C. Beard, T. N. Mills, “Optical fiber sensor for the detection of laser-generated ultrasound in arterial tissues,” in Medical Sensors II and Fiber Optic Sensors, A. M. Verga Scheggi, F. Baldini, P. R. Coulet, O. S. Wolfbeis, eds. Proc. SPIE2331, 112–122 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Experimental arrangement: PM, phase modulator; PC, polarization controller; DC, directional coupler.

Fig. 2
Fig. 2

Arrangement for the IFBG in a water tank.

Fig. 3
Fig. 3

Spectrum analyzer trace recorded with incident sound waves at 700 Hz.

Fig. 4
Fig. 4

Spectrum analyzer trace recorded with focused ultrasound at 1.91 MHz.

Fig. 5
Fig. 5

Sideband magnitude (normalized to carrier magnitude) as a function of incident acoustic pressure.

Fig. 6
Fig. 6

Sideband power (normalized to carrier power) as a function of longitudinal IFBG position.

Fig. 7
Fig. 7

Sideband power (normalized to carrier power) as a function of longitudinal IFBG position for an interjacket separation of (a) ≈1 cm and (b) ≈6 cm.

Fig. 8
Fig. 8

Sideband power (normalized to carrier power) as a function of longitudinal IFBG position for fiber coated with resin mixed with tungsten powder.

Fig. 9
Fig. 9

Sideband power (normalized to carrier power) for the sleeved IFBG as a function of (a) longitudinal and (b) lateral IFBG position.

Fig. 10
Fig. 10

Sideband magnitude (normalized to carrier magnitude) as a function of incident acoustic pressure for the sleeved IFBG.

Fig. 11
Fig. 11

Wavelength spectra of backreflected light from the sleeved IFBG for incident acoustic pressures of (a) 0 atm, (b) 1.4 atm, (c) 2.2 atm.

Fig. 12
Fig. 12

Spectrum analyzer trace recorded with focused ultrasound at acoustic pressure of ≈2 atm for the (a) ≈5-mm grating, (b) ≈3-mm grating, (c) ≈1-mm grating.

Fig. 13
Fig. 13

Sideband power (normalized to carrier power) for the sleeved 1-mm IFBG as a function of (a) longitudinal and (b) lateral IFBG position.

Fig. 14
Fig. 14

Sideband magnitude (normalized to carrier magnitude) as a function of incident acoustic pressure for the sleeved 1-mm IFBG.

Fig. 15
Fig. 15

Wavelength spectra of backreflected light from the sleeved 1-mm IFBG for incident acoustic pressures of 0, 1.4, and 2.2 atm. Note that the profiles are now almost identical, which was not the case in Fig. 11.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I λ B = A 1 + V   cos ω t + Φ + δ Φ   sin   ω t + ϕ t ,
δ Φ   sin   ω t = 2 π OPD / λ B 2 δ λ B sin   ω t .
A 1 - b + b   cos ω t + φ ,

Metrics